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Summary. This paper contains a method of constructing of funda- 
mentaT-solution of the operator P(A), where A  is the Laplace ope­
rator and P is a polynomial. First, the authors construct a fun­
damental solution in the case P - xn , and then using the classical 
method of Frobenius the general case is solved.

Introduction. In this paper we present a method for determining funda-
nental solutions for the operator P & n ) where

is the Laplace operator and P is an arbitrary polynomial.
The method is based on the invariance of the operator P ^ B ) (cf. uer. i 
and Th. l) which allows us to reduce the multidimensional problem to a 
one-dimensional. In this way we find a fundamental solution for the homo­
geneous operator iAm )r ant* the results obtained are then applied (or 
finding a fundamental solution for an arbitrary operator PCS ), in tne 
form of a suitably constructed series. The convergence of those series 
results from the well-known Frobenius theorems concerning ordinary diffe­
rential operators with regular singularities [2] .

The fundamental solutions construced are rotation invariant (see Remark 
at the end of the paper) and in some cases they are homogeneous (u1- in 
Th. 2 and u1 in Th. 3) in other inhomogeneous (u1 in Th. 2 and u2 . u^ 
in Th. 3) depending on the degree of the polynomial P and the dimension 
a of the space.

A similar method has been applied in our paper [i] for determining 
fundamental solutions for the operator P & m n ) where P is an arbitrary

polynomial
i»l txi i»l

of invariant operators.
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1. NOTATION AND DEFINITIONS

Sm will denote the m-dimeneional Eclidean space. stands for the
set of non-negative integers, N - for the set of positive itegers. We 
apply the notation commonly used in the theory of distributions and of

I-
differential operators. In particular stands for the set of
compactly supported Ck fO < k 4 «<>) functions with support in an open
set ii c Rm. The value of a distribution u on a test function f  e
will be written an u[f]. By £ we denote the Dirac measure at zero.

In this paper we assume a i 2 and put m « — By S we denote 
i 2 p i ®the set. SB = |(x1 ,...,x(|))ix1 + ... ♦ xffi » 1>, to is the Lebesqua

measure on this surface end

K J  ° J

Sm

By R we denote R « R* = <s e R1 i s > 0)1 and R" stands for 
—  1 1  1 1 J * —
R, • |8 ( R s s Z Oj. Let k £ No. We say that a function defined on R+
is of class Ck(R^) if it extends to a function in C ^ R 1 ). We denote by 
F the function F(x) ® |x|2 * x2 + ... + x2 for x £ Rm , playing a fun-

a n2
dsmental role in the study of the operator A  = 2j (or its itera-

'• ' < i-1 cx^ .

'tions). By %  we denote an arbitrary function in C^Tr1 ) equal to 1 in a 
neighbourhood of zero.

We shall relate to the function F a linear operation F^ called the 
operation of averaging. The name is motivated by condition (l) which 
¡appears in Lemma 1 in which the existence of the operation Fg and an 
asymptotic expansion for F ^  with f £ C^°(Rm ) are established.

Lemma 1. There exists a linear operation F#

C~(RB W  *. F* ftC°(R;)

such that for every function f £ C°(R^) and f t  C°(Rm )

f (f o F)(x)f(x)dx = /(F^ f )(s)f (s)ds. (1)
n

supp F̂  f is bounded i.e. there exists A > 0 such that supp F̂  fC- 0, A. 
Moreover

f -» F^f e C ~  (R+ ) 

and for every N e N
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N
:f^ ) ( s ) - % ( s ) ^  8n+1CtW )  ♦ (RNf)(s) for a 0. (2)

i-0

where: RN if is a function with compact support of class N ♦ 1 ♦ [n] and
flat at zero up to order N + 1 ♦ [m] i ^i » 1,...,N) are linear
functionals, C0 (</’) = |Sj (0). Consequently putting for s ^ O :  (F^-fXs) 
equal to zero if m > 0 and equal to X (s)C0 ('f) if i = 0 we get 
F*lfj6 Moreover if — *0 in D(Rm ), then F ^ ^  Jl0 in

Proof. For f t C°(R^), f 6 C®{RE ) we have the following relations

f(f °F)(x)f(x)dx - /  f(rZ )rn- 1jj f i r u j d v j d r  - 

>  0 ko 1

|  Jf(s)j jf(/S«c)d«j mj s Eds = Jf(.).(F.f)(.)ds.

where

<F*f)(s) - i s “ Jf(/So>)d«..

To prove (2) take f  e C ^ R 1”} and put

(Hf)(^j) = J<f (jiu)dui B for u £ R1,

Sm

(0<f)(s) » (H<f){/T) for s > 0.

Observe that H f  is a C ^ i R 1 ) even function and that

(FjcfKs) » |  . sE (0f)(s) for s ^ O ,

(3)

0 </ec(R+ ) n C“"{R+ ).
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It follows that equal to gj¡¡~ fy4) *• • C ^ Í R 1 ) even
function and that " *

© j f X a )  -  -  (H jfX /S ’) for e > 0 .

We conclude as before that $ ̂ c  C(R+ ) 0 C “°(R+ ), hence 0 V «• C1 (R+ ).
By induction $fcC°°(R^) and for every N e  N

0 f ( . , _  2  ® 2 l* h a i  . i . i, J  (̂ ) < ^ ) ( t ) ( e - t ) Ndt.
1-0 0

Hence from (3) follows the assertion (2) wiht C^lf) ■ £

(1 ■ 0.1.....N). Ca (f) - |<0f)(O) - |-|sj i  (0) and the continuity of the 

operation OÍR® ) 9 •f — e D W  (R1 ).

Definition 1. Let P be a linear differential operator of finite
order M with smooth coefficients defined on R®. We say that P Is 
F-lnvariant If there exists on ordinary flfferential operator L defined 
on R^ ■ F(R®) such that

P(f » F) » Lf « F for f t  C*^(R^ ).

In this paper we shall consider the operator 

r

pr ■ 2  a ^ B ^ *  ® Id in D^R"î* ar “ 1
¿>.0

with constant coefficients

Theorem 1. The operator 
Mora precisely

Pr (f » F) - (Lrf ) » F

where
r

Lr " 2  • L° ■ Id in d'(r1)
¿«0

Pr of order 2r Is F-invariant.

for f t C2r(R+ ) (4)



Moreover for evary functlon ‘f c CH(r“ ) na hava

F,((Pr )trf)(») - (Lr )tr(Ft f)(a) for a > 0. <5)

■hora (Pr )tr denota tha formal transpoaa af tha oparator Pr

(L r )t r  -  2  M « - V r  * 2  L t r  -  * 4.3 (6)
0*0 0*0 d»
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Proof. ws restrict ourselves to the proof of (5) because tha other 
assertions are very easy to verify. Take 'f e C^tR*1) and f £ c^r{R+ ). 
Then froa Lemma 1 we get

ff(e)F*((Pr)tiy)(e)ds - f  (f » F)(x)(Pr)trf(x)d* -
£

- f Pr(f » F)(x)f(x)dx. 

ft
(7)

oe

Jf(s)(Lr )tr(Fj|tf)(8)d8 - / ( L rf)(s)(FJ|f)(s)ds 
0 0

- (Lrf • F)(x)f(x)dx.

Using tha invariance relation (4) ws deduce froa (7) assertion (5).
In Section 2 we construct a fundamental solution of tha homogeneous 

operator P̂ . ■ (i.e. a^ ■ 0 for ■ Oti»».»»r—1) and than in
Section 3 we consider the general case.

2. FUNDAMENTAL SOLUTION OF THE OPERATOR (^B )r . r > 1

Let P « &  )r . r 5- 1. Observe that in this case the corresponding one- 
dimensional operators Lr ■ Lr and (Lr )tr » (Lr ) • {L ) are homo­
geneous of order r. This means that for any real number X

Lr(s^) - ptt)sW . (Ltr)r(.A ) - * ( W . ?" r



152 2. Szmydt, B. Zlemian

where

p(M 4rX{X- l ) . . .  )(X+S )(iU-m-l ) . . .  (X+m-r+l) ,

w( 5>) * 4rX ( ^ l ) . .  • (Arr*l )(I\.-m )(X -m -l)... (ft,-m-r+l) .

The polynomials p, w are called characteristic polynomials of the ope­
rators Lr adn (Ltr)r respectively. If 5V is a root of the polynomial 
w of multiplicity k. thenjr- %,+r-l is a root of p of the same multi­
plicity.

Let % « % “ 1 i" « neighbourhood of zero. Then there exist
constants c^iX) ( J *  l,....2r) such that

2r

(Lr')tr(s\(s)) - sVrX(s)w(X) ♦ 2 (8)
Oml

Note that %* m is a root of the polynomial w. hence r-o-1 is a root 
of p. There are precisely two possibilities:

(i) m is a simple root of the polynomial w,
(i-i) m is a root of w of multiplicity 2 precisely.

Define formally a functional Eh (h ■ 0,1) putting1 ^

«45
Eh [jl] » Pf [ sr_B“1 (ln s)hy5{s)ds for f e (R)

Cleearly Eh is a distribution of order [m] with support in [0,+ =o). 
We begin by considering the case (i). In this case

w U )  - tt-m)v°a)

1 ̂ For of > 1 we define

J a n j f i f  . u . I , [V  t l l h npf
0

where

<•’ - 2  < - » J T t ^ T T  a " • )>" 3 * "  1 < x -

» (In s)k+1 for i ■ at-1, a and integer 

In oc<i the symbol Pf in the definition of E*1 can be neglected.
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where

v°(«i) » 4r m(m-l )... {5-r+l)(-l)r-1(r-l) I f 0. (9 )

We shall show that

LrE°tF*t] - " ||SJ v°(5)f(0) for f t C 0 (RB ). (10)

Observe first that Lr(s”fii+r~1 ) = 0 for s > 0. Thus the distribution E°
satisfies the equation

LrE [jj] * 0 for |5 £ C{p-l+2r(R1 ) flat at zero up to order (ll)

[5] +2r

and therefore by Lemma 1 it verifies also the relation

LrE[RN f ] - 0  (12)

for y e  CQ (Rm ) and N t n  sufficiently large.

Thus by Lemma l1 ^

N
LrE°[f y] u 2  Ci (f)LrE°[s,a+1X(e)| . (13)

i-0

To compute this sum take ), J » and observe that in view of (8) we 
have

LrE°[s\(s)] - w(,\)Pf )"s?*-B"1%(s)da
0

♦ 2  J x (1 8 )sW ^ - 1ds.
v? =1 0

Integrating the last integral by parts (<?-l)-times we get for e suitable 

constant b(X):

Lr E °[sS .(s )J  -  wCl)Pf J  e;,-"5 - S .(6 )ds  ♦ bCO (14)

1 ̂ According to (5) (Lr )t r (fj.’-f) ie computed outside zero.
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Suppose %  > m. Then in the second integral integration by parts can be 
performed once again leading to

LrE°[s\(sil - • ( «  Js^-S-1x(s)d8 - b ( W k - m )  J 
0 O

o®

. (w(X) - ba)(JUa)) Js**®"1*^)«*. {15)
O

The left-hand side of (15) is independent of % because E° is a 
solution of (ll). For the right-hand side to be independent of X the 
relation w(50 » b(X)CX-m) must hold. Then from (15) we get

LrE° [s^Siie)] ■ 0 for X > B. (1 6 )

On the other hand b(X) ■« v°!l) ■ b(*0 « v°(m), w(m) * 0 and there­
fore (14) yields the following formula:

LrE°ts,°5(i(s}) * -v°(m). (17.)

From Lemma 1, formulas (12), (16) and (17) we derive easily assertion (10).
Let us consider now the case (li) when m is a double root of ths

polynomial w. In this case m * J where J C N0< O ( J < r-1, w(i\.) ■

■ (?v-m)2v1 (X), v1 (m) ^ 0 and r-m-1 is a double root of p.
Hence Lr(sr-S-1ln s) ■ 0 for s > 0 and consequently E1 satisfies 
equation (ll) which together with Lemma 1 implies that E1 satisfies 
also (1 2 ) and consequently

N
LrE1 [f, y] - 2  Ci('f)LrE1 [sln+1X(s)] . (1 8 )

i-0

As in case (i) using (8 ) and integration by parts we obtain for every 
>  m the relation

OC

LrE1 [a\(s)] « w(X)Pf j sA-S-1%(s )ln s ds +
0

oe oo

+ b1 ()OPf f s';'”Sln s X'(6 )ds + b2 (,\)Pf js^"%'(s)ds (19)

with some constants b^(^,), b2 (,X).
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Suppose %  > S. Then in the last two summands the integration by parts 
can be performed once again leading to the formula

oc

LrE1 [ s \ ( e )] - (wtt) - b1(XK?.-S)) ) 8X"S_1%(s)ln s ds ♦
o

- (b1 (X) ♦ b2 (X)(^-o)) J*(«)«*rB"1de. (20)
0

By the same argument as in case (i) the left-hand side of (20) is indepen­
dent of % , which leads to the following relations:

«(&) - M0\,-o) - o. b j O U  + b2 (X)(VS) » 0.

Consequently

i J V - k ^ s ) ]  - 0 for X >  S (21)

and on the other hand

w(m) = bjfm) » 0, b2 (m) = -v1(o) f 0.

Hence in view of (19) we obtain1 ^

LrE1 [s0%(8)] - v ^ S )  

and so by Lemma 1 and formulas (18) and (21) we get

LrE1 [F*'f] « Cc (f)v1(m) - ||SJ v1 (5K(0) (22)

2 )where '

v1(m) = 4riii(m-l)...(m-j+l)(m-j-l)...(m-r+l)(-l)r"'L(r-l) I (23)

We shall construct now a fundamental solution of the operator P •
To this end put

uH'fJ - biEi [F,f] for f t D l R 1 ), (i = 0.1)

1^Note that LrE°[p°%(s)J « O in case (ii).

2)lf d e o  then v1 (m) «. v 1(0) » 4r(-l)r-1(r-l)I, if moreover r ■> 1
than v1 (0) * 4.
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where

b °  =2---- . b1 » — — f  (24)
|sjV>(s) |Sn| V (K)

and v°(St), v1(m) are given by (9) and (23) correspondingly. From the 
last assertion of Lemma 1 it follows easily that u* £ D(Rm ) (i = 0,1) 
and from (5), (10) and (22) we get for Pr - (AB )r , Lr > Lr i

prui M -  u1 [(pr )tr fJ- biE1 [Fjt(pr )t,3

- biEi [(Lr )tr(F*<f)] - b W ^ f J  - £ [f]

for f  € D(Rm ).
Observe further that

O* oo

E°[F* fj" j sr“""1 (F*'f )(s)de » j  | sr_1( ff( sw)do)ds ■
0 0 ¿¡m

OO

“ jí,2r'1( [ f ( p ‘*=)d‘J)df - í for f £ D ( R ° ) .

0 r® 1X1

Analogously

■ 2 f ' ~^ 'm'X~2*r ln IX1 dx for ’ftOfR®).

«* 1x1 '

Thus we have proved the following theorem:

Theorem 2 . Let m 2, 5 « 2^2, r e N. Then a fundamental solution
of the operator 0lm )r is given by

u ° [ f ] = b °  f - I M -  dx for f £ D(Rm )

8“ 1x1
if i • J, J £ N 0 , 0Í  ) (  r-l, and by

u1 [<f] <= 2b1 f  ■ ̂  ln | x| dx for f  € D(Rra)
J. i«i '

if s « 1, j £ No J ¿ r - T h e  constants b°, b1 are defined by (24).
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5. FUNDAMENTAL SOLUTION OF THE OPERATOR P &  )D

Let Pr be en operator with constant coefficients a^s

r . .

pr ■ 2  m - ^ m ^  * “ Id in D'(R™ ). *>r - 1. (25)
OuO -

Retain the notation L and L of Theorem 1 and denote by p. the cha -
hracterietic polynomial of the operator L »

Pj,(oe) * )». . (of—h+1 )(af+Sn )(«♦B-l )•• • (ar*fi—h+1 )

h = 1....,r.

Observe that pr coincides with the polynomial p from Section 2 and 
that

to - r-B-1

is a root of the polynomial pr.
Frist we shall find a classical solution of the equation

Lry - 0 in R*. (26)

Following a method of Frobenius [2] we look for a solution of (26) of the 
forms

y(s,t) - 2  ci (t)st*i for s > O. (27)
i«0

«hare t is a parameter. Let us substitute formally series (27) to Lry 
and arrange it with respect to the powers of s:

2  ai,L°y(sjt)» 2  ( 2  ci(* )st + 1 ) “
v* *0 »0 i*0

oc minfk.r)

- 2  2  - ^ c ^ i t j L ^ s - ^  -
k-0 )»0

«  min(k.r)

■ 2  8t+k_r( 2  ar-Jck-J(t)pr-J(t*k~3))* (2B^
k-0 J-0
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By equating to zero the expressions thus obtained we arrive at the follo­
wing system of equations

cQ (t )pr(t) « 0,

min(k ,r )

2  ar-3ck-J(t)Pr-J(t+k- ^  " 0
J=0

Neglecting the equation (29) which for t «* t0 is satisfied by an arbi­
trary cQ we can write the system (30) in the following equivalent form:

k

2  ar-k+ici^t ̂ pr-k*i (t+i) “ °* k “ 1,2,... (31)
i>max(0,k-r)

Looking for a non zero solution c1 (t), c2 (t),... of the system (31) we 
distinguish three cases. We begin with the simplest one.

Case 1. t is not an integer. In this case pr(t0+k) f 0 for k*l,2,.., 
and we compute from the k-th equation of the system (31) with
t instead of t and cQ (t) = 1. By the theorem of Frobenius the radius

of convergence of the series is + °° ant* *he function
i=0 1 °

O' t +i
V<8 * V  ■ 2  ci(to )s

i=o

satisfies equation (26). We define a distribution E^ e d'(R1 ) by putting1̂

t «-i ^  v
Ei EO * 2  ci(to )s+ M  for * e C0 ( R '>•

i=0

Case 2 . tQ is a negative integer. In this case all the roots of the 
characteristic polynomial pp are simple and pr(tQ+j) = 0  when

3  “  1 ^ 1  * l * o l  + 1 ......... 1 * 0 ! + r " 1 ‘ P u t

1 We apply here the notation used by Gel'fand Shilov [lj in which

s*ln s+ [ar] denotes pf I?stlnCi8oc(s )ds and is oeromorphic extension to

the complex plane of the distribution (function) or-» J. tlnqs®(s)ds
defined for Re t > -1. ®

J 1

(29)

(k-1.2....). (30?
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A = P^.(0)p^(l)...p^(r-l), 

cQ (t) = Pr(t-t0 )pr(t-t0+l)...pr(t-t0+r-l)

and observe that

<v^(t) = 0 for = 0,1,...r-1, c^r Ut)

(32)

t-t
A i 0. (33)

We compute ^ ( O  from the k-th equation of the system (31) successively 
for k = 1,2,... . Denote by yq(s;t), q » 0,1,...,r the series obtained

from 5  c,(f)3t + i by a formal differentiation ---  term by term.
i*° Stq ^  .

Following Frobenius the radius of convergence of the series ¿ c :  '(t )s ,
i.n 8❖  » 0,1,...,r ia + oo and for every q = 0,1,,..,r the series

Yq(8 * V  “ 2  2  ^ ) ci'?)(to )(lnC'"':>8)8
i=0 <>»0

V1

is a solution of equation (26). We define a distribution E2 by putting

e2 [«] » 2  2  c i i>)(to )s ! ° + i ln r ~ %  M  for of c C ^ R 1 ).
■2=0 ioO

Case 3. t is an integer, 0 < t < r-1. In this case t is a    ■■ ■ 0 ^ 0  o
double root and to+l,..., t0+ (r_1_t0 ) “ r_1 are simple roots of the 
characteristic polynomial pr and pr(tQ+k) f 0 if k > r-t0* put

B = pj.(to+l)...p|.(r-l) if tQ < r-1, B ■ l if tQ = r-1.

(34)
cQ (t) = pr(t+l)...pr (t-t0+r-l) if te < r-1,

co (t) = 1 if tQ ■ r-1 .

It follows that
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Proceeding as in Case 2 we find c. (t) from the k-th equation of the sy­
stem (31) successively for k «• 1,2,... . Denote by y r _ t  (aft) the series

c 
.r-t

obtained from 2  c ^ t j s 1*1 by formal defferentiation term by

term. Then
i=0 at 0

' 00. r-t
„  _ 1°/r-t2 r_t-" V' *„♦*

y r _ t i®**«,) = 2  2  ^ J cx (t0 )(ln a) s
® * wm n ,Om.n±b 0 v7»0

define a distribution E- putting

h h .  i
i=0 1?=0

We shall show that f or oc«» ^  <f

LrEl &fj " LrE° &0 • (26)

LrE2 [¿I - 4 L V & . : .  (37)

LrE3 [oc] ■ (r-t0 )BLrE1 [ar] . (38)

The proof will be based on the following Lemma.

Lemma 2 . Let ji> e C^r(R1 ), Put oi(s) *• snj&(a) for e > 0 and suppose 

that t > r-B-2. Thus for all k » 1,2,..« we have

min(k,r)

2  h  ■ «• 
J.o

Proof. Define K(&): 

min(k,r)
K (f> - 2  ar_;)ck_;J(t)s*+lt-J[(L^-^)t^(^(8)s',,)].

3-0
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Using (6) we get for suitable constants q^,,'?'= 0,1,,.. ,2r-2J 

min(k.r) 2r-2J ~

«/■)- 2  v . 3<W ,) 2  ", f
J-0 r »0 0

because in view of the inequality t+k+ffi-r+'i>*>-1 valid for all k >1,2,..,
the symbol Pf can be omitted. Then in the integrals in the right-hand
side integration by parts can be performed 0 times leading to the rela­
tion:

K(ji) - Q (t) J st+k+0,-r^(s)ds (39)

with an adequate function Q„ Take 6 = 1. we shall show that K(%) is 
independent of the choice of % equal to one in a neighbourhood of zero. 
In fact if Z 1 ,%2 £ C^tR1 ) are two such functions and if x (s) = 

,(s))s5 for s > 0 then He e c”)[R*) and(Xjie) - % 2 (e))s

Bin(k.r)
K ^ ) - K ( % 2 )= K(%x- 12) -  2  a r _j ck_j ( t )  J  Lr " J ( e t + k" ;1) i ( s )d s

J-0 0

~  min(k.r)

■ I ( 2  ar-j°k-J(t)pr-j(t+k';)))8t+k-r;?(8)ds « 0 (40)
0 j-0

in view of (30). In order that the right-hand side of (39) with ba
independent of % the function Q must be equal to zero, hence K( 3) « 0.

We shall now prove (38). The proof of identities (36) and (37) is 
simpler and therefore omitted.

Take |6 c C2r(R1 ), oc(s) for s > 0. In view of (40), (28)
Lemma 2, (35) and foot-note 1 on p.155 we get successively

<-rE3 M  ■ 2  a>L iL7=t~(2  ci(t)s/  5
>?=0 2)t 0 i-0

H
t»t„

0r-tQ «, mln(k.r)

8t k-0 J-0

M
t*t.
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0r-t° r t 
- T d r  < V t)L ^
ot

M

r-t

2
0«0 at

te (r-t0 )BLrs+°ln s+ [or] ♦ c[ ° \ t 0 )Lrs*° {¿J

- (r-t0 )BLrE1 [«•] + C^r"to)(t0 )LrE° [«}

(r-t -1) _ ,
t’- ' o K  (t0 >L E M

Thus Lemma 1 implies (38) for aCm F. V7. 'f e C°°(Ra ).* c
From (36), (37) end (10) we obtain

LrEl [•«* f] “ - |  |sj v°(m)f(0) 

*-rE2 tF* " " I A | s B | v ° ( 5 ) f ( 0 )

for <f £ C0 (R )

with v°(m) defined by (9) end A given by (33). Analogously (38) and 
(22) leads to the formula

L r E3  [F*  * ]  - |(*--t0 )B | s j v 1 ( m ) f ( 0 )

where v^.C«) is given by (23) and B by (34), (35).
Put

-2

|Sjv“ (i)o,= ,* b2 - A |s_| v°(m)' 3 (--to)B lSm!vl(S >

and define:

“i M ' ^ i M  for f £  ^ R " ) ,  1 - 1 . 2 .

(41)
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It follows from (5) that

Prui M  “ ui[(pr )tr^l “ biE i [ ^ (pr)tr<4  "

“ biEi [(Lr )trF*^] * biLrEi t > ^  - ?«>) - * M  - 1.2.3).

This proves that in the case i (i «■ 1,2.3) ui is a fundamental 
solution of the operator Pr. We formulate this result in the form ana­
logous to Theorem 2 stated for (3o )r.

- O
Theorem 3. Let m > 2, o » ~§— * r fc N > *0 “ f-o-l and Pr be the 

differential operator defined by (25). The fundamental solution of Pp 
is given by different formulas depending on which of the three possible 
esses occurs: l) t0 is not an integer: 2) tQ is a negative integer: 
j) t is an integer 0 < tQ 4 r-1. Denote by uA the fundamental solu­
tion of Pp in the case i (i » 1,2,3). We have for 'f e C0 (Rm ):

i»0 ia

r - t  c o  ,  r - 1  -
° ~~ r - t r - t „ - v '  j‘ a n ,v M  o

A3
O »0 i*0

u3 M -  b, 2  2  1 i- ^ i d *

where b^, bg, bj are constants defined by (41) with a , b given t>y (33) 
and (35), correspondingly. The coefficients cA (i » 1,2,...) are solu­
tions of the system (30) with cQ » 1 in case 1 and cQ given by (32) 
in case 2 and by (34) in case 3.

Remark. The fundamental solutions given by Theorem 2 and 3 are rota­
tion invariant since they are expressible in terms of tne operation 
which is clearly rotation invariant.
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METODA KONSTRUKCJI NIEZMIENNICZYCH ROZWIĄZAŃ PODSTAWOWYCH OLA P & m )

S t  r e s z c z e n i e

Praca zawiera metodę konstrukcji rozwiązania fundamentalnego operatora 
P ( A ) ,  gdzie A  jest operatorem Laplace'a, zaś P wielomianem. Pierwszym 
krokiem jest zbudowanie rozwiązania podstawowego w przypadku P(x) » xn, 
a następnie, stosując metodę Frobeniusa rozwijania w szereg, wykazuje się 
istnienie rozwiązania w przypadku ogólnym.

MSTOJ, KOHCTPyKIÍHH. HHBAPHAHTHOrO OCHOBHOrO PEUEHHH M R  P£&m ) 

i  e  3  ©  u  e

B p a ó o T e  a a e T C H  M e r c u  K O H C T p y K E jiz  ® y t m a M e H r a J iL s o r o  p e m e H z a .  o n e p a r o p a  P(A), 
r a e  A  - o n e  p a r  o p  J i a r u i a c a  a  p - n p o z 3 s o j ib H H i i  u H o r o z J i e n .  n e p B i iS  n a r  3 a K J i» -  

z a e r c a  b  K O H C T p y K z z z  p e n ie  h z h  ^ j i s  c a y > ? a a . | P(x) » xn . 0 6 n z f t  c a y w a f i  z c n o j i Ł -  

3y e r  K J ia c  c z  z e  c k h A  M e r o n  $ p o 6 e i m y c a .


