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Summary. In this paper, the notion of almost compatible sets in 
Rq are introduced in three equivalent ways. The notion plays 
an analogous role for the convolution of locally inte- 
grable functions as the concept of compatible sets for the- convolu
tion of Schwartz distributions. It is proved that if A,3 are measu
rable sets in Rq , then the convolution f * g exists for all lo
cally integrable functions with the supports in A,B, respectively, 
if and only if A.B are almost compatible.

(x € Rq )

of two continuous or two locally integrable functions not always exists.
It does if some restrictions are adopted connected with the behaviour of 
the functions f and g at infinity or under assumptions concerning 
their supports.

By the support of a given continuous function f in Rq we mean, as 
usually, the smallest closed set in Rq outside which f » 0. The same 
definition can be adopted for Schwartz distributions in Kq ,

For locally integrable functions the above definition of the support 
is less adequate and it seems to be more natural to define it as the 
smallest closed sat in Rq outside which a locally integrable function 
vanishes almost everywhere {see [9j , p. 196).

We shall adopt the commen notation s(f) for the support of a locally 
integrable function f as well as of a distribution f.

The convolution f *  g of locally integrable functions (distributions) 

exists, for instance, if

Io s(f) is bounded or s(g) is bounded.

1. IT IS WELL KNOWN THAT THE CONVOLUTION

( f #  g)(x) = I f(x-t)g(t)dt 
Rq
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2° »(f) c  and a(g) c  r J, where R^ denote the set of all points 
in Rq whose coordinates are non-negative.

Both examples are particular cases a more general situation, which is 
described in literature in terms of various equivalent conditions on 
supports of functions and distributions.

Let us formulate some of these conditions.
Given sets A,B c  Rc- and x e , we use the notation:

< W * )  * {y e Rq : x-y € A, y c B|

and

Aa  m j(x,y) £  R^q : x+y a|.

Theorem I (cf. [4], p. 383; [l] . p. 125). Let A,8 C  Rq.

The following conditions are equivalent:

(i) for each interval I c  r ^ there exists an interval D c  r 9 such 
that x € I implies ¿ ^ ( x )  C O ;

(ii) for each interval I c  Rq there exists an interval D C  such

that x £ I implies 6 B A (x) C O ;

(iii) for each bounded set K C  R** the set (Ax 8)0 KA  is bounded;

<iv) if xn e A, yn c 8 and |xn| + j y j — «>, then |xn«-yn | .

It is easy to see that conditions (i) and (li) are equivalent, respec
tively, to the following ones:

(i') for each bounded set K C R 1̂ the set {K- A)n B is bounded;

(ii') for each bounded set K C  the set A n ( K - B )  is bounded.

Conditions (i'), (i-') and (iii) appear usually in literature in a little 
modified form, fitted to the assumption (usually made) that A, 8 are 
closed: the words “bounded“ are replaced by the words "compact“ (cf. ¡10], 
p. 170; [4] , p. 383). The proof that conditions (i'), (ii), (iii) are 
equivalent is easy in both formulations (cf. [4], p. 383). in [1] (p.125),
it is proved that condition (iii) is equivalent to conditions (i), (ii).

Sets A , B C  R  ̂ s a t i s f y i n g  one o f  c o n d i t i o n s  ( i ) - ( i v ) ,  (i '1) ,  ( i i O  are 
called compatible.

Supports of functions (distributions) considered above in 1° and 2° 
are compatible, but they do not exhaust all examples of compatible 
supports both unbounded in all directions (cf, [5] , p. 71-84).

Let us recall some results on the convolution of distributions and 
functions with compatible supports.

The convolution of distributions is defined for many different ways. 
The first general definition was given by C. Chevalley [2] . Several gene-
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ral definitions produced later by other authors appeared to be equivalent 
to the definition of Chevalley (cf. ¡3] and [7] ). The sequential defini
tion of the convolution given in [i] (p. 153* 131) is embraced by a more 
general sequential definition, equivalent to the definition of Chevalley 
(see fe] and [7] ). In the theorems recalled below (Theorems II and III) 
the convolution can be meant in the sense of any definition equivalent to 
Chevalley's definition or in the sense of the definition in [l] (p. 153*
131).

Theorem II (cf. [10] , p. 170* [4] , p. 384* [l] . p. 158).
If the supports of distributions f, g in Rq are compatible, then 

the convolution f * g exists.
In {8j (p. 77), it is shown that Theorem II can be conversed in the 

following w a y :

Theorem III (cf. [s] , p. 77).
Let A, B C  Rq and suppose that the convolution f# g exists for all 

distributions (or less: for all non-negative measures) f, g whose supports 
are contained in A and B, respectively. Then A and a are compatible.

In the case of locally integrable functions, we have the following 
analogue of Theorem I I :

Theorem IV (see [l] , p. 124).
If the supports of locally integrable functions f, g in R** are compa

tible, then the convolution f* g exists almost everywhere in Rq and 
represents a locally integrable function in Rq.

The analogue of Theorem III for locally integrable functions is not 
true as a simple example shows (see section 2). The condition of compa
tible supports appears to be too strong for the class of locally inte
grable functions.

In section 2, we shall introduce in three equivalent forms a n a e k e r  
condition on supports of locally integrable functions, called almost 

compatibility.
The notion of almost compatible sets allows us t o  f o r m u l a t e  i n  s e c t i o n

3 an analogue of Theorem III for locally integrable functions.
The notation in the paper is typical. For x « t Rq and

i---------------- 1 •
A, BCRq , we adopt |x| * } ^ f + ••• + A and A ± 8 a

* {X±Y1 x e A* Y 6 b|. By L(A) we denote the q-dimensional Leoesgue

oaasure o f  A C  Rq .

2. LET US START FROM THE FOLLOWING EXAMPLE

Example. Let A ■ B » Bq , where 8q denotes, as in [l] , tne set of

points in Rq whose all coordinates are integers. Every locally inte
grable function in Rq whose support is contained in Bq is equal to 0
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almost everywhere. Hence the convolution f * g of such functions f, g 
exists end equals to 0. On the other hand, the sets A. B are not compa
tible, because |xn| ♦ |yn j— and |*n*yn | -* j0 for xn « (n,...,n)eA and 
y »( -n ,. .. ,- n) eB .

This example shows that Theorem 111 is not true if the class of 
distributions (non-negative measures) is replaced by the class of locally 
integrable functions.

•ve shall introduce now the concept of almost compatible sets in R**. 
Given a measurable set A C  R^ denote

sup A » sup ess|lx| : xe a | .

i.e.,

sup A « inf ja >0: L(Za ) » 0j ,

where ¿B = j x t A :  lx| > a j ; if the set 
adopt sup A = «  . It is clear that

sup A « 0 -»■■■ L(A) « 0. (2)

A set A C  r1̂ for which sup A <o® will be called essentially bounded.

Theorem 1. Let A, B be measurable sets in R^. The following conditions 
are equivalent:

(i) for each interval I c r ^ there exists an interval D C r ^ such
that

LÍÓ^ÍxJíh 3C ) ** 0 

for x e I j

(ii) for each interval I C R 11 there exists an interval DJCR^ such 
that

L( jx € I : L(át ó ( x ) A 3 c ) > o } )  - 0;

(iii) for arbitrary sequences An and Bn of non-empty measurable 
(or. equivalently, measurable and essentially bounded) subsets of A and B, 
respectively, the following implication holds:

sup A n + sup ===> sup(An+Bn ) — »oe .

The sets! A . B C R ^  will be called almost compatible if one of condi
tions (i)— (iii) holds.

( 1 )

j a > 0 :  *-(Za ) » oj is empty, we
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It is evident that if measurable sets A . B C r ^ ara compatible, then

they are almost compatible. The sets A, B in Example are almost compa
tible, but not compatible.

To prove Theore 1 we shall need two lemmas:

Lemma 1 . Let A be a measurable set in R^ such that 0 < s u p  A < oo .
Then for arbitrary £, f> > 0 there exist a measurable set B C a  and a ball

with the radius p  such that B C  end sup B ^  sup A - £ .
P

Proof. Let sup A »o' and el *> min(£,g-). By (1), the set

A a J xe A: oC -<» < |x| ^ ac | is of positive measure. It is clear that there
l —  nare balls Kp,...,Kp with the radius Q  such that %. c  k since

„ ^  i_ i- 1  y
L(A)> 0, there is an index iQ such that LiAOK^, ) > 0  and the set

B • A f> Kp° s a t i s f i e s  t h e  a s s e r t i o n  o f  t h e  lemma.

Lemma 2 . Let A and B be measurable sets in R^ such that ,*-j(A) > 0,

L(B)>0. One can find x e Rq and a set C C  B, L ( C ) > 0  that for every

y C C  there exists a set D , L(Q ) > 0  such that
V V

x+y-OyC a  and c B (y<C).

Proof. Let and %  „ be the characteristic functions of the———— • A D “ D
set A, B and -B, respectively and put

f  - % A *  % B * x _ B.

Of course, f > 0  and ^  ‘ / XA * P b  * f %- Q >  0 , 60 

f(x) = J % A (x-y+z)%B (y)XQ (z)dydz >0

for some x € R q . The last inequality means that the set

|(y»z)e R2 q : x-y+ze A, y t B ,  zt b }

is of positive measure. By the Fubini theorem, there exists a set C C  B 
with L(C) > 0 such that for each y e c  the set

0^ « . | z e R q : x-y+ze A, z c b J-

is of positive measure, which completes the proof of Lemma 2.

Proof of Theorem 1. It is obvious that (i) implies (ii).
To prove the implication (ii) " ' (ii i) suppose that (iii) does not

hold, i.e., there exist sequences An and Bn of nonempty measurable subsets

of A and B, respectively, and a constant M > 0  such that



86 A. Kamiiieki

sup . sup Bn- » -  (3)

and

sup(An+Bn )< M (n « 1,2,...).

This Implies that the sets An , Bn are essentially bounded. In fact. 
Lot sup a r ■ oo for fixed n Than, for arbitrary y0 * Bn and a > 0 ,  we 

, have l ( Z ) > 0, where

Z - { x c  An : |x| > a* lyj} .

Sines Z C  ^ x c An : |x+yo| > aj and

| u e A + y o : iu] > a} c  { u e A n+Bn » |ul>a},

we infer that

L({u e An+Bn x |ul > a} ) >0,

i.e., sup (An+Bn ) ■ »  • Similarly sup Bn * »o implies sup (An+Bn ) ■ 00 •
In view of Lemma 1, we can assume that the sets A and B are containedn n

in balls with the same radius 1 .

Since, by (3) and (2), L(An ) > 0  and L(Bn )> 0 ,  we conclude from the 
Steinhaus theorem that the sets An+Bn contain intervale and, in particular, 
L(An+Bn )> 0.

Let I • Since LtA^ +B ^M ) * f°r ®ach n there is
6 (An+Bn )n I. de a r l y ,  |x-zj <  4  for all x e A fl+Bn and

An+Bn c i * (4)

where I ■ [-M-4,Fh-4]q .

For every interval 3 C  we find an index n, for which sup Bn > s u p 3  + 
♦ 2 , i.e.,

* for z e Bn . (5 )

By Lemma 2. there exists s xQ t r Q and a set C C  Bn with L ( C ) > 0

such that for any y e C  we can find a set Dy , L(Dy ) > 0  satisfying the 
relations

x + y - z e A  C A  and z e  B c  B o n  n for Z €  Dy. (6 )
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Consequently,

(ye C). (7)

Let X - x0+C. Clearly, l(X) = l ( C ) > 0  and X C I ,  by virtue of (7) and
(4). Moreover, by x £ X  we have

L l ^ l x l n a ® )  £  L(Dy ) >  0.

in view of (5) and (6). The contradiction with condition (ii) proves the 
implication (ii) = >  (ill).

It remains to show that (ill) implies (i). Suppose that (i) does not 
hold, i.e., there exist an interval I c  r ^, a sequence xn of points 
in I and sequence Yn of measurable sets such that L (Yn ) > 0 and

xn-V £ A, y e B, |y|> n for y c Yn

and for n » 1,2,... . By Lemma 1, we can assume that Yn c  Ki>> where
are balls whose radii are equal t o p  .

Defining X_ = x -Y , we have X„ c  a , Y c  B end sup X + sup Y — » oo .* n n n n n r n r n
Moreover, if z e X +Y then z » x -u+v with u,v e Y andn n n n

|z| $ |xn| ♦ i  sup I + 2p

for n = 1,2,... . The last equality contradicts condition (iii) and thus 
the implication ( H i )  > (1) and the whole theorem is proved.

3. IN THEOREM IV THE ASSUMPTION ABOUT COMPATIBILITY CAN BE REPLACED
BY THE ASSUMPTION THAT THE SUPPORTS ARE ALMOST COMPATIBLE

Namely, we have

Theorem 2 . The convolution f * g of arbitrary locally integrable 
functions f and g in R1̂ whose supports are almost compatible exists 

and represents a locally integrable function.

Proof. Assume that the supports A, B of the locally integrable func
tions f, g, respectively, are almost compatible.

By condition (i), for every interval I C R 5' there exists an interval 
D c  r^ such that

L (ôA B (x)n 0°) . 0 (8)

for every x e I
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Let K be an interval in Rq such that 1-3 c  k and 0 c. K.

Me define ? » f . % K and g - g . where % K is the characteristic 
function of the interval K.

Obviously,

(f * g )(x ) ■ j f (x-t )g(t )dt. (9)

«^(x)

If x e I, then

j f  (x-t)g(t)dt ■ j f (x-t)g(t)dt.

where Z ■ n 3, and, in view of (8),

j f (x-t )g(t )dt » f f (x-t)g(t)dt ■ 0,

^  . 2 

where z ' - é ^ í x j n  3C . Hence, by (9),

(f * g)(x) - j f(x-t)g(t)dt ■ ( ? *  sf)(x). (10)

because if t e 6 .g(x) then f(x-t) ■ 0 or g(t) * 0, so f(x-t) * 0 or 

9(t) - 0.
Since the functions f and g are integrable, we infer from (10) 

that f * g exists almost everywhere in I and represents there an inte
grable function. But the interval I wae taken arbitrarily and this means 
that f * g exists almost everywhere in R^, being a locally integrable 
function in R**. The proof is finished.

Almost compatibility of two sets in R^ is a necessary condition for 
the existence of the convolution for all locally integrable functions . 
with the supports included in these sets. In other words:

Theorem 3 . Let A, B be measurable sets in R1*. Suppose that the con
volution f * g exists and represents a locally integrable function in 
R** for any f locally j integrable functions f, g whose supports are 
contained in A, B, respectively. Then Á and B are almost compatible.

Proof. Suppose that the sets A  and B are not almost compatible. 
Then there are sequences An> of non-empty measurable subsets of A, B,
respectively, and a constant M > 0 such that sup An — , sup B^— *«> 
and 8up(An+Bn ) < M for n ■ 1,2......

By Lemma 1, we can assume that all the sets A n< Bn are contained in 
balls with the radius 1. Moreover, we can assume that the sets A  are
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disjoint and the sets B n are disjoint. As in the proof of Theorem l,one 
can show that

A  + 8 c  I n n

where I » [-M-4,M+4]q. 
Let

(n • 1 (2|«••), (11)

f(x) «

U(An )-1 if X € A_

if X 6 H  An
n=l

and

g(x) =
L(Bn )-1 if x t Bn

i , . «  g , v

Suppose that the convolution f i g  exists and is a locally integrable 
function in Rq . Then the integral

S » j i f * g)(x)V(x)dx

exists for an arbitrary measurable bounded function V . vanishing outside 
some interval, e.g.. for V  (x) - %j-(x). But then, in view of (11).we have

S « í%j(s )dx I f (x-t )g(t )dt >  

Rq Sq

O*5

2  i f  '
n»l

(x)g(y JXjfx+y)dxdy

2  L (An)'lL(Bn r l  J  Í  dxd* *
n=1 An Bn

which contradicts our assumption. The theorem is thus proved.
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0 PRAWIE ZGODNYCH NOCNIKACH FUNKC3I LOKALNIE CAŁKOWALNYCH

S t r e s z c z e n i e

* pracy wprowadza się na trzy równoważne 6poeoby pojęcie zbiorów zgod

nych w  Rq . Pojęcie to gra analogicznę rolę dla splotu funkcji lokalnie 
całkowalnych, jak pojęcie zbiorów zgodnych dla splotu dystrybucji. Dowo
dzi się, że jeśli A  i B eę mierzalnymi zbiorami w R**, to splot f * g ist

nieje dla wszystkich funkcji lokalnie całkowalnych f i g, o nośnikach za
wartych odpowiednio w zbiorach A i B, wtedy i tylko wtedy, gdy A  i B eę 
prawie zgodne.

o nera» coraACOBAHHux hochtejihx jiokajiłho HHTErpapyaiKX ąyw w w a  

P e 3 z  « e

B paóote BBojęzTCA noHESTHe not o i  cornaco s s l h h h x  MBoxecTB s l Ą  3so h o h h -  

aTHe arpaeT asazorniByz pojitj ; esepnez zozaafcHO KHierpHpyeuKx (JiyHKnjiË, 
Kaz noHHflTze c o m a e  OBaHHtix MHOzecTB j u  CBepTKH o6o6iąeHmzx $yBKHHS. £oica3a- 
Ka czeflyîïüaa zecpeica, CBeprxa fjpg cysiecTsyez ąjls npcxsBanbHKx iozaiibuo hh— 
lerpKpyeimx ¡SyHxnzii f e g c EOCHtezawE b $HKCHpOBasBmx KSMepHMUx MHoseci— 
Bax A h  B torja e  t o j l b k o  zorxa, xorxa A e B b o e t h  coraacoBaHsne,


