Olge Maceoońska

AMOTHER FORMULATION OF HANNA NEUMANN'S 5'th PROBLEM

Abstract

Gummery. In the paper an equivalence of the fifth problew of H. Neumann and a problem of an existance of a nonabelian variety with every abelian subgroup in the centre of its normelizer has been proved. Moreover a condition for positive salution of the problen hea been found which says that it is sufficient to find a nonabelian vertety with a trensitive relation of normality.

The problem in the title is: Does there exiat a non-abelian variety mithout a non-abalian matabelian subvariety? ${ }^{-}$. The article shows that an exampla of non-abelian variety of t-groups (with the transitivity of the relation of normality) would give a positive solution of the problea. It is shown also thee the problem is equivalent to: Does there exise a non-ebalian variety where every abalian subgroup belongs to the centre of its normalizer ${ }^{\prime \prime}$.

A group G is called a t-group if for any given subgroups A, B, C of G. the reletion $A \triangleleft B \triangleleft C$ implies $A \triangleleft C$. Obviously all subgroups and homomorphic images of a t-group are t-grcupa.

THEOREM I. If variety \mathcal{W} consists of t-groups then all finite groups and all soluble groups in at are abelian.

Proof. According to ([4]. Theorem 3.3.1) a finitely generated soluble t-group te finite or abelian. Thus we need to consider only the case of a fintite group G in fre. Let $|G|=p^{s} n_{0}(p, n)=1$, with p prime, We shall denate by P a Sylow p-subgroup in G and by N its normalizer. Since P is a nilpotent t-group, it is abelian ([4]. Corollary to theorem 6.2.1). We take a direct product $N \times N$ of two copies of N and denote by D the diagonsl subgroup in $P \times P$. Then, since $N \times N \in M, D<(P \times P)<(N: N)$ implies $D \Delta(N \times N)$, which is possible if and only if elements of P and N commute. Thus P belongs to the centre of its normaliser and by ([2]. Theorem 14.3.1) there exists a normal subgroup H in G, such that $\mid H_{\mid}^{\prime}=$. $G / H \cong P$. Since P is abelian $G^{\prime} \leqslant H$. and ($\left.\left|G^{\prime}\right|, P\right)=1$ for overy priae diviger of $|G|$ which gives $\left|G^{\prime}\right|=1$ and G is sbelian. Theorem 18 proved.

From the proof of the Theorem we can see that if a variety consiats of t-groups, then every abelian subgroup is in the centre of ite normalizar. The autor does not know if a class of groups with this property which is closed with respect to taking subgroupe and homomorphic imeges is a key.

THEOREM 2. The variety x consists of t-groups if and only if it satisfies the law:

$$
\begin{equation*}
[x, y]=u(x, y), \quad \text { where } u(x, y) \in[[\langle x\rangle,\langle y\rangle],\langle x\rangle] \text {. } \tag{1}
\end{equation*}
$$

Proof. We show first that G is a t-group if and only if for every two subgroups A, B of G

$$
\begin{equation*}
A^{B}=A^{A^{B}} \tag{2}
\end{equation*}
$$

Where A^{B} is a subgroup generated by all the conjugates $b^{-1} a b$, A. $b \in B$. Let G be a t-group, then $A^{A^{B}}<A^{B}<\langle A, B\rangle$ implies $A^{A^{B}}\langle\langle A, B\rangle$. Since A^{B} is the salallest normal subgroup of $\langle A, B\rangle$ containing A, we get $A^{B} \subseteq A^{A^{B}}$ and hence (2) holds. Conversely, suppose $A \Delta C \triangleleft B$ in G. Then $A^{B} \triangleleft C$ and $A \triangleleft A^{B} \triangleleft C$. This implies $A^{A^{B}}=A$ which together with (2) gives $A \quad B$ and hence, G is a t-group.

Since the commutetor subgroup $[A, B]$ is normal in $\langle A, B\rangle$, we can get with the use of comatutator calculus $A^{B}=A[A, B]$ and $A^{A^{B}}=A\left[A^{B}, A\right]=$ $=A[[A, B], A]$. Thus G is a t-group if and only if for every two subgroupe A, B of G the relation

$$
\begin{equation*}
[A, B] \subseteq A[[A, B], A] \tag{3}
\end{equation*}
$$

holds. If now G is a relatively free t-group then it follows from (3) that G satisfies the law (1). Conversely, if G satisfies the law (1) then, for every two subgroups in G, the relation (3) holds, and G is a t-group which finishes the proof.

The simplest example of the law of the type (1) $[x, y]=[x, y, y, \ldots, y]$ is considered in [1]. It is shown that for y repeated n times for $n=$ $=2$ or 3 the correspondent variety is abelian. For $n \geqslant 4$ the problem is open.

Now by F we shall denote a free group of rank two with generators x, y. By V we denote a verbal subgroup of a variety \mathcal{J} under consideration. By A and $N(A)$ we denote an abslian subgroup of a group G in \mathcal{M} and its normalizer in G respectively.

THEOREM 3. A variety fri does not contain a non-abelian metabelian oubvariety if and only if every abellan subgroup of any group in jri belongs to the centre of its normalizer.

Proof. If γ does not contain a non-abelian metabelian subvariety then $F^{\prime} \leqslant \overline{F^{\prime \prime} V}$ and hence $[x, y]=u(x, y)$, where $u(x, y) \in[[\langle x\rangle,\langle y\rangle],[\langle x\rangle,\langle y\rangle]$ is a law in \mathcal{M}. If now $A \subseteq G \in$ gr, then for a $\in A, n \in N(A),[a, n] \in[[A, N]$, $[A, N]] \subseteq[A, A]=1$.

Conversely，let in a variety $2 \mathbb{M}$ every abelian subgroup belong to the centre of its normalizer．He take than $G=F /\left[F^{F}, x^{F}\right] v$ ．Since the iaage x^{F} in G is an abelian normal subgroup，we get $[x, y] \in\left[x^{F}, x^{F}\right] v=$ ＝$\left[\langle x\rangle[\langle x\rangle,\langle y\rangle],\langle x\rangle[\langle x\rangle,\langle y\rangle] \quad V=[\langle x\rangle,\langle y\rangle,\langle x\rangle] F^{\prime \prime}\right.$ V．This means that the Law（1）holds in every metabelian subgroup in $\gamma \underset{\chi}{ }$ and hence，by Theorem 2 the subvariety of metabelian subgroups in $\gamma \boldsymbol{\gamma}$ consists of $t-g r o u p s$ ，and by Theorem 1 it is abelian，which finishes the proof．

REFERENCES

［1］Gupta N．：Some Group－Laws Equivalent to the Commutative Law．Arch． Math．Vol XVII，1966，97－102．
［2］Hall M．Jr．：The theory of groups．The Macmillan Co．N．Y． 2959.
［3］Neumann H_{8} ：Varieties of Groups．Springer－Verlag， 1967.
［4］Robinson D．：Groups in which normality is atransitive relation．proc． Camb．Phil．Soc．1964，60，21－38．

INNE SFORMULONANIE 5－TEGO PROBLEMU HANNY NEUMAANA

Stresszczenie
Wykazeno，ze piaty problem H．Neunann jest rownowazny froblenow：ist－ nienia nieabelowej rozmaitosci，gdzie kazda podgrupa abelcua lazy w ceri－ trum swego normalizatora．Pokazano rowniez，ze dla pozytymnego rozwzaza－ nis problenu，wystarczy zneleżc n土eabelowa roznaitoé z tranzytymnosこı尹 pojecia dzielnika normalnego．

ДРУГAЯ ФOPMA 5－TOA IPPOSRM以 XAHHA HETMAFE

Ре 3 ти е

 тре своето нориализатора．Показано тане，что для полситедьпого реденін
 нормального дегитєля．

