ZESZYTY NAUKOWE POLITECHNIKI SLASKIEJ

Seria: MATEMATYKA-FIZYKA z. 34

Nr kol. 623

1979

Olga MACEDONSKA-NOSALSKA

ON CONVERGENT SEQUENCES IN AUT (F)

<u>Abstract</u>. For a natural definition of convergency and an infinite product in Aut(F) the necessary and sufficient conditions for a sequence of automorphisms to have the limit and the product in Aut(F) are given here.

Let F be the free group of countable rank on free generators x_i , i $\in I$, where I is the set of natural numbers. Let $\operatorname{Aut}_{\mathbf{f}}(F)$ be the subgroup of $\operatorname{Aut}(F)$ generated by the elementary Nielsen transformations. By theorem 4.1 [1] the subgroup $\operatorname{Aut}_{\mathbf{f}}(F)$ is dense in $\operatorname{Aut}(F)$ in the sense that if U_1, \ldots, U_n are elements of F and $\alpha \in \operatorname{Aut}(F)$ there exists $\beta \in \operatorname{Aut}_{\mathbf{f}}(F)$ such that $\alpha U_1 = \beta U_1$, i=1,2,...,n.

Definition 1

A sequence of automorphisms α_{K^*} KCI is called convergent to an endomorphism α if $\forall m \in I$, $\exists K_m \in I$ such that $\alpha_{K^*} = \alpha_{K^*}$ for $i \in m$ whenever $K \geq K_m$. We shall write then $\alpha = \lim \alpha_{K^*}$ It does not depend obviously on choise of free generators.

From the above theorem it follows that $\forall \alpha \in \operatorname{Aut}(F)$ there exists a sequence α_{K} , $K \in I$, $\alpha_{K} \in \operatorname{Aut}_{f}F$ such that $\alpha = \lim \alpha_{K}$. It is enough to define α_{K} to coincide with α on x_{i} , $i \leq K$. Let us note however that a limit of a convergent sequence of automorphisms is not necessary an automorphism. Indeed, let α_{K} , $K \in I$ be defined by $\alpha_{K}x_{i} = x_{i}x_{i+1}$ for $i \leq K$; $\alpha_{K}x_{i} = x_{i}$ for i > K. Then $\alpha_{K} \in \operatorname{Aut}_{f}(F)$, $K \in I$, $\lim \alpha_{K} = \alpha$, where $\alpha x_{i} = x_{i}x_{i+1}$ for all $i \in I$. Obviously α is not an epimorphism as in $\operatorname{gp}[\alpha x_{i}, i \in I]$ every element has an even x-length.

Definition 2

Sequence π_{K} , KE I, $\pi_{K} \in Aut(F)$ is called a sequence of partial products for some sequence α_{K} , KE I, $\alpha_{K} \in Aut(F)$, if $\pi_{1} = \alpha_{1}$, $\pi_{K} = \alpha_{K} \pi_{K-1}$, E>1. (here ($\beta \alpha$) x = β (α x)). If the sequence π_{K} , KE I is convergent then π = lim π_{K} is called a product of the sequence α_{K} , KE L.

We will give now an example of a (convergent to identity) sequence α_{K} , K \in I, $\alpha_{K} \in$ Aut(F) that has no product. Let α_{K} be defined by $\alpha_{K} x_{K} = x_{K} x_{K+1}$, $\alpha_{K} x_{1} = x_{1}$, i=K, i, K \in I. Then $\pi_{1} x_{1} = \alpha_{1} x_{1} = x_{1} x_{2}$. Suppose $\pi_{K-1} x_{1} = x_{1} x_{2}^{2} \cdots x_{K}^{2}$ then $\pi_{K} x_{1} = \alpha_{K} \pi_{K-1} x_{1} = \alpha_{K} x_{1} \alpha_{K} x_{2}^{2} \cdots \alpha_{K} x_{K-1} x_{1} x_{2}^{2} \cdots x_{K}^{2}$ It means that for m = 1 in def 1 K, does not exist, hence the sequence π_{K} . KCI is not convergent.

For automorphisms $\alpha_{K}, \beta_{K}, \pi_{K}, \pi_{K}^{-1}$ we denote by $A_{K}(m)$, $B_{K}(m)$, $P_{K}(m)$, $P_{K}^{-1}(m)$ respectively the sets of indexes ic I of generators π_{i} in a reduced form of words $\alpha_{K}^{\times}m$, $\beta_{K}^{\times}m$, $\pi_{K}^{\times}m$, $\pi_{K}^{-1}x_{m}$. For any S i we denote $A_{K}(S) = \bigcup A_{K}(m)$, mess. Notice here that $\pi_{K} = \alpha_{K}\alpha_{K-1}^{-1}\cdots \alpha_{1}$ follows

$$P_{K}(m) \subseteq A_{K}(A_{K-1}(\dots(A_{1}(m))\dots))$$
 (1)

In the set IxI define a partial order by (K,i) < (l,j) if and only if (K < l) (i < j). Let α_{K^*} K \in I and β_K , K \in I be two convergent sequences of automorphisms, $\lim \alpha_K = \alpha$, $\lim \beta_K = \beta$. Denote $\mathcal{J}_{(K,i)} = \alpha_K \beta_i$.

Lemma 1

For every increasing sequence $J \subseteq I \times I$ the sequence f(K,i): $(K,i) \in J$ is convergent and $\lim_{k \to 0} f(K,i) = \lim_{k \to 0} \alpha_k \lim_{k \to 0} \beta_i = \alpha \cdot \beta$.

For any mell $\lim \beta_i = \beta$ implies the existence of i_m such that $\beta_i x_m = -\beta x_m$ and hence $B_i(m) = B(m)$ whenever $i \ge i_m$. The set B(m) is obviously finite then $\lim \alpha_K = \alpha$ implies the existence of K(m) such that $\alpha_K x_j = \alpha x_j$ for all $j \in B(m)$ whenever $K \ge K(m)$. We will show now that $T(K,i) x_m = (\alpha_k \beta) x_m$ whenever $(K,i) \ge (K(m), i_m)$ which implies by def 1 our statement. Suppose $\beta x_m = W(x_j)$, $j \in B(m)$, then for $K \ge K(m)$, $i \ge i_m f(K,i) x_m = (\alpha_K \beta_i) x_m = \alpha_K(\beta_i x_m) = \alpha_K (\beta x_m) = \alpha_K W(x_j) = W(\alpha_K x_j) = W(\alpha_X x_j) = \alpha W(x_j) = \alpha(\beta x_m) = \alpha(\beta x$

Lemma 2

The limit of a convergent sequence of automorphisms is a monomorphism. Suppose lim $\alpha_{\mathbf{K}} = \alpha$, $\alpha_{\mathbf{K}} \in \operatorname{Aut}(\mathbf{F})$ and for some $v \in \mathbf{F}$, $\alpha_{\mathbf{v}} = 1$. Denote by S the set of indexes of generators in the reduced form of v. Then $\lim_{\mathbf{K}} \alpha_{\mathbf{K}} = \alpha_{\mathbf{K}}$ implies the existence of $\overline{\mathbf{K}}$ such that whenever $\mathbf{K} \ge \mathbf{K}$ $\alpha_{\mathbf{K}} \mathbf{x}_{\mathbf{i}} = \alpha_{\mathbf{X}_{\mathbf{i}}}$ holds for all if S, which means $\alpha_{\mathbf{K}} \mathbf{v} = \mathbf{\alpha} \mathbf{v} = 1$ and hence $\mathbf{v} = 1$.

Lemma 3

The limit of a convergent sequence α_{K} , KEI $\alpha_{K} \in Aut(F)$ is an automorphism if and only if the sequence α_{K}^{-1} , KEI is convergent. Moreover, it follows that $\lim \alpha_{K}^{-1} = \alpha^{-1}$.

Suppose that $\lim \alpha_{K} = \alpha$, $\lim \alpha_{K}^{-1} = \beta$, then by lemma 1 for $\beta_{K} = \alpha_{K}^{-1}$, K&I we obtain $\lim \gamma_{(K,K)} = \lim (\alpha_{K}\beta_{K}) = e = \lim \alpha_{K} \lim \beta_{K} = \alpha$, β where $\alpha_{K}\beta_{K} = \alpha_{K}\alpha_{K}^{-1} = e$ is an identical sutomorphism. In the same way we can state that $e = \beta \alpha$, hence $\alpha^{-1} = \beta = \lim \alpha_{K}^{-1}$ and $\alpha \in Aut(F)$. Conversely if $\lim \alpha_{K} = \alpha \in Aut(F)$ we will show that $\alpha^{-1} = \lim \alpha_{K}^{-1}$. Using lemma 1 for

On convergent sequences in Aut (F)

$$\begin{split} \beta_1 &= \alpha^{-1}, \text{ is I, } \lim(\alpha_K \alpha^{-1}) = \lim \alpha_K \cdot \lim \alpha^{-1} = \alpha \alpha^{-1} = e. \text{ By def 1 it} \\ \text{implies that } \forall_m, \exists K_m \text{ such that whenever } K > K_m, (\alpha_K \alpha^{-1}) x_m = x_m \cdot \text{ Now } \alpha^{-1} x_m = \\ &= \alpha_K^{-1} (\alpha_K \alpha^{-1}) x_m = \alpha_K^{-1} x_m \text{ whenever } K > K_m \text{ which means } \lim \alpha_K^{-1} = \alpha^{-1}. \\ \underline{\text{Corollary }} \lim \alpha_K = e \text{ if and only if } \lim \alpha_K^{-1} = e. \end{split}$$

Lemma 4

The product π of a sequence α_K , KeI, $\alpha_K \in Aut(F)$ if existent is an automorphism if and only if $\lim \alpha_K = e$.

Let $\lim \pi_{K} = \pi$ be an automorphism, then by lemma 3 $\lim \pi_{K}^{-1} = \pi^{-1}$. Since $a_{K} = \pi_{K} \cdot \pi_{K-1}^{-1}$ it follows by lemma 1 that $\lim \alpha_{K} = \lim \pi_{K} \cdot \lim \pi_{K-1}^{-1} = \pi \cdot \pi^{-1} = e$ which was required. Conversely since $\lim \alpha_{K} = e$ it follows by previous corollary that $\lim \alpha_{K}^{-1} = e$ and by def 1 $\forall \pi \exists K_{m}$ that for $K > K_{m} \alpha_{K}^{-1} x_{m} = x_{m}$ holds. Now for $K > K_{m} \pi_{K}^{-1} x_{m} = (\pi_{K-1}^{-1} \alpha_{K}^{-1}) x_{m} = \pi_{K-1}^{-1} (\alpha_{K}^{-1} x_{m}) = \pi_{K-1}^{-1} x_{m}$. It means that sequence π_{K}^{-1} , KeI is convergent, hence by lemma 3 π is an automorphism.

Notice here that the condition of $\lim a_K = e$ is not sufficient for the existence of the product as it is shown in example following def 2.

Lemma 5

If $\lim \alpha_{K} = e$, $\alpha_{K} \in Aut(F)$ and there exists convergent subsequence $\mathcal{T}_{K(1,\cdot)}$, is I in a sequence of partial products, then there exists $\pi = -\lim \pi_{K(1)} = \lim \pi_{K}$.

Every \mathcal{T}_{K} can be written in the form of $\mathcal{T}_{K} = \alpha_{K} \cdots \alpha_{K(1)+1} \mathcal{T}_{K(1)}$ where K(i+1) > K > K(1). If we denote $\lim \mathcal{T}_{K(1)} = \mathcal{T}$ then by def is it implies that $\forall m \exists K_{m}(1)$ such that $\mathcal{T}_{K(1)} \mathbb{T}_{m} = \mathcal{T}_{m}$ whenever $K(1) > K_{m}(1)$ and hence $P_{K(1)}(m) = P(m)$ for $K(1) > K_{m}(1)$. Since $\lim \alpha_{K} = e$ and P(m) is finite there exists by def is a \overline{K} such that $\alpha_{K} \mathbf{x}_{1} = \mathbf{x}_{1}$ for all $i \in P(m)$ whenever K > K. If we denote that $K_{m} = \max (K_{m}(1), \overline{K})$ then for all $K > K_{m}$ it follows that $\mathcal{T}_{K} \mathbf{x}_{m} = \alpha_{K} \cdots \alpha_{K}(1) + j \mathcal{T}_{K}(1) \mathbf{x}_{m} = \alpha_{K} \cdots \alpha_{K}(1) + 1 \mathcal{T}_{m} = \mathcal{T}_{m}$ which means that $\mathcal{T}_{m} = \lim \mathcal{T}_{K}$ is the product of the sequence α_{K} , $K \in I$.

To find the necessary and sufficient conditions for sequence α_{K} , K e I having product we need two more definitons.

For a given sequence α_{K} , K i and m i we denote $T_1(m) = A_1(m)$, $T_K(m) = A_K(T_{K-1}(m))$ and $T(m) = \bigcup_{K \in I} T_K(m)$.

Definition 3

Sequence a_K, KSI is called regular if VmGJT(m) is finite.

Lemma 6

Let sequence σ_{π} , K \in I be regular and lim α_{K} e, it warrants existence of a product π for this sequence. We have to show that the sequence T_{K} , K is I of partial products is convergent. Since $T_{K} = \alpha_{K} \alpha_{K-1} \cdots \alpha_{1}$ we obtain from (1)

$$P_{K}(\mathbf{n}) \subseteq T_{K}(\mathbf{n}) \subseteq T(\mathbf{n})$$
(2)

We see now that $\pi_{K+1} \mathbf{x}_{m} = (\alpha_{K+1} \pi_{K}) \mathbf{x}_{m} = \alpha_{K+1} (\pi_{K} \mathbf{x}_{m})$ where by (2) $\pi_{K} \mathbf{x}_{m}$ is a word in \mathbf{x}_{i} , is T(m) Since T(m) is finite and $\lim \alpha_{K} = e$ it follows that there exists a \overline{K} such that whenever $K \ge \overline{K} \propto_{K+1} \mathbf{x}_{i} = \mathbf{x}_{i}$ holds for all is T(m). Hence $\pi_{K+1} \mathbf{x}_{m} = \pi_{K} \mathbf{x}_{m}$ whenever $K \ge \overline{K}$ which means convergency of the sequence π_{K} , K s I.

Notice that we did not need α_{K} , KeI to be automorphism in lemmas 5, 6. Notice as well that condition $\lim \alpha_{K} = e$ in lemma 6 cannot be weakened for the convergency of α_{K} . KeI only. Indeed consider automorphism α , where $\alpha_{X_{1}} = x_{1}x_{2}$, $\alpha_{X_{1}} = x_{1}$, i = 1. We will define suguence α_{K} , KeI by $\alpha_{K} = \alpha$, KeI. This sequence is obviously convergent to α and is regular since T(1) = <1,2>. T(m) = <m> for $m \neq 1$. However $\pi_{K}x_{1} = \alpha_{K}x_{1} = x_{1}x_{2}$ implies that sequence π_{K} KeI is not convergent.

We will now state that the condition for sequence α_{K} , K i I to be regular is not a necessary one for existence of a product of this sequence. Let us define automorphism β_1 , 1 ° I by $\beta_1 x_1 = x_1 x_{1+1}$, $\beta_1 x_1 = x_1$, ifl Let now $\alpha_1 = e$, $\alpha_K = \beta_1$ for K = 21 and $\alpha_K = \beta_1^{-1}$ for K = 21 + 1. Obviously $\lim \alpha_K = e$ Consider the sequence of partial products for α_K , K i I. $\pi_K = \alpha_K = \beta_1$ for K = 21 and $\pi_K = \alpha_K \pi_{K-1} = \beta_1^{-1} \cdot \beta_1 = e$ for K=21+1. Naturally this sequence is convergent to e and hence α_K , K i I has a product e. Show however that the sequence α_K , K i I is not regular since e.g. T(1) is infinite. Using induction shows that $T_{21}(1) < 1, 2, ...,$ $\dots, 1+1 > \dots$ Indeed, for 1 = 1 $T_2(1) = A_2(A_1(1)) = E_1(1) = <1, 2 > \dots$ Let $T_2(1-1)(1) = <1, 2, ..., 1 > \text{ then } T_{21}(1) = A_{21}(A_{21-1}(T_2(1+1)(1))) = = A_{21}(A_{21-1}(x_1, 2, ..., 1>)) = B_1(B_{1-1}^{-1} < 1, 2, ..., 1>)) = B_e(<1, 2, ..., 1>) = = <1, 2, ..., 1+1 > \dots$ hence our sequence α_K , K i I is not regular.

Definition 4

We say that sequence β_{K} , K \in I is obtained from sequence α_{K} , K \in I by blocking if for some increasing sequence of naturals $r(1) < r(2) < r(3) < \dots$ $\beta_1 = \alpha_{r(1)} \cdots \alpha_2 \alpha_1, \beta_K = \alpha_{r(K)} \cdots \alpha_{r(K-1)+1}, K > 1, K \in I.$

The sequence of partial products π_{K} , Ke I for β_{K} , Ke I is obviously a subsequence of that for π_{K} , Ke I as $\pi_{K} = \pi_{r(K)}$, Ke I and $\lim \pi_{K} = \pi$ follows $\lim \pi_{K} = \pi$.

Lemma 7

Suppose that sequence α_{K} , $K \in I$, $\alpha_{K} \in Aut(F)$ has a product $\pi \in Aut(F)$, then π is a product of a regular sequence β_{K} , $K \in I$, $\beta_{K} \in Aut(F)$ obtains by blocking α_{K} , $K \in I$.

On convergent sequences in Aut (F)

To prove the statement we need to define sequence r(1) < r(2) < ... and to check the regularity of obtained β_{K} , K is I. By def 1, $\lim \pi_{K} = \pi$ implies the existence of K(1) such that for $K \ge K(1)$ $\pi_{K^{X_{1}}} = \pi_{X_{1}}$ and hence $P_{K}(1) =$ = P(1). According to lemma 4 we have $\lim \alpha_{K} = e$ then by def 1 such a $\overline{K}(1)$ exists that for $K > \overline{K}(1) \alpha_{K^{X_{1}}} = x_{1}$ for all i e P(1) and hence $A_{K}(1) = <1>$, is P(1). Let us denote $r(1) = \max (K(1), \overline{K}(1))$ then $\beta = \pi_{r(1)}$, $T_{1}(1) =$ $B_{1}(1) = P_{r(1)}(1) = P(1)$. Moreover $A_{\overline{K}}(1) = <1>$ for. is $T_{1}(1)$, K > r(1). Let $r(1) < r(2) < \ldots < r(m)$ be defined so that for s < m two conditions hold:

 $1^{\circ} T_{m}(s) = T_{s}(s)$

 $2^{\circ} A_{K}(i) = <1>$ for is $T_{B}(s)$, K > r(s)

We can see that independently from the choice of r(m+1) 1° holds for s m+1. Indeed for s = m+1 it is trivial. For $s \le m$ using 1°, (1) and 2° $T_{m+1}(s) = B_{m+1}(T_m(s)) = B_{m+1}(T_s(s)) \le A_{r(m+1)}(\cdots(A_{r(m)+1}(T_s(s))\cdots)) = T_s(s)$.

We have to define r(m+1) to have 2° for s = m+1. If r(m+1) is defined, then $\beta_{m+1} = \pi_{r(m+1)} \pi_{r(m)}^{-1}$ and by (1) $T_{m+1}(m+1) = B_{m+1}(T_m(m+1)) - \subseteq$ $P_{r(m+1)}(P_{r(m)}^{-1}(T_m(m+1)))$. The set $P_{r(m)}^{-1}(T_m(m+1))) = s$ is known and is finite. By def 1 lim $\pi_{K} = \pi$ implies the existence of K(m+1) such that if $r(m+1) \ge K(m+1)$ then $\pi_{r(m+1)} x_s = \pi x_s$ for all $s \in S$ hence $T_{m+1}(m+1) \subseteq$ $P_{r(m+1)}(S) = P(S)$ for any $r(m+1) \ge K(m+1)$ Now by def 1 lim $\alpha_{K} = e$ implies the existence of some $\overline{K}(m+1)$ such that for $K > \overline{K}(m+1) = x_1$ for is P(S). Let us define $r(m+1) = max(K(m+1), \overline{K}(m+1), \pi(m)+1)$ the for $K > r(m+1) = A_K(i) = <i>$, is $P(S) \ge T_{m+1}(m+1)$ We can conclude now that 1° holds for every meI which imply that $T(s) = T_{g}(s)$, seI is finite, i. e. sequence β_{K} . KeI is regular.

Theorem

An automorphism π is a product of a sequence α_{K} , K e I, α_{K} c Aut(P) if and only if $\lim \alpha_{K} = e$ and sequence α_{K} , K e I can be blocked to a regular on with the product π .

If $\pi \in \operatorname{Aut}(F)$ is a product of α_K , K \in I, $\alpha_K \in \operatorname{Aut}(F)$ then by lemma 4 lim $\alpha_K = e$ and by lemma 7 sequence α_K , K \in I can be blocked to a regular sequence β_K , K \in I with the product π .

Conversely, let $\lim \alpha_{K} = e$ and a regular sequence β_{K} KeI obtained by blocking α_{K} , KeI have the product π then by lemma 5 and 4 it follows that π is the product for α_{K} , KeI and π e Aut(F).

REFERENCE

 R.C. Lyndon, P.E. Schupp: Combinatorial Group Theory Springer - Verlag 1977. Institute of Mathematics, Silesian Politechnic, Gliwice.

O ZBIEŻNYCH CIĄGACH AUTOMORFIZMÓW

Streszczenie

W grupie automorfizmów grupy wolnej F przeliczalnej rangi wprowadza się pojęcie zbieżności ciągu automorfizmów i pojęcie iloczynu nieskończonego. Dane są warunki konieczne i wystarczające dla istnienia granicy i iloczynu dowolnego ciągu automorfizmów.

О СХОДИМОСТИ ПОСЛЕДОВАТЕЛЬНОСТИ АВТОМОРФИЗМОВ

Резрые

В группе автоморфизмов свободной группы счетного ранга определяется сходимость последовательности автоморфизмов и их бесконечное произведение. Даются необходимые и достаточные условия для существования предела и произведения для последовательности автоморфизмов.