by Jan M. JaStrzfsski
Jacek M. JĘQRZEJEWSKI

FUNCTIONALLY CONNCECTED FUNCTIONS

Summary. In this paper the notion of functional connectedness at a point and global property of functionally connectad real functions are investigated. The relations between theee proparties and the Darboux property $i s$ studied.

In several articles were considered Darboux points and connectivity points of an arbitrary function $f: R \rightarrow R$. The local properties of Darboux and of connectedness are close connected to global property of Darboux and global connectedness of a function (it means that the greph of f is a connected set in R^{2}). Berween the two classes of functionss the class of connected functions and the class of Darboux functions, is contained the class of functionally connected functions. It has very similar properties and can be shortly characterized with the aid of the class of Dartoux functions.

We shall use the following denotatioris.
For a function $f: R \rightarrow R$ and $x_{0} \in R \quad L^{+}\left(f, x_{0}\right)\left(L^{*}\left(f, x_{0}\right)\right.$ or $L\left(f, x_{0}\right)$. respectively) will denote the set of bll right-sided limit numbers (ieftsided limit numbers or all limit numbers. respectively) of tho function i at the point x_{0}. Moreover. $L^{*}\left(f, x_{0}\right)=\left\{x_{0}\right\} \cup L\left(f, x_{0}\right)$.

For set $L(x)=R$ for $x \in R$ let

$$
\alpha(x)=\{x\} \times L(x)
$$

The symbol le E_{t} will denote the upper topoiogical liait of a class of sets $\left\{E_{t}\right\} t \in T$ (see $\left.|4| .|5|\right)$.

DEFINITION 1. The function $f: R \rightarrow R$ is called functionally connected (shortly $f \in F$) if for every nondegenerated interval [a,b] and evary continuous function $g:[a, b] \rightarrow R$ such that $f(a)<g(a)$ and $f(b)>g(b)$ or $f(a)>g(a)$ and $f(b)<g(b)$ there exists a point $x \in(a, b)$ suen that $f(x)=g(x)$.

DEFINITION 2. The function $f: R \rightarrow R$ is called funcsionally connected at a point $x_{0} \in R$ from the right-side (shortly $\left.x_{0} \in F^{+}(f)\right)$ if
(1) $f\left(x_{0}\right) \in L^{+}\left(f, x_{0}\right)$.
(2) If $g:\left[x_{0}, x_{0}+\varepsilon\right] \rightarrow R$, where ε is any positive number, is a con-
 there exists point $x \in\left(x_{0} \cdot x_{0}+E\right)$ such that $f(x)=g(x)$.

In the analogous way we define functional connectednese of f at x_{0} from tha left-sde (shortily $\left(x_{0} \in F^{-}(f)\right)$.

If $x_{0} \in F^{+}(f) \cap F^{-}(f)$, then we say that f is functionally connected at the point x_{0}.

By $F(f), F^{+}(f), F^{-}(f)$, respectively, wa shall denote the set of all points at which the function f is functionally connected, functionally connected from the right sida or functionally connected from the left side, respectively. Analogously, $O(f)$ will denote the set of all Darboux points of f.

As wo can see, the definttion of functionally connected function at a point is analogous to the definition of Darboux function or connected function at a point (ses [1] . [2]).

It ie easy to see that the class F of all functionally connected functions and the clase D of Darboux functions are defferent but $F C D$. Moreover, the existence of a continuum in a plane which contains no graph of a continuous fuction on any interval implies that the class C of all connected functions is different to F but $\mathcal{C} F$.

The first theorem gives a characterization of the class F in terms of local property of functional connectedness.

Theorem I. The function $f: R \rightarrow R$ belonge to F if and only if for every $x \in R \quad t \in F_{x}$.

PROOF. I. Assume first that $f \in F$ and suppose that there exists a point $x_{0} \in R$ euch that for example $x_{0} \notin F_{x_{0}}^{+}(f)$. Then there are two possibilities
a) $f\left(x_{0}\right) \& L^{+}\left(f, x_{0}\right)$
b) there is a continuous function $g:\left[x_{0} \cdot x_{0}+\varepsilon\right] \rightarrow R_{0} \varepsilon>0$. such that

$$
\lim _{x \rightarrow x_{0}^{+}} \inf f(x)<g(x)<\lim _{x \rightarrow x_{0}^{+}} \sup f(x)
$$

and $f(x) \neq g(x)$ for $x \in\left[x_{0} * x_{0}+\varepsilon\right]$.
The first case 18, 立mpossible in view of that f is Darboux function. In the case b) the function g is this one which fultills all conditions in definition 1 except the last one. This is a contradiction to our assumption.
II. Assume now that for evary $x_{0} \in R x_{0} \in F(f)$ but $f \& F$. Then there exists e continuous function $g:[a, b] \rightarrow R$ such that for example $f(a)<g(a), f(b)>g(b)$ and $f(x) \neq g(x)$ for $x \in(a, b)$. Consider now two sets

$$
\begin{array}{ll}
A=\{x \in[a, b] \mid & f(x)<g(x)\} . \\
B=\{x \in[a, b] \mid & f(x)>g(x)\} .
\end{array}
$$

Let $K=F r A$. Since $x \in F(f) C D(f)$ for every $x \in R$, then f is a Darboux function and in view of lemma from the article [1]. $K=F r B$ and K is a perfect set in which the sets $K \cap A$ and $K \cap B$ are dense.

For $x \in \mathbb{K}$ we have the following relations

$$
\begin{aligned}
& L(f \mid A, x) \subset[-\infty, g(x)] \\
& L(f \mid B, x) \subset[g(x),+\infty]
\end{aligned}
$$

and $g(x) \in L(f \mid A, X) \cap L(f \mid B, x)$. Since $f \in D$, then the set

$$
L(f, x)=L(f \mid A, x ; \cup L(f \mid B, x)
$$

is a connected set and

$$
L(f \mid A, x) \cap L(f \mid \theta, x)=\{g(x)\} .
$$

In this way both of sets $L(f \mid A, x), L(f \mid B, x)$ are intervale and at least one of them is nondegenerated. Let

$$
\begin{aligned}
& A_{n}=\left\{x \in K \lg (x)-\frac{1}{n} \in L(f \mid A, x)\right\} \\
& B_{n}=\left\{x \in K \lg (x)+\frac{1}{n} \in L(f \mid B, x)\right\}
\end{aligned}
$$

Since $f(x) \neq g(x)$ and $f(x) \in L(f, x)$ for $x \in[a, b]$, shan

$$
K=\bigcup_{n=1}^{\infty} A_{n} U \bigcup_{n=1}^{\infty} B_{n}
$$

The sets $A_{n} \cdot B_{n}$ are closed ([4]).
If A_{n} and a_{n} for every $n \in \mathbb{N}$ are nowhere dense $2_{n} k$, then tho perfect set K would be of the I category (in IEsolf), what 28 impossibles

Thus for example A_{n}, for some $n \in N, 1 s$ dense $u n k$ on some parsiion of K. Then there exists a nondegenerated interval $[c, 0] \subset[a, 0]$ such that

$$
\overline{A_{n} \cap[c, d]}=k \cap[c, d] .
$$

then also

$$
A_{n} \cap[c, d]=K \cap[c, d] .
$$

From the definition of sets A, B and K we know that there is a point $x_{0} \in K \cap 日 \cap(c, d)$ and $x_{0} \in A_{n}$ In this way

$$
g\left(x_{0}\right)+\frac{1}{n} \in L\left(f, x_{0}\right) . \quad f\left(x_{0}\right) \in L^{+}\left(f, x_{0}\right) . \quad f\left(x_{0}\right)<g\left(x_{0}\right)
$$

and for example $g\left(x_{0}\right)+\frac{1}{n} \in L^{+}\left(f, x_{0}\right)$. It follows then that the function $g \mid\left[x_{0}, d\right]$ does not fulfill all conditions of definition 2 . The contradiction finishes the proof.

Theorem _2. For every function $f: R \rightarrow R$ the set $F^{+}(f) \Delta F^{-}(f)$ is at most countable (Δ means the symmetrical difference of sets).

PROOF. It is enough to prove that the set $A=F^{-}(f){ }^{\prime} F^{+}(f)$ is at most countable. Let A_{0} be the set of all points $x \in A$ for which $f(x) \& L^{+}(f, x)$. This set is countable. Now, let, for $n=1,2, \ldots . A_{n}$ be the set of points $x_{0} \in A$ for which $f\left(x_{0}\right) \in L^{*}\left(f, x_{0}\right)$ and there exists a function $g_{x_{0}}:\left[x_{0}: x_{0}+\frac{1}{n}\right] \rightarrow R$ such that $f(x) \neq g_{x_{0}}(x)$ for $x \in\left[x_{0}, x_{0}+\frac{1}{n}\right]$, and moreover

$$
\lim _{x \rightarrow x_{0}^{+}} \inf f(x)+\frac{1}{n}<g_{x_{0}}(x)<\lim _{x \rightarrow x_{0}^{+}} \text {sup } f(x)-\frac{1}{n}
$$

for $x \in\left[x_{0}, x_{0}+\frac{1}{n}\right]$.

Then

$$
A=\bigcup_{n=1}^{\infty} A_{n} .
$$

We shall flow that each set A_{n} for $n=1,2 \ldots$ contains no one of its points of left-sided accumulation. Assume that it is not true. Then there exists a sequence $\left(x_{k}\right)$ and $x_{0} \in R$ such that

$$
x_{k} \rightarrow x_{0} \quad x_{k} \in A_{n^{\prime}} \quad x_{0} \in A_{n} \quad x_{k}<x_{0}
$$

Then $f\left(x_{0}\right) \in L^{-}\left(f, x_{0}\right)$ and according to $[4]$ the following holds
$P\left(x_{0}\right) \cap L^{-}\left(f, x_{0}\right)=P\left(x_{0}\right) \cap \operatorname{ls} L^{*}(f, x) \supset P\left(x_{0}\right) \cap l_{s} \quad L(f, x) \supset P\left(x_{0}\right) \cap x_{0} \quad L \in\left(f, x_{k}\right)$,
where $P\left(x_{0}\right)=\left\{\left(x_{0}, y\right) \mid y \in R\right\}$.

Since each of sets $L\left(f, x_{k}\right)$ has diameter not less than $\frac{2}{n}$, then the diameter of $L^{-}\left(f, x_{0}\right)$ is 80 . Moreover. $x_{0}-x_{k}<\frac{1}{n}$ for sufficiently large k and $k>n$, and then

$$
\lim _{x \rightarrow x_{0}^{-}} \text {inf } f(x)+\frac{1}{n}<g_{x_{k}}\left(x_{0}\right)<\lim _{x \rightarrow x_{0}^{-}} \sup f(x)-\frac{1}{n}
$$

Since $f(x) \notin g_{x_{k}}(x)$ for $x \in\left[x_{k}, x_{k}+\frac{1}{n}\right]$, then $f(x) \neq g_{x_{k}}(x)$ for $x \in\left[x_{k}, x_{0}\right]$, what proves that f is not functionally connected at the point x_{0} from the left-side. Thus $x_{0} \notin A$, which completes the proof.

Without any essential change of proof of Rosen's theorem [6] one can prove the following theorem.

Theorem 3. For every function $f: R \rightarrow R$ the set $F(f)$ is of type \mathcal{G}_{8}
Theorem 4. Let $f: R \rightarrow R$ be an arbitrary function. Then $f \in F$ if and only if for every continuous function $g: R \rightarrow R$ the function $f+g$ hae the Darboux property.

PROOF. I. Assume that $f \in f$ and there is a function $g: R \rightarrow R$ such that $f+9 \notin D$. Then there exist points $C, d \in R$ and $m \in R$ such that

$$
f(c)+g(c)<m<f(d)+g(d)
$$

and

$$
f(x)+g(x) \notin m \text { for } x \in[c, d]
$$

Then the graph of the function $9-m$ has common points with both of sets $\left\{(x, y) \in R^{2} \mid f(x)>y\right\}$ and $\left\{(x, y) \in R^{2} \mid f(x)<y\right\}$ but $f(x)$ p $\notin g(x)=m$ for $x \in[c, d]$. This contradicts our assumptions.
II. Assume now that $f \& F$. Then there exists a continuous function $g:[a, b] \rightarrow R$ for some nondegenerated interval $[a, b]$. such that there are two points $x_{1}, x_{2} \in[a, b]$ fulfilling the inequalities

$$
f\left(x_{1}\right)<g\left(x_{1}\right) \text { and } f\left(x_{2}\right)>g\left(x_{2}\right)
$$

but $f(x) \neq g(x)$ for $x \in[a, b]$. Let

$$
\bar{g}(x)=\left\{\begin{array}{lll}
g(x) & \text { for } & x \in[a, b] \\
g(a) & \text { for } & x<a \\
g(b) & \text { for } & x>b
\end{array}\right.
$$

Then the function $f-\bar{g}$ has not the Darboux property. This completes the proof.

Thaorean 5. The clags of all continuous functions on R is a maximal additive class for the clase F.

PROOF. We shall prove first that for every function $f \in F$ and every continuous function g, $f+g \in F$. Suppose that it is not true. Then there exists function h definad on some interval [e,b] which is continuous on $[a, b]$ and such chat there exist points $x_{1}, x_{2} \in[a, b]$ such that

$$
h\left(x_{1}\right)<f\left(x_{1}\right)+g\left(x_{1}\right) \cdot \quad h\left(x_{2}\right)>f\left(x_{2}\right)+g\left(x_{2}\right)
$$

and $f(x)+g(x) \neq h(x)$ for $x \in[a, b]$. Then $f+g-h \notin 0$ what contram dicts to the Theorem 4.

How let $g: R \rightarrow R$ be any discontinuous function. Consider two cases: $1^{\circ} g \notin F$.
$2^{\circ} \quad g \in F$.
In the first case. let $f=0$. of course. $f \in F$ and $f+g \& F$.
In the second case. let x_{0} be any point of discontinuity of g.
The function $g \in F$ then also $g \in D$ and at least one of the seta $L^{*}\left(g, x_{0}\right), \quad L^{*}\left(g, x_{0}\right) 18$ a nondegenerated interval and

$$
g\left(x_{0}\right) \in L^{+}\left(g, x_{0}\right) \cap L^{-}\left(g, x_{0}\right)
$$

Let. for example, $L^{\dagger}\left(g, x_{0}\right)$ be nondegenerated interval, and let $1 \neq g\left(x_{0}\right)$ be any of numbere from $L+\left(g, x_{0}\right)$. Let $f: R \rightarrow R$ be defined as follows:

$$
f(x)= \begin{cases}-g(x) & \text { for } x>x_{0} \\ -\frac{1}{2}\left(1+g\left(x_{0}\right)\right) & \text { for } x \leqslant x_{0}\end{cases}
$$

Then $f \in F$ but $f+g \& D_{\text {. This complezes the proof. }}$
Theoress 6. For every function $f: R \rightarrow R$ fulfilling the condition $f(x) \in L(f, x)$ for $x \in R$ the set $R \backslash F(f)$ is dense in itself.

PROOF. Let us suppose that there are points x_{0}. $a, b \in R$ such that

$$
\left\{x_{0}\right\}=(a, b) \cap[R \backslash F(f)]
$$

Then $x_{0} \notin F^{+}(f)$ or $x_{0} \notin F^{-}(f)$. Let, for example, $x_{0} \& F^{+}(f)$. There exist a number $\delta>0$ and a continuous function $g:\left[x_{0} \cdot x_{0}+\delta\right] \rightarrow R$ such that

$$
\lim _{x \rightarrow x_{0}^{+}} \inf f(x)<g\left(x_{0}\right)<\lim _{x \rightarrow x_{0}^{+}} \sup f(x)
$$

and

$$
\begin{equation*}
f(x) \notin g(x) \text { for } x \in\left[x_{0}, x_{0}+\delta\right] \tag{3}
\end{equation*}
$$

Let $[c, d] \subset\left(x_{0}, x_{0}+\delta\right)$ be interval such that there are points $t_{1}, t_{2} \in[c, d]$ fulfilling the inequalities

$$
\begin{equation*}
f\left(t_{1}\right)<g\left(t_{1}\right) \text { and } f\left(t_{2}\right)>g\left(t_{2}\right) \tag{4}
\end{equation*}
$$

The function $f \mid[c, d]$ is functionally connectd, what is impossible in view of (3) and (4).

It is worth to say that the construction of a function f in the main theorem of the article [3] is a good construction in our case. Then we have the following theorem:

Theorem 7. For every set A of type G_{δ} such that $R \backslash A$ is dense in itself there exists a function $f: R \rightarrow R$ such that $A=F(f)$ and f is a Darboux function.

REFERENCES

[1] Bruckner A.M., Ceder J. G.: Darboux continuity, Jber. Deutsch. Math. Ver. 67 (1965). p. 93-117.
[2] Garret B.D. Nelms D_{E}. Kellum K. R.: Characterization of connected real functions. Jber. Deutsch. Math. Ver. 73 (1971). p. 131-137.
[3] Jastrzębski J.M., Jedrzejewski J.M.: On the connectivity points of Darboux function, in proparation.
[4] Jedrzejewski J.M., Wilczyński W. On the family of sets of limit numbers, Bull. Acad. Pol. Sci. Sér. Math. Astr. Phys. 18 (a) (1970).
[5] Kuratowski K.. Topologie I.: PWN Warszawa 1958, p. 243.
[6] Rosen H.: Connectivity points and Darboux points of real functions. Fund. Math. 89 (1975), p. 265-269.

Recenzent: Doc. dr hab. Władys Law Kulpa

Wpłynęzo do redakcji: 21.XII. 1983 r.

FUNKCJONALNIE SPOOJNE FUNKCJE
streszczenie
Praca poswięcona jest badaniom pojeć funkcyjnej spojnoéci w punkcie funkcyi rzeczywistych. Główne wyniki, to porównanie tych pojęc oraz związki z wzasnócie Derboux.

ФУНKIMOHAJLHO CBFЗ

Pes ตме
Работа посвящева исследованио понлтин фунжпональнон свяэности в точке п гпобальной. Рассматривается связь атого донлтия со свожством Дарбу.

