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APPLYING THE FEM IN MODELLING OF HYPERELASTIC MATE-
RIAL

Summary'. From the definition for the hyperelastic material is obvious that the function
of density of deformation energy W directly corresponds with materials' characteristics. Many
scholars dealing with these problems suggested for concrete types of materials various shapes
of functions of density of deformation energy or their materials' models. The problem with
determining the hyperelastic materials' characteristics is one of the most important factors
effecting the accuracy of the calculation result.

ZASTOSOWANIE FEM (METODY ELEMENTOW SKONCZONYCH) W
MODELOWANIU HIPERELASTYCZNEGO MATERIALU

Streszczenie. Z definicji materiatu hiperelastycznego wynika, ze funkcja gestosci od de-
formacji energii W bezposrednio odpowiada charakterystyce materiatu. Wielu uczonych zaj-
muje sie tym problemem, sugerujac dla konkretnych typéw materiatow rozne ksztatty w
funkcji gestosci od deformacji energii lub ich modeli materiatowych. Problem oznaczenia
charakterystyk materiatow hiperelastycznych jest jednym z najwazniejszych czynnikéw
wptywajgcych na doktadnos¢ wynikdw obliczen.

1. Solving non-linear problems of mechanics by the boundarv-element
method

In the practice the boundary-element method for many non-linear problems seems to be
less suitable than other numerical methods because it requires many limitations. It gives,
however, possibilities, which, on the contrary, other numerical methods do not content. That
is why it is advantageous to combine the boundary-element method with other methods from
the aspect, that in certain subdomains of problem's definition domain the boundary-element
method and elsewhere the fmite-element method, difference method or other suitable
numerical method are applied.

Solving the non-linear problems can be relatively well applied by the fmite-element
method under the assumption that the definition domain of the problem is limited and the
non-linear behaviour includes changes connected with the definition domain. There are then
first of all problems concerning non-linear behaviour of model inside the definition domain.
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2. Mooney-Rivlin's theory

At present one of the most spread methods being able to solve non-linear problems of the
mechanics is the finite-element method. When solving problems of hyperelasticity by the
fmite-element method (FEM) for introducing the input materials' constants of the body
investigated at present the most well-thought-out Mooney-Rivlin's theory is used. It is the
method describing the behaviour of hyperelastic materials with large elastic (reversible)

deformations.

The Mooney-Rivlin's theory defines the density of deformation energy for materials
affected by large elastic deformations at uniaxial loading as:

W =A(l, -3)+ B(I2- 3)5 (D

where li and U are invariants of stress tensors (the first and the second) and A and B are
searched materials' constants called as Mooney's or Moony-Rivlin's constants. After the
adjustment of the equation the following dependence is obtained:

)

where \ = 1+s\. The right side of the formula is the equation of the strait line with the
gradient A and the section on the vertical axis B. The test should be carried out only in the
extent of deformations being assumed at calculations. In case that the calculation will be
carried out only for the compressive stressing, it is suitable to determine characteristics also
from the test in compression.

3. Concrete applications of the Mooney-Rivlin‘'s material model

The concrete applications of the Mooney-Rivlin's material model (Fig. 1) were carried
out for the P2000/4 conveyor belt. The task was to determine the materials' characteristics of
the mentioned conveyor belt and to verify these characteristics by modelling by the fmite-
element method in the ANSYS 5.5 code.

ANSYS

Fig. 1 Model of the testing body
Rys.l. Model testowania data
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On the testing body in a thin part in the middle are depicted two marks perpendicularly to
its longitudinal axis (Fig. 2) that define the measured length (lo) of the working part. After
gripping the testing body to the tensile testing g machine the test begins. The testing sample is
loaded by uniaxial tension in the range from 0 to 23.5 kN with the step of 20 N or 25 N. 50N
with recording the relative elongation at each increasing of the load. The range of loading
depends on the ability of the tensile testing machine to hold the testing body. From these
measured values there is plotted the graphical dependence (force F - elongation ~10 and
dependence (stress o - deformation e).

s—J

Fig.2. Testing body
Rys.2. Testowanie ciata
After determining the searched constants A and B the values A = "+ £\ are determined.
Afterwards the left side of the equation for each point is calculated. Along the corresponding
points can be led the strait line, the gradient of which is searched constant A and the section
on the vertical axis is the constant B for the Mooney-Rivlin's theory.
The measurements were carried out on six different testing samples oi the P3000/4
conveyor belt. The testing samples were cut in the longitudinal direction of the CB.

List of samples:

~ sample No 1 CB with the protection layer

- sample No 2 CB with the protection layer

~ sample No 3 CB without the protection layer

sample No 4 CB without the protection layer, sample t =10 mm with unchanged cross-

section 10x50 mm
- sample No 5 CB with the protection layer, sample / = 19 mm withunchangedcross-

section 19x50 mm
~ sample No 6 protection layer, sample t = 6 mm with unchanged cross-section6x50 mm

It is obvious that the determination of constants A and B depends on the way of plotting
the strait line and on accuracy of reading the measured values at the measurement. According
to the above mentioned procedure the following materials' constants were determined [1-2]:

~ sampleNol, A-1S MPa, B =31 MPa Table 4 graphs 1, 2
~ sample No 2, A —5MPa, B —40 MPa” Table 4

~ sample No 3, A —13 MPa, B - 57 MPa
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Table 1
Yield values ofthe sample No 1, A = 15 MPa. B = 31 MPa
F, Al, [mm] Al, [mm] Deviation
[kN] measured value calculated value [%|
3.00 2.75 3.24 +18
5.00 4.75 5.81 +22
8.00 7.75 9.37 +21
Table 2

Yield values of the sample No 2. A = 5 MPa. B = 40 MPa

E- AL: [mm] [mm] Deviation
[kN] measured value calculated [%]
value
3.00 2.75 3.18 +75
5.00 4.75 5.88 +23
8.00 7.75 8.91 +15
Table 3

Yield values of the sample for correction of material characteristics.
A =5 MPa. B =50 MPa

F Al,, [mm] Alv[mm] Deviation
[kN] measured value calculated value [%1
3.00 2.75 2.73 -0.73
5.00 4.75 4.73 -0.42
8.00 ris 7.86 1.42

Graphical dependence force - elongation Alj
Sample No. 1

KN |

Deformation [mml

Fig.3a Graft - Grafical dependence load x deformation, sample No
Rvs.3a Zalezno$¢ odksztatcenia od obcigzenia, przykfad nr 1
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Graphical dependence stress - deformation
Sample No. 1

Deformation s

Fig.3b. Graf 2 - Graphical dépendance stress x deformation, sample No.|
Rys.3b. Zalezno$¢ napezenia od odksztatcenia, przyktad nr 1

Fig.4. Distribution of deformation in the model
Rys.4. Rozchodzenie sie deformacji w modelu
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Table 4

Measured values force x deformation of sample No 1and 2

F, [ka] F, [kN] 1, [mm] Alj [mm] F2 [ka] F2[kN] 2 [mm] Al2 [mm]

0 0.00 100.25 0.00 0 0.00 99.00 0.00
20 0.20 100.50 0.25 25 0.25 99.50 0.50
40 0.40 100.80 0.55 50 0.50 100.00 1.00
60 0.60 101.10 0.85 75 0.75 100.10 1.10
80 0.80 101.10 0.85 100 1.00 100.25 1.25
100 1.00 101.20 0.95 125 1.25 100.30 1.30
120 1.20 101.35 1.10 150 1.50 100.30 1.30
140 1.40 101.60 1.35 175 175 100.50 1.50
160 1.60 101.60 1.35 200 2.00 100.60 1.60
180 1.80 101.70 1.45 225 2.25 101.00 2.00
200 2.00 102.00 1.75 250 2.50 101.10 2.10
220 2.20 102.00 1.75 275 2.75 101.50 2.50
240 2.40 102.20 1.95 300 3.00 101.75 2.75
260 2.60 102.30 2.05 325 3.25 102.00 3.00
280 2.80 102.70 2.45 350 3.50 102.10 3.10
300 3.00 103.00 2.75 375 3.75 102.40 3.40
320 3.20 103.10 2.85 400 4.00 102.80 3.80
340 3.40 103.15 2.90 425 4.25 103.00 4.00
360 3.60 103.20 2.95 450 4.50 103.10 4.10
380 3.80 103.50 3.25 475 4.75 103.40 4.40
400 4.00 103.80 3.55 500 5.00 103.80 4.80
420 4.20 104.30 4.05 525 5.25 104.10 5.10
440 4.40 104.50 4.25 550 5.50 104.20 5.20
460 4.60 104.50 4.25 575 5.75 104.30 5.30
480 4.80 104.80 4.55 600 6.00 104.70 5.70
500 5.00 105.00 4.75 625 6.25 105.00 6.00
520 5.20 105.20 4.95 650 6.50 105.20 6.20
540 5.40 105.30 5.05 675 6.75 105.80 6.80
560 5.60 105.40 5.15 700 7.00 105.90 6.90
580 5.80 105.40 5.15 725 7.25 106.00 7.00
600 6.00 105.70 5.45 750 7.50 106.10 7.10
620 6.20 105.80 5.55 775 7.75 106.10 7.10
640 6.40 106.00 5.75 800 8.00 106.20 7.20
660 6.60 106.10 5.85 825 8.25 106.30 7.30
680 6.80 106.50 6.25 850 8.50 106.50 7.50
700 7.00 107.00 6.75 875 8.75 106.80 7.80
720 7.20 107.20 6.95 900 9.00 107.00 8.00
740 7.40 107.70 7.45 925 9.25 107.10 8.10
760 7.60 107.75 7.50 950 9.50 107.30 8.30
780 7.80 107.80 7.55 975 9.75 107.70 8.70

800 8.00 108.00 7.75 1000 10.00 107.80 8.80
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4. Conclusions

By the finite-element method in the ANSYS 5.5 code were obtained these results:

- Stressing of the model of part of conveyor belt with the thickness t = 6 mm with materials'
constants A = 0.1 MPa and B = 1.6 MPa (Mooney-Rivlin's model). For this 3D problem
were used the HYPER®S86 elements. The force acting at the belt's edge is Fyi = 150 N and
is evenly distributed to 12 nodal points. The point of application of force is close behind
the support (roller). The second point of application of force Fy2 = 30 N was chosen
between supports (rollers). The distribution of principal stresses is shown in Fig. 5

ANSYS 5.5.2
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Deformace Fz=-4000N, A=15!IPa, B=30HPa

Fig.5. The distribution of deformation in CB, Fy=-4000N
Rys.5. Rozchodzenie si? deformacji w CB, Fy = -4000N

- the control of elongation of the conveyor belt t = 6 mm with materials' constants
(Mooney-Rivlin's model) A = 15 MPa and B = 30 MPa and A = 5 MPa and B = 40 MPa.
For this 3D problem were use HYPER86 elements. One side of the model is firmly fixed
(prevented movement), on the other side along the whole width of the model the tension
force of -2 000 N or -4 000 N is evenly distributed. The simulation of stressing the model
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of part of the conveyor belt with the thickness t = 6 mm with material' constants A = 0.1
MPa and B = 1.6 MPa (Mooney-Rivlin's model).For this 3D problem were use HYPER86
elements. The concentrated force acted on the model in the middle between supports
(rollers). Its values were as follows: Fy = -100 N, -200 N and -300 N. The calculations
were carried out for two stress states (tensioned and free CB).
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