Jerzy BtAHUT

COUNTABLE SUBMODELS IN ZF AND SEPARABILITY*

Summary. A modification of the notion of elementary submodel is defined in the paper for certain model X of the power of continuum. There is proved in $2 F$ (in section 2) that there exists a suffi= ciently large class of countable submodels of X, that are elementary in the sense, mentioned above. An example of application is sketched in section 3.

1. COUNTABLE ELEMENTARY SUBMODELS IN ZF

The downward Skolem-Löwenheim theorem on countable elementary submodels depends essentially on the axiom of choice. More exactly, it depende on the countable axiom of choice, asserting the existence of the function of choice for any countable family of non-empty sets. For several concrete structures, however, we can prove the existence of countable elementary submodels in ZF. We quote some well-known and importent examples below.

Denote by R the set of all reals, by Q the set of all rationals, by A the set of all real algebraic numbers and use the usual symbols $+\ldots$. < to denote algabraic operations and the natural ordering in R, Q, A. Add to the language L of the elementary first order pradicate calculus with equality as the only non-logical symbols the sign $<$, the signs $<, 4$. and the signs <, +,. respectively for the cases 1.1. 1.2. 1.3 below. Then the following are theorems of ZF .
1.2. The ordered set $\langle Q,\langle \rangle$ is an elementary submodel of $\langle R,\langle \rangle$.
1.2. The ordered additive group $\langle Q,\langle,+\rangle$ is an elementary submodel of $\left\langle R_{0}\langle,+\rangle\right.$.
1.3. The ordered field $\langle A,<\ldots\rangle$ is an elementary submodel of $\langle R,\langle,+, \cdot\rangle$.
All those submodelsi are countable.
We sketch briefly the uniform method of proof in ZF of 1.1-1.3 Consider. at first, the following property of the at most countable set K of sentences:
(P) for any countable model M of K if the extension E of M is model of K. then E is an elementary extension of M.

The existentiel formule $V x_{1} \ldots V x_{n} \times 18$ said to be a primitive formula iff X is a conjunction of some atomic and negated atomic formulse.
Consider the statement
(L) a non-empty and at most countable set K of sentences has the property (P) iff for every pair M, M^{*} of models of K, whare M^{*} is an extension of the countable M and for any $a_{1} \ldots \ldots, a_{s} \in M$ and primitive formula $Y\left(y_{1} \ldots \ldots\right.$ y_{s}) with free variables $y_{1} \ldots \ldots y_{s} M / \mathcal{F}\left(a_{1} \ldots \ldots, a_{s}\right)$ iff $M^{\prime} k Y\left(a_{1} \ldots \ldots, a_{8}\right)$
(P) is a weakening of model completeness and (L) is clearly the adapted to (P) test of model completeness (2.3.1 in [1]). We may ape the proof of 2.3.1 in [1]. using, however, instead of the general completeness theorem for predicate calculus, the theoren of complateness for languages of countable signature. Since the last is a therosm of ZF, 80 is (L) too.

Choosing K to be the set of axioms of the linear dense ordering without first and last elements for 1.1, of the ordered abelien group for 1.2. of the ordered commutative field for 2.3 and using the same standard algebraic facte as in [1] and properties of dense ordering, we obtain proofs of 1.1-1.3 in ZF.

2. THE MODEL X

We shall not generalize the well-known facts, mentioned above. We construct instead a model \bar{X} which, being of the power of continuum, has a class of countable submodels. that are "weakly elementary" in the sense, described exactly below.

The idea of weakly elementary submodel is, in principle, taken from the exposition of non-standard analysis as prasented, e.g. in [2] , [3].

Let X_{1} be the set of all rationals: for positive integer n let X_{n+1} be the set of those countable sequences s, with terms in $X_{1} \cup \ldots \cup X_{n}$, for which $\varepsilon \notin X_{1} \cup \ldots \cup X_{n}$ *

Let $X=U_{n \geqslant 1} X_{n}$. Denote the set of all positive integers by N. Let N, $X_{n}, n \in N$, be also the unary relational symbols, denoting themselves. Let < be the natural ordering of X_{2} and a binary relational symbol for itself. Let the ternary relational symbol e denotes the get of all ordered triples<s, $n, x\rangle$ such, that $\varepsilon \in X \backslash X_{1}$ and x is the n-th term of s. Denote also by $+\ldots$, , E the functions, defined on the suitable cartesian powers of X accoraingly tc the usual meaning of symbols (E stands for the entier function). If all the argumente are rational and arbitrarily otherwise. Use also the familiar constants to denote the rationals, Add all the symbols, defined above, to the lenguage of the elementary first order predicate calculus with equality as the only extralogical aigne and denote the obtained language by L. The structure with the universe X and with the symbols of L interpreted as above will be our model \bar{X}.

Denote by B the set of all formulse of L, which are of the form

$$
\begin{equation*}
K_{1} x_{1} \ldots K_{n} x_{n} A\left(x_{1} \ldots, x_{n}, y_{1} \ldots, y_{m}\right) \tag{1}
\end{equation*}
$$

 shortening of etther $\wedge x_{1} x_{p_{i}}\left(x_{i}\right) \rightarrow \ldots$ or $V_{x_{1}} x_{p_{1}}\left(x_{i}\right) \& \ldots$ where p_{1} is a positive integer. We shall say, that a submodel $\bar{\gamma}$ of \bar{x} is a weakiv elementary submodel of \bar{X} iff for any formula $S\left(y_{1} \ldots \ldots y_{m}\right)$ of the form (1) (any formula from B) and any $a_{1} \ldots \ldots, a_{\text {п }} \in \bar{\gamma} \quad \bar{x}$ im $S\left(a_{1} \ldots \ldots a_{\text {m }}\right)$ iff $\bar{Y} \mid=s\left(a_{1}, \ldots, a_{m}\right)$.
Our main theorem is the following theorem of ZF
Theorem 1. If C is any countable subset of X, then \bar{X} has a weakly esementary submodel \bar{Y}, with C included in its universe.

Before proving the theorem we make some remarks. At first, "countabla" in the formulation of thm. 1 may be clearly replaced by "finite" and we shall use this corollary of the theorem. At the second, adding to L the set of constants C for the elements of C, we can easily prove in $Z F$ that the cofntable sot of all true in $\overline{\mathrm{X}}$ substitutions of the constants from $c \cup X_{1}$ into the formulas of L has a countable model, consisting of the intepretations of constants only, Unfortunately in general case it doee not give en elementary submodel of \bar{x}. We perform our proof of the theorem. modifying the routine methods mentioned above. The modifications are easy, but we must describe them carefully.

Proof of the theorem 1. In ZF

A. Fix the countable $C \subseteq X$, Let any $C \in C$ be a constant, denoting Itself and denote by L_{C} the language L with added constants forw C and by \bar{X}_{C} the corresponding expansion of \bar{X}. Denote by a_{C} the set of all substitutions of the constants from C into the formulae from B. Write forbrevity $\hat{n}_{\mathrm{m}} x_{1}$ instead of $\Lambda x_{1} x_{m}\left(x_{1}\right) \rightarrow \ldots$ and $V_{\mathrm{m}} x_{i} \ldots$ for $V_{x_{1}} x_{m}\left(x_{1}\right) \& \ldots$.
Call the formula F from B a \underline{k}, \underline{m}-formula iff k is a non-negative integer and F is a sentence of the form

$$
\begin{equation*}
V y w(y) \tag{20}
\end{equation*}
$$

for $k=0$, or, for positive k, a formula of the form

$$
\begin{equation*}
V_{\mathrm{m}}^{V y w\left(x_{1}, \ldots, x_{k} \cdot y\right) .} \tag{2k}
\end{equation*}
$$

 Skolem constant $f(m)$ if F is a sentence (20).
Every constant of L_{c} is sald to be constant tarms a subsitution of constant terms for all the variables in Skolem term is a conetant tarmagain. The conetant terns of the form fil. will be called rational terms.

Let S_{0} be the set of all true in \bar{X}_{c} sentences from B_{c}. Define for given $S_{2 n}$ the sets $S_{2 n+1} . S_{2 n+2}$ as follows. $S_{2 n+1}$ is $S_{2 n}$ with added formules $X_{m}\left(f_{k, F}^{(m)}\left(c_{1} \ldots \ldots, c_{k}\right)\right), W\left(c_{1}, \ldots, c_{k}, f(m)\left(c_{1}, \ldots, c_{k}\right)\right.$; for any F of the form $(2 k) c_{1} \ldots \ldots c_{k}$ constant terms, $F\left(c_{1} \ldots \ldots, c_{k}\right)$ in $s_{2 n}$ end the formulae $x_{0}\left(f_{0, F}^{(m)}\right)$, $W\left(f_{(m)}^{(m)}\right)$ whenever F of the form (20) is in $S_{2 n^{\prime}}$. $S_{2 n+2}$ is $S_{2 n+1}$ with added formula $Y(c)$ for any Y. c such that for certain m $X_{m}(c) . \wedge_{m} y Y(y)$ are in $S_{2 n+11^{\circ}}$

Observe, that for any sentence in $U n \geqslant 0 S_{n}$ we can choose the values of Its Skolem terms in X, with each $f(\mathrm{~m})$ in X_{m} and so, that the obtained sentence ie true in X_{C}. We perform it below systematically for the sen = fence without quantifiers.
B. Let S be the set of those sentences from $U_{n \geqslant 0} S_{n}$. which do not contain variables. We shall say, that the constant tara c_{m+1} is essential on ($\quad \mathrm{m}+1$)-th place in sentence $F\left(c_{1} \ldots \ldots, C_{m+8}\right)$ from S af there exists in $U_{n \geqslant 0} \delta_{n}$ aetence H of the form

$$
\begin{equation*}
V_{1}^{V} x_{m+1} K_{n_{2}^{2}}^{x_{m+2} \ldots K_{n_{8}^{e}} x_{m+e}} F\left(c_{1} \ldots \ldots c_{m} x_{m+1} \ldots \ldots, x_{m+8}\right) \tag{3}
\end{equation*}
$$

(K for quantifiers) such that $c_{m+1}-f_{m, H}^{\left(n_{1}\right)}\left(c_{1}, \ldots, c_{m}\right), m \geqslant 0$.
Any constant term, which io not constant of L_{C} is essential on the exactly one place in exactly one sentence of S.

Let $\left\langle F_{n}\right\rangle_{n \geqslant 1}$ be the 1-1 sequence of 11 sentences from S. arranged 30, that $X_{p}\left(c_{m+1}\right)$ precedes in it the sentence $F\left(c_{1}, \ldots, c_{m+s}\right)$ whenever $X_{p}\left(c_{m+1}\right)$ io in S and c_{m+1} is essential on the m+1-th place in $F\left(c_{1}, \ldots, \ldots\right.$ $\left.c_{m+1}\right\rangle_{\text {. }}$ Fix arbitrary $1-1$ sequence $\left\langle w_{n}\right\rangle_{n \geqslant 1}$ of all rationals and let $\left\langle t_{n}\right\rangle_{n \geqslant 1}$ be the $1-1$ sequence of all rational terns, occuring in S. arranged so, that for every $n<p$ either the formula in which t_{m} is essential precedes in $\left\langle F_{n}\right\rangle_{n} \geqslant 1$ that one in which t_{p} is essential. or t_{m}, t_{p} are essential in the same F_{n}, but t_{m} precedes t_{p} in it. For the variables $z_{1}, z_{2} \ldots \ldots, z_{m} \ldots$.... let, at the and $\left\langle G_{n}\right\rangle_{n} \geqslant 1$ be sequence of for mule G_{n} obtained from F_{n} by the replacement of t_{m} by z_{m} for any m.

Consider the following two conditions, depending on m.
($4, \mathrm{~m}$) $a_{1} \ldots . a_{\text {a }}$ are rationals and the set

$$
s \cup\left\{t_{1}=a_{1} \ldots \ldots t_{m}=a_{m}\right\} \text { of sentences is consistent. }
$$

($5, \mathrm{~m}$) $a_{1} \ldots \ldots \theta_{m}$ are above and if t_{m} is essential on certain place in $F_{n_{\text {m }}}$. then there exists a valuation a of z_{i} 's with $a\left(z_{i}\right)$ - θ_{i} for i-- 1.......m, such, that

$$
\bar{x}_{c} \mid=\left(G_{1} \& \ldots \& G_{n_{n}}\right) \quad[a]
$$

We define inductively the sequence $\left\langle a_{n}\right\rangle_{n} \geqslant 1$ of rationale such, that (4, m) , (5,m) are fulfilled for any $n \in N$ by $a_{1} \ldots \ldots a_{m}$. Suppose, that ($4, m$) , ($5, m$) are fulfilled by $a_{1} \ldots \ldots A_{m}$. It follows from the observation at the end of section A_{0} of proof. that there exist w_{p} such, that a_{1}, \ldots, $W_{p} f u l f i l(5, m+1)$. Wee have to prove, that $a_{1} \ldots \ldots, a_{m+1}$ with a_{m+1} equal to the first w_{p} as above fulfil also ($4, \mathrm{m+1}$) Obviously, from ($5, \mathrm{~m}+1$) it follows, that $\left\{F_{1} \ldots \ldots, F_{n_{m+1}}\right\} \cup\left\{t_{1}=a_{1} \ldots \ldots, t_{m+1}=a_{m+1}\right\}$ is a consstent set. If $n>n_{m+1}$, then each occurence of $t_{1} \ldots \ldots, t_{m+1}$ in F_{n} is not essential. Hence, for F_{n} of the form $F\left(c_{1} \ldots \ldots, c_{j+1}\right)$ there exists formula from $U_{n \geqslant 0} S_{n}$ of the form

$$
\begin{equation*}
{ }_{1}^{K_{1} x_{j+1} \ldots k_{r}^{a}} x_{j+8} F\left(c_{1}, \ldots, c_{j} * x_{j+1}, \ldots, x_{j+8}\right) \tag{6}
\end{equation*}
$$

(with K_{i} for quantifiers), where K_{1} is Λ and $X_{1}\left(c_{j+1}\right)$ is in S, whenever $j \geqslant 0, c_{j+1}$ is among the $t_{1} \ldots \ldots, t_{m+2}$. Hence, s_{1}, \ldots, x_{m+1} satisfy also ($4, \boxplus+1$).

For the sequence $\left\langle a_{n}\right\rangle_{n \geqslant 1}$ so defined also the set $s^{\prime \prime}=s \cup\left\{t_{1}=a_{1}, \ldots \ldots\right.$ $\left.t_{n}=a_{n} \ldots.\right\}$ is consistent. If \bar{Y}° is its model ($Y^{\prime \prime}$ exists and can be costructed in $2 F$) then the field of rationale of $\bar{Y}^{\prime \prime}$ is isomorphic with X, for S includes all the equations and inequalities, true in \bar{X}.
C. Suppose, that \bar{Y}° is a model of S° and identify its rationale with the corresponding rationals of \bar{X}_{c}. Denote by Y_{n} the realization of X_{n} in \bar{Y}^{*} and define the function J_{1} to be identity function on Y_{1}. For given $J_{1} \ldots \ldots J_{m}$ with values of J_{1} in X_{i} for $1=1 \ldots \ldots$ define J_{m+1} as follows.

Let $y \in Y_{m+1}$ Then S^{\prime} contains for any $n \in N$ just one sentence of the form $e\left(y, n, y_{n}\right)$ and the sentence $x_{p}\left(y_{n}\right)$ with $p \leqslant n$ too. For j° $=J_{1} \cup \ldots \cup J_{\text {e }}$ put $J_{m+1}(y)=\left\langle J_{m}^{\prime}\left(y_{n}\right\rangle_{n \geqslant 1}\right.$ with $y_{n}^{\prime s}$ defined as Grove. Then $J_{m+1}: Y_{m+1} \xrightarrow{1-1} x_{m+1}$.

Let $J a U m \geqslant \frac{1}{2} J_{m}$. We define now the predicates of L in $J[Y] \subseteq X$ (Y is a universe of $\bar{Y}^{\frac{1}{*}}$) transferring isonorphically the definition a from \bar{Y}^{\prime}. The obtained model is clearly a subnodel of \bar{X}_{C} and contains C in it a universe (we omit the easy proof). Denote it by \bar{Y}_{C}. Obviously it is coded of B_{C} and we deduce from it, that the model \bar{Y}, obtained from \bar{Y}_{C} by inter = pretation of the symbols of L as in \bar{Y}_{C} is a weakly elementary submodel of $\bar{x}, q . e . d$.

3. REMARKS ON SEPARABILITY

We end the paper with some applications of the theorem 1. At first. observe, that with the axioms of the dense linear unbounded ordering, of the linearly ordered group, and of the ordered field there correspond the sentences from B, true in \bar{X}. This gives us the another method of proving 1.1-1.3 and the similar theorems.

Consider now the formula

$$
\begin{align*}
& x_{2}(x) \&_{1} \hat{1} E\left(E>0 \rightarrow V_{1} n\left(N(n) \& \hat{1}_{1} \text { m } \hat{1}_{p} \hat{1}_{1} y \hat{1}_{1} z\right.\right. \\
& (N(m) \& N(p) \& m>n \& p>n \& e(x, m, y) \& e(x, p, z) \rightarrow \tag{7}\\
& |y-z|<E)) .
\end{align*}
$$

Of course (7) defines in \bar{X} the set of all Cauchy sequences of rationals and is equivalent to certain formule from B. Also the equivelence of Cauchy sequences of rationals is defined in \bar{X} by a formule from B equivalent to

$$
\begin{align*}
& x_{2}(x) \& x_{2}(y) \& \hat{1} E\left(E>0 \rightarrow \underset{1}{V} \hat{1}_{1} \hat{\Lambda}_{1} x_{1} \hat{1} y_{1}\right. \\
& \left.\left(m>n \& \theta\left(x, m, x_{1}\right) \& \theta\left(y, m, y_{1}\right) \rightarrow\left|x_{1}-y_{1}\right|<E\right)\right) . \tag{8}
\end{align*}
$$

We say, that the set A of reals is weakly definable in \bar{X} iff there oxists set $A^{\prime} \subseteq X_{2}$. which is definable in \bar{X} by a formula from B,consists of Cauchy sequences and A is the set of all classes of equivalence (8) of elements of A^{\prime}. The following is a theorem of $Z F$.

Theorem 2. If the set $A \subseteq R$ is weekly definable in \bar{X} then it is separable.

Proof. Let X_{A} be a formula from B. defining in \bar{X} the set A° of Cauchy sequences of rationals such, that A is a set of all limits of sequences from A^{*}. Let \bar{Y} be countable weakly elementary submodel of \bar{X}. Consider $a \in A$ and an arbitrary sequence $\left\langle a_{n}\right\rangle_{n>1}$ of rationals, convergent to a_{0} For any $k \in N, m \in N$, such, that $\left|a_{k}-a\right| \leqslant 1 / m$ the formula $K(x, y, z)$ of the form

$$
\begin{equation*}
x_{A}(x) \& \ell_{1} \hat{n}_{1} p_{1} \text { и }\left(e(x, p, u) \&_{p}>n \rightarrow|y-x| \leqslant z\right) \tag{9}
\end{equation*}
$$

holds in \bar{X} for $y=s_{k}, Z=1 / m$ and a Ceuchy sequence X from A^{\prime} convergent to a. Since (9) has an equivalent formula in B, there must hold \vec{Y} |= - $K\left(c_{m}, a_{k}, 1 / m\right)$ for certain c_{m} which is also, in A°. Putting $c_{m}\left\langle c_{\text {mir }}\right\rangle_{n} \geqslant 1$ we obtain $11 m_{n}\left|c_{m n}-\theta\right| \leqslant 1 / m$. Thus the set of all equivalence classes of
those sequences from A^{\prime}. which belong to the universe of \bar{Y} is at most countable and dense subset of $A, q . e . d$.

REFERENCES

[1] Robinson A.: Conplete theories. Ansterdam. 1977.
[2] Davis M. : Applied non-standard analysie. New York. 1977.
[3] Kaisler H.J.: Hyperfinite model theory, in: Procesdings of Logic Colloquium '76. Ansterdam. 1977.

Recenzent: Doc. dr hab. Bogdan Węglorz

Wplyneło do redakcji: 21.VI. 1983 r .

PRZELICZALNE POOMODELE W ZF A OSRODKONOSE
streszczenie
W pracy zdefiniowano dla pewnego modelu x mocy continuum wariant skaby pojecia podmodelu elementarnego. Wykazano $w ~ Z F$. ze model \bar{X} ma dostatecznie wiele podmodeli przeliczalnych, elementarnych w tym zmodyfikowanye sensie. Naszkicowano przykladowe zastosowanie.

СЧЕ゙THE ПОДМОДЕЛИ В ZF И СЕПАРАБЕЛЬНОСТ上

Pe3 me

 диффидированном сиксле. Намечеч пример прилспения.

