Jan MIKUSINSKI
Kryatyma SMÓRNIX

ON THE REFRACTION OF LIGHT IN THE WATER LEVEL

Summary. In the paper there is considered the question of refraction of light rays in the water lovel. There is desoribed the surface of the form of a wine-slase and there is explained why two threads crossing under the mator lovel seem to be look like they were not crossing but pessing by from ench other.

It is known from elementary shool that a light ray when pasilag frem air to water, refracts according to the sinus formula. That is, if α denotea the ancle between the ray before refraction and the mornal to the surface, and β denotes the angle between the refracted ray and the normal, then the ratio

$$
\frac{\sin \alpha}{\sin \beta}
$$

10 constant number. This ratio is usunily denoted by n and called the refraction index. Ve thus have the formala

$$
\begin{equation*}
n=\frac{\sin \phi}{\sin \beta} \tag{1}
\end{equation*}
$$

Fig. 1

HE. 2
its image. It turss out that the image is above the object and also it is translated horizontally. The position of the image depends on the choice of A and B. If we realize ali possible positions of the image it turns out that they fill up a solid which reminds a sort of wine-glass. The image may happer to be eny potint or thig giess but never lies on its boundary nor outside. This can be proved by the following reasoning.

Let P be luminous point plunged in water at the distance b from the water surface. The line through P ortogonal to the water surface is assumed to ba the $y-a x i s$. A line of the plane separating water and air. ortogonal to the y-axis is assumed to be the x-axis.

The equations of the rays which make the angle $\beta\left(0^{\circ}<\beta<90^{\circ}\right)$ with the y maxis and are issued from the siven point P, tre:

$$
p: y=-b+x \operatorname{tg} \beta
$$

The lines oorresponding to the equations

$$
\mathbf{p}^{\prime}: y=\left(x-b \operatorname{tg}_{\mathrm{g}} \beta\right) \operatorname{ctg} ; \quad\left(0^{\circ}<q^{\circ}<90^{\circ}\right)
$$

constitute a set of rays maklng the angle α with the y-axis; they are obtained by the refraction of the rays issued rrom the given point P. From (1) we obtain

$$
\operatorname{tg\beta } \beta=\frac{\sin \alpha}{\sqrt{n^{2}-\sin ^{2} \alpha}}
$$

Thus

$$
p^{\prime}: y=\left(x-b \frac{\sin \alpha}{\sqrt{n^{2}-\sin ^{2} \alpha}}\right) \frac{\sqrt{1-\sin ^{2} \alpha}}{\sin \alpha} \quad\left(0^{\circ}<a<90^{\circ}\right)
$$

Substituting $\sin \alpha=t$, we get a parametric family of reys (aftsr rem fraotion) of the following form

$$
\begin{equation*}
p^{\prime}: y-\left(x-b \frac{t}{\sqrt{2}-t^{2}}\right) \frac{\sqrt{1-t^{2}}}{t}=0 \quad(0<t<1) \tag{2}
\end{equation*}
$$

It 1B lonow that, given any paranetric family of lines we can inmediately mrite the syetem of equationa corresponding to their envelope. It simply suffices to write the given equation

$$
f(x, y, t)=0
$$

Fig. 3
where t is the parameter and take, for the second equation, the derivative (with respect to t) of the firet one

$$
f_{t}(x, y, t)=0, \quad(\sec [1])
$$

If we apply this method to our family (2) we obtain the system of equations

$$
\left\{\begin{array}{l}
y-\left(x-b \frac{t}{\sqrt{n^{2}-t^{2}}}\right) \frac{\sqrt{1-t^{2}}}{t}=0 \\
\frac{b n^{2}}{\sqrt{\left(n^{2}-t^{2}\right)^{3}}} \frac{\sqrt{1-t^{2}}}{t}+\left(x-b \frac{t}{\sqrt{n^{2}-t^{2}}}\right) \frac{1}{t^{2} \sqrt{1-t^{2}}}=0
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
x=b t^{3}\left(n^{2}-1\right) \frac{1}{\left(n^{2}-t^{2}\right)^{3 / 2}} \tag{3}\\
y=-b n^{2}\left(\frac{1-t^{2}}{n^{2}-t^{2}}\right)^{3 / 2}
\end{array} \quad 0<t<1\right.
$$

If $t-1$, then $x \rightarrow b\left(n^{2}-1\right)^{-1 / 2}, y \rightarrow 0, \quad$ If $t \rightarrow 0$, then $x \rightarrow 0, y \rightarrow$ $-\frac{b}{n}$.

Equationa (3) repreaent the required courve in a parametric form. Its diagram ia represented for $b=10$ in Figure 4 , and the table of its values for some values of t is giveri below.

FIE. 4

t	$x=10\left(n^{2}-1\right) \frac{t^{3}}{\left(n^{2}-t^{2}\right)^{3 / 2}}$	$y=-10 n^{2}\left(\frac{1-t^{2}}{n^{2}-t^{2}}\right)^{3 / 2}$
0	0	-7,5000
0,1	0,003309	-7,450565
0,2	0,027161	-7,299517
0,3	0,095774	-7,038315
0,4	0,241912	-6,651506
0,5	0,514845	-6,114802
0,55	0,722160	-5,779371
0,6	0,995 175	-5,391837
0,65	1,353790	-4,944907
0,7	1,825534	-4,430743
0,75	2,396954	-3,839998
0,8	3,281243	-3,164050
0,82	3,690040	-2,868296
0,85	4,406169	-2,397275
0,87	4,965390	-2,065809
0,9	5,955503	-1,546474
0,91	6,333114	-1,369084
0,92	6,737984	-1,190629
0,94	7.640155	-0,834958
0,95	8,143459	-0,660947
0,96	8,686059	-0,492611
0,98	9,906022	-0,189579
0,99	10,592999	-0,070052
1	11,338897	0

Since the given object can be watohed rrom rarious aides, we atill havi to rotate the region betwaen the ourve and the coordinate axes around tha y-axie which passes to the objeot. All posible imases of an object situated at the depth $b=10$, fill up the inside of the solid prescated ir Figare 5. Having good will one can agree that this solid has a ohape of a wine-glass without support.

The ebove theoretionl reasoning can be verified by the following experiment. Two pieces of white thread are plumged in the weter so as form a orose. This oross is lighted up from the front so that ite beckground remains complitely dark. We take picture of it using a oanere with possible large lens. We foous the lens so to obtain abarp image of the vertical thread. Then the image of the horisontal thread is not aharp. The we focus the lens so to obtein eharp imace of the horisontal thre ad. Then the sharpness of the verticel thread geta apoiled. This ofect la

Fig. 5
seen on the molosed photogrephe. Tha third photograph hes been taken without any water, for oomparison.

RETRERNCES

[1] M. Biernacki: Goonetria rotniogkow 1, Warszawa 1954, P. 48.
[2] J. Mikusthaki, K. Skórnik: O pryyriedech optyoznyoh osiowosymetrycznych, Yroolew-Varamawa-Krakow-Gdahak, WJdawnictwo PAN, 1979.

Pes 刀ия

В статье дредставлены рассухдєния о переломлении видимых лучени в водяном зеркале. В работе представлено сумествование векоторого рода патрубка обда-
 водой витки всегда катутоя отодвинутии ня некоторое расстолние.

O ZALAMANIU SIF PROMIENI SWIETLNYCH W ZWIERCIADLE WODNYM

Stresemen
V artykule jest mowe o zalanywaniu sie promieni fwietlnych w zwierciadie wodnym. Opiaany jeat w nim fakt istnienia pemego rodzaju kieliszke o powierschni algebraicznej oras wytiumaczone jeet zjawisko, dlaczego dwie nitki akrzytowane pod woda wydaja sip zawaze rozsuniete na pama odlegloúd.

Recunzent: Prof. dr M. Kucharzewski

Wpiynezo: 01.04.1981 r.

