ZESZYTY NAUKOWE POLITECHNIKI SLASKIEJ 1986
Seria: MATEMATYKA-FIZYKA z. a8 Nr kol. 853

Zofia SZMYDT
Bogdan ZIEMIAN

A METHOD FOR CONSTRUCTING INVARIANT FUNDAMENTAL
SOLUTIONS FOR P &n>

Dedicated to Prof. Z. Zahorekl

Summary. This paper contains a method of constructing of funda-
mentaT-solution of the operator P(A), where A 1is the Laplace ope-
rator and P is a polynomial. First, the authorsconstruct a fun-
damental solution in the case P - xn, and then using the classical
method of Frobenius the general case is solved.

Introduction. In thispaper we present a methodfor determining funda-
nental solutions for theoperator P &n) where

is the Laplace operator and P is an arbitrary polynomial.

The method is based on the invariance of the operator P~" B) (cf. uer. i
and Th. 1) which allows us to reduce the multidimensional problem to a
one-dimensional. In this way we find a fundamental solution for the homo-
geneous operator 1Am)r ant* the results obtained are then applied (or
finding a fundamental solution for an arbitrary operator PCS ), in tne
form of a suitably constructed series. The convergence of those series
results from the well-known Frobenius theorems concerning ordinary diffe-
rential operators with regular singularities [Z] .

The fundamental solutions construced are rotation invariant (see Remark
at the end of the paper) and in some cases they are homogeneous (ut in
Th. 2 and ul in Th. 3) in other inhomogeneous (ul in Th. 2 and u2. u®
in Th. 3) depending on the degree of the polynomial P and the dimension
a of the space.

A similar method has been applied in our paper [i] for determining
fundamental solutions for the operator Pé&mn) where P is an arbitrary
polynomial

i»l txi i»l
of invariant operators.
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1. NOTATION AND DEFINITIONS

Sm will denote the m-dimeneional Eclidean space. stands for the
set of non-negative integers, N - for the set of positive itegers. We
apply the notation commonly used in the Eheory of distributions and of
differential operators. In particular stands for the set of
compactly supported Ck f0 < k 4 «) functions with support in an open
set ii ¢ Rm. The value of a distribution u on a test function f e
will be written an u[f]. By £ we denote the Dirac measure at zero.

In this paper we assume a i 2 and put m « — By S we denote
the set. SB = f(xl,...,xd@ix& oo e i 1>J o) ?g the Lebesqua
measure on this surface end

KJ < J
Sm

By R we denote1 R « R*=<se Rl1 is> 0)3 and R; stands for
R, - fs E'R ssZ 0j. Let k£ fo . we say that ‘a function defined on R+
is of class Ck(R") if it extends to a function in C”R1). We denote by

F the function F(X) ® |x]2 * x2 + ... + x2 for x £ Rm, playing a fun-
a n2
dsmental role in the study of the operator A = 2j (or its itera-
e " < i-1 cx® .

“tions). By % we denote an arbitrary function in C/Trl) equal to 1 in a
neighbourhood of zero.

We shall relate to the function F a linear operation F~ called the
operation of averaging. The name is motivated by condition (I) which
jappears in Lemma 1 in which the existence of the operation Fg and an
asymptotic expansion for F ~ with f £ C*(Rn) are established.

Lemma 1. There exists a linear operation F#
C~(RBW * F* ftC°(R;)
such that for every function f £ C°(R*) and ft C°(Rm)
f (Fo F)O)F(x)dx = /(F~ f )(s)f (s)ds. @
n

supp P*f is bounded i.e. there exists A >0 such that supp P* fC- 0, A.
Moreover

f-» FMe C~ (Rt)

and for every N e N
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N

) (s)-%(s) ~ 8n+lCtW) o (RNF)(s) Tfor a 0. (&)
i-0

where: RN if is a function with compact support of class N ¢ 1 ¢ [n] and

flat at zero up to order N + 1 ¢ [m] i MM
functionals, CO®) = |S]
equal to zero if m >0

» 1,..., N) are linear
(0). Consequently putting for s~0: (F~-fXs)
and equal to X (s)COCPH if i = 0 we get

FIfj6 Moreover if - *0 in D(Rm), then F~~ JI0 in

Proof. For ft C°(R"), f 6 CR{RE) we have the following relations

f(F °F) () F(x)dx - /7 F(rz)m-1jj firujdvjdr -

> 0 ko 1

| JIf(s)j jf/S«c)d«j njsEds = JIF(.).(F.F)(.)ds.

where

<F*F)(s) - is* JF(/So>)d«. .

To prove (2) take f e CM"RT} and put

HPO () = I<F@iu)dui B for u £ R1,
Sm
O<f)(s) » (H<H{/T) for s > 0.

Observe that Hf 1is a C”~iR1) even function and that

(FjcfKs) » | . se(0F)(s) for s”O0,

(©)
0 </ec(R+) n C“"{R+).
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It follows that equal to gii- fi4) *ee CATR1) even
function and that "oo*

©jfxXa) - - (HjfX/s?) for e > 0.

We conclude as before that$~c C(R+) 0 C“(R+), hence OV «C1l(R+).
By induction $fcC°°(R”~) and for every Ne N

0f(.,_ 2 ®2 I*hai.i. i, J @®)<)(t)(e-t)Ndt.
1-0 0
Hence from (3) follows theassertion (2) wiht C/MIF) m £

@w0.1..... N). Ca(f) - |<0F)(0) - |-Isj i (0) and the continuity of the
operation OTR®)9 «fF— eDW (R1).

Definition 1. Let P be a linear differentialoperator of finite
order M with smooth coefficients defined on R®. We say that P Is
F-Invariant If there exists on ordinary flfferential operator L defined
on RN m F(R®) such that

P(f»F) » LfF«F for ft C"®M).

In this paper we shall consider the operator

r

prm 2 an B~* ® Id in D™R"T* ar “ 1
¢>-0

with constant coefficients

Theorem 1. The operator Pr of order 2r Is F-invariant.
Mora precisely

Pr(fF»F) - (Lrf)»F for ft C2r(R+) ()

where

Lr ™ 2 eL°m Id in d"¢l)
¢, «0
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Moreover for evary functlon T c CH(r“) na hava

F,((Pr)trf)(») - (Lr)trFtf)(a) for a> 0. <5)
mhora (Pr)tr denota tha formal transpoaa af tha oparator Pr

(Lr)tr - 2 M« -Vr * 2 Ltr - * 43 (6)
0*0 0*0 d»

Proof. ws restrict ourselves to the proof of (5) because tha other
assertions are very easy to verify. Take “fe CMR*1) and f £ c/ r{R+).
Then froa Lemma 1 we get

AEF@EBHES - | GHHRIERH-

- f Pr(f»F))FG)dx.

ft
(@]
oe
JF(s) (Lr)trFilF) (8)d8 - 7 (Lrf)(s)(FIIF)(s)ds
0 0

- (Lrfe F)(X)F(x)dx.

Using tha invariance relation (4) ws deduce froa (7) assertion (5).

In Section 2 we construct a fundamental solution of tha homogeneous
operator P. m (i.e. a~m 0 for m Oti»».»»r-1) and than in
Section 3 we consider the general case.

2. FUNDAMENTAL SOLUTION OF THE OPERATOR (™B)r. r > 1
Let P « & )r. r 5 1. Observe that in this case the corresponding one-

dimensional operators Lr m Lr and (Lr)tr » (Lr) <« {L ) are homo-
geneous of order r. This means that for any real number X

Lr(s™) - ptt)sW . (Ltrd)r(.A) - *(W.?'r
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where

p(M 4rX{x-1)... )JX+S)(iU-m-1) ... (X+m-r+l),

W(5) * 4rX (M) .o (Arr*)(IN.-m)(X-m-1)... (ft,-m-r+l).
The polynomials p, w are called characteristic polynomials of the ope-

rators Lr adn (Ltr)r vrespectively. If 5/ is a root of the polynomial
w of multiplicity k. thenjr-%,+r-1 is a root of p of the same multi-

plicity.
Let % « % “ 1 1" « neighbourhood of zero. Then there exist
constants cMiX) (J* I,....2r) such that

2r
(Lr)tr(s\(s)) —Q/I’)(Sm ‘2

oml

©

Note that %* m is a root of the polynomial w. hence r-o-1 1is a root
of p. There are precisely two possibilities:

(i) m 1is a simple root of the polynomial w,
@-1) m is a root of w of multiplicity 2 precisely.
Define formally a functional Eh( = 0,1) puttingl”
«b
Eh Ol » PF [sr_B“1(In s)hy5{s)ds for T e (R)

Cleearly Eh is a distribution of order [m] with support in [0,+=0).
We begin by considering the case (i). In this case

wU) - tt-m)ve©a)

1~For of > 1 we define

pf Janjfif . u . | , v tllhn
0
where
<o’ - 2 <-»] TtATT a"e)r3 *r 1<x -
» (In s)k+1 for i1 m at-1, a and integer

In oc<i the symbol Pf in the definition of FE*L can be neglected.
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where

ve(«i) » 4r m(m-1)... {5-r+DD(-Dr-1(r-1)1 f 0. ©)
We shall show that

LrE°tF*t] - " |1SJ v°(5)F(0) for f tC O(RB). (10)

Observe first that Lr(s"fiilr~1) = 0 for s > 0. Thus the distribution E°
satisfies the equation

LrE@j] * 0 for [|5£ CPp-1+2r(R1) flat at zero up toorder an
Bl +2r

and therefore by Lemma 1 it verifies also the relation

LrE[RN ] -0 12)

for ye CQ(Rm) and N t n sufficiently large.
Thus by Lemma 117

N
LrE°[Ff y] u 2 Ci(F)LrE°[s.a+1X(e)] - (13)
i-0

To compute this sum take ),J » and observe that in view of (8) we
have

LrE°[s\(s)] - w(\)PF )"s?B"1%(s)da
0

.2 IJx (@ 8)sW ~-1ds.
w=1 0

Integrating the last integral by parts (<?-1)-times we get for e suitable
constant b(X):

LrE°[sS.(s)J - wCI)Pf J e;-"5-S.(6)ds ¢ bCO 14

1~According to (5) (Lr)tr(fj.2f) ie computed outside zero.
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Suppose % > m. Then in the second integral integration by parts can be
performed once again leading to

LrE°[s\(sil - < (« Js”™-S-i1x(s)d8 - b(Wk-m) J
0 0
o®
Ww(X) - ba)(JdUa)) JIs**@"1*N)«*. {15)
0

The left-hand side of (15) is independent of % because E° 1is a
solution of (Il1). For the right-hand side to be independent of X the
relation w(50 » b(X)CX-m) must hold. Then from (15) we get

LrE® [s"Siie)] m 0 for X > B. (16)

On the other hand b(X) mv°Il) = b(*0 « ve(m), w(m) * O and there-
fore (14) yields the following formula:

LrE°ts B (sP * -v°(m). aar.)

From Lemma 1, formulas (12), (16) and (17) we derive easily assertion(10).
Let us consider now the case (li) when m is a double root of ths

polynomial w. In this case m * J whereJ C NO< O ( J < r-1, wi\.) =

. (v-m2vi(X), vi(m) ~ 0 and r-m-1 is a double root of p.

Hence Lr(sr-S-1In s) m 0 for s > 0 and consequently E1 satisfies

equation (Il) which together with Lemma 1 implies that E1 satisfies

also (12) and consequently

N
LFEL [f,y] - 2 Ci(CHLrEL [sln1X(s)] - @18)
i-0

As in case (1) using (8) and integration by parts we obtain for every
>m the relation

oc
LrE1 [a\(s)] « W(X)PF | SA-S-1%(s)In s ds +
0
oe 00
+ b1 QOPF FsSIn s X"(6)ds + b2 (C\)PF js~"%"(s)ds (19)

with some constants b(*®,), b2 (GX).
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Suppose % > S. Then in the last two summands the integration by parts
can be performed once again leading to the formula

oc
LrEL[s\(e)] - (wtt) - b1(XK?.-S)) ) 8X"S_1%(s)In s ds ¢
(o]
- (1) ¢ b2(X)(*-0)) JI*(«)«*rB"1de. (20)

0

By the same argument as in case (i) the left-hand side of (20) is indepen-
dent of% , which leads to the following relations:

«(&) - MO\,-0) - 0. bjouU + b2(X)(VS) » O.
Consequently
iJV-k~s)] -0 for X> S (21)

and on the other hand

w(m) = bjfm) » 0, b2(m) = -vi(o) f O.
Hence in view of (19) we obtainl”
LrE1 [s0%(8)] - v~S)

and so by Lemma 1 and formulas (18) and (21) we get

LrE1 [F**f] « Cc (F)vi(m) - |1SJI v1(5K(0) 22)
wherez)
vi(m) = driii(m-D...(m-j+Dm-j-D ... (m-r+D-Dr"L(r-1) 1 23)

We shall construct now a fundamental solution of the operator P <
To this end put

uH*fJ - biEi[F,f] for FtDIR1), (i = 0.1)

1”Note that LrE°[p°%(s)J « O in case (ii).

2)f deo then v1i(m) « v1(0) » 4r(-Dr-1(r-1)I1, ifmoreover r »1
than v1(0) * 4.
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where
b° =2-——. bl » - - f (e2))
Isjv>(s) Isnlv ()
and v°(St), vi(m) are given by (9) and (23) correspondingly. From the
last assertion of Lemma 1 it follows easily that u* £ D(Rm) (i = 0,1)
and from (5), (10) and (22) we get for Pr - (AB)r, Lr > Lri

prui M -

ul [(er)tr fJ- biEl [Fjt(pr)t,3

- biEi [(Lr)tr(F<P] - b W~ FfJ - £ [f]
for £ € D(Rm).
Observe further that
o* (0]
E°[F* fj" J sre<""1(F"f)(s)de » j |sr_1(ff( sw)do)ds =
0 0 ¢im
@
“OJL2rr1([F(pTdIDdF - T for fED(R°).
0 r® IXL
Analogously
m 2f "N hx2x In K1ldx for TtOfR®).

* l)d -

«

Thus we have proved the following theorem:

Theorem 2. Let r e N. Then

of the operator Olm)r

m 2,5 « 272,

is given by

u°[f]=b°e £ -1 M- dx Ffor F £ D(Rm)

8" I

if i<J, JENO,d )( r-1, and by

<201 | w

J.

In |x] dx for f €D(Rra)

i«i

if s« 1, Jj £No J¢ r-The constants b°, bl

a fundamental solution

are defined by (24).
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5. FUNDAMENTAL SOLUTION OF THE OPERATOR P& )

Let Pr be en operator with constant coefficients a”s
r .

pr ®m 2 m-/~m~N* “I1d in D"R“). *r - 1. (25)
Ou0 Z

Retain the notation L and L of Theorem 1 and denote by p. the cha-
- _ h
racterietic polynomial of the operator L »

Pj.(0e) * Y. . OF-h+1)@FN) («oB-1 Yo o @r*fi-h+1)

h=1....,r.

Observe that pr coincides with the polynomial p from Section 2 and
that

to - r-B-1

is a root of the polynomial pr.
Frist we shall find a classical solution of the equation

Lry - 0 in R*. (26)

Following a method of Frobenius [Z] we look for a solution of (26) of the
forms
y(s,t) - 2 ci(t)st*i for s > 0. ([€X))

i«0

«hare t is a parameter. Let us substitute formally series (27) to Lry
and arrange it with respect to the powers of s:

2 aplL°y(sjt)» 2 (2 ci(*)st+l) “
V=0 »0 i*0

oc minfk.r)

- 2 2 -"cMitjLANs -~ -
k-0 )»0
« min(k.r)
m 2 8t+k r( 2 ar-Jck-J(t)pr-J(t*k~3))* @Bn

k-0 J-0
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By equating to zero the expressions thus obtained we arrive at the follo-
wing system of equations

cQ(t)pr(t) « 0, 29
min(,r)
2 ar-3ck-J(t)Pr-J(t+k-~ " 0 (k-1.2....). (307
J=0

Neglecting the equation (29) which fort & t0 is satisfied by an arbi-
trary cQ we can write the system (30)in the following equivalent form:

k

2 ar-k+ici™tpr-k*i (t+i) « °* k “1,2,... (€D)
i>max(0,k-r)

Looking for a non zero solution cl1(t), c2(t),... of the system (31) we
distinguish three cases. We begin with the simplest one.

Case 1. t is not an integer. In this case pr(t0O+k) f 0 for k*I1,2,..,

and we compute from the k-th equation of the system (31) with
t instead of t and cQ(t) = 1. By the theorem of Frobenius the radius
of convergence of the series is +°° ant* *he function
i=0 1 -~
0" t +i
V<8*V m 2 ci(to)s
i=o

satisfies equation (26). We define a distribution E" e d"Rl) by puttingl®

t «i n v
Ei EO * 2 ci(to)s+ M for * e CO(R >
i=0

Case 2. tQ 1is a negative integer. In this case all the roots of the
characteristic polynomial pp are simple and pr(tQ+j) =0 when

3 - 141 * 1*ol + 1 ......... 1*01+r"1° Put

1 We apply here the notation wused by Gel"fand Shilov [lj in which
s*In s+ [@] denotes pf I1?stln(Boc(s)ds and is oeromorphic extension to

the complex plane of the distribution (function) or-» Ings®(s)ds
defined for Re t> -1. ®
J1
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A = PAOPp (D). ..pA(r-1),

(32)
cQ(t) = Pr(t-t0)pr (t-to+1)...pr (t-tO+r-1)
and observe that
<v/A(t) =0 for =0,1,...r-1, c*ruUt) A i O. (33)

t-t

We compute ~ (O from the k-th equation of the system (31) successively
for k =1,2,... . Denote by vyq(s;t), q » 0,1,...,r the series obtained
from 5 c,(f)3t+i by a formal differentiation — term by term.

N

i*° Stqg .
Following Frobenius the radius of convergence of the series ;c: '(t8)s

» 0,1,...,r ila +o00 and for every q = 0,1,,..,r the series

] V1
Yq(8* Vv “ 2 2 ") ci"?)(to)(InC"">8)8
i=0 <0

is a solution of equation (26). We define a distribution E2 by putting

e2 [« » 2 2 cii>)(to)st°+ilnr~% M for of c CAR1).
m2=0 io0

Casegg. tO is an,\integer,O 0 <t < r-1. In this case t0 is a
double root and to+l,..., tO+(r_1 t0) “ r_1 are simple roots of the

characteristic polynomial pr and pr(tQ+tk) f 0 if k > r-t0O* put

B = pj.(to+tD)...p]-(r-1) if tQ< r-1, B m 1 if tQ = r-1.

G
cQ(t) = pr(t+l)...pr(t-to+r-1) if te < r-1,

co(t) =1 if 0 mr-1.

It follows that
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Proceeding as in Case 2 we find c. (t) from the k-th equation of the sy-

stem (31) successively for k « 1,2,... . Denote by yr_tc(aft) the series
.r-t

obtained from 2 c/tjsil*1l by formal defferentiation term by

i=0 at 0
term. Then

w
@
r/r-t2 r_t-"Veox e

A Jex  (10)(In a) s

define a distribution E- putting

h h . i
i=0 170

We shall show that for oce N <F

LrEl &fj " LrE°&o = ©6)
LrE2 [l -4LVE. :. €N
LrE3 [ = (r-t0)BLrEl ] ; (38)

The proof will be based on the following Lemma.

Lemma 2. Let jpe C~r(Rl), Put oi(s) *snj&(a) for e > 0 and suppose
that t > r-B-2. Thus for all k » 1,2,..« we have

min(k,r)

2 h m«e
J.o

Proof. Define K(&):

min(k,r)
K(f> - 2 ar_)ck_;J(t)s*HE=I[(LA-N) A (N (8)s",)]-
3-0
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Using (6) we get for suitable constants o°,,"?=0,1,,.. ,2r-2J
min(k.r) 2r-2J ~
«/m)- 2 Vv .39 ) 2 ", f
J-0 r »0 0

because in viewof the inequality tH«¢ffi-r+"i>>-1 valid for all k >1,2,.__,
the symbol PF can be omitted. Then in theintegrals 1in theright-hand
side integration by parts can be performed 0 times leading to the rela-
tion:

KGi) - Q(t) J st+k+0,-r (s)ds 39)

with an adequate function Q,, Take 6=1. we shall show that K(%) is

independent of the choice of % equal to one in a neighbourhood of zero.

In fact if Z21,% £ CMR1) are two such functions and ifx (s) =
(Xjie) - %v2(e))s5 for s > 0 then e c”)[R*) and

Bin(k.r)
KM)-K (% 2)= K(%x- 12) - 2 ar_jck_j(t) J Lr"J(et+k";)i(s)ds
J-0 0
~ min(k.r)
m 1 ( 2 ar-j°k-J(t)pr-j(t+k";)))8t+k-r2(8)ds « 0 (40)
0 Jj-0
in view of (30). In order that the right-hand side of (39) with ba

independent of % the function Q must be equal to zero, hence K( 3 « 0.
We shall now prove (38). The proof of identities (36) and (37) is

simpler and therefore omitted.
Take 6c C2r(R1), oc(s) for s > 0. In view of (40), (28)
Lemma 2, (35) and foot-note 1 on p.155 we get successively

<E3M m 2 asl i7=t~(2 ci(D)s/ 54 N
>?7=0 ot O(i—O () ot

or-tQ «, miIn(k.r)

-
8t k-0 J-0 vt
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or-t° rt
-Tdr <V L~ M
ot

r-t

2
0«0 at

t (r-t0)BLrs+°In s+ [a] ¢ c[ °\t0)Lrs*° {J

- (r-t0)BLrE1l kel + CAr'to) (tO)LrE° [&

(r-t -1) _
t-"0oK (tO>L E M

Thus Lemma 1 implies (38) for aCm R« Vi *fe CZ°(Ra)-
From (36), (37) end (10) we obtain

LrEl [=¢F] “ - | |sj ve(m)F(0)

for <FE£ COQR )

*rE2 " " 1 AlsB|v(5)f(0)

with ve(m) defined by (9) end A given by (33). Analogously (38) and
(22) leads to the formula

LrE3 [ *] - |(*--t0)B|sjv1(m)f(0)

where v*.C«) is given by (23) and B by (34), (35).
Put

-2

- 41
1siviGy” “

Alslve(m)® 3 (--to)B BmlvI(S>
and define:

“TtM T AT M for f£ ~R"), 1-1.2.
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It follows from (5) that
Prui M “ ui[(pr)tr*l “ biEi [~ (pr)t<4

“ DiEQ [(Lr)trF*A] * biLrEi t>~ -2«>) - * M - 1.2.3).

This proves that in the case 1 (i ®1,2.3) ui is a fundamental

solution of the operator Pr. We formulate this result in the form ana-
logous to Theorem 2 stated for (30)r.

Theorem 3. Let m> 2, 0 » :§O—* r EN>*0 “ f-o-1 and Pr be the
differential operator defined by (25). The fundamental solution of Pp
is given by different formulas depending on which of the three possible
esses occurs: 1) tO is not an integer: 2) tQ 1is a negative integer:

Pt is an integer 0 < tQ 4 r-1. Denote by uA the fundamental solu-
tion of Pp in the case 1 (@ » 1,2,3). We have for *fe CO(Rm):

i»0

u3 M - b32 2 1 i-~id=*
R A
0»0 1*0

where b”, bg, bj are constants defined by (41) with a, b given ty (33)
and (35), correspondingly. The coefficients cA (i » 1,2,...) are solu-
tions of the system (30) with c¢cQ » 1 in case 1 and cQ given by (32)
in case 2 and by (34) in case 3.

Remark. The fundamental solutions given by Theorem 2 and 3 are rota-
tion invariant since they are expressible in terms of tne operation
which is clearly rotation invariant.
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METODA KONSTRUKCJI NIEZMIENNICZYCH ROZWIAZAN PODSTAWOWYCH OLA P&m)

St reszczenie

Praca zawiera metode konstrukcji rozwigzania fundamentalnego operatora
P(A), gdzie A jest operatorem Laplace"a, za$ P wielomianem. Pierwszym
krokiem jest zbudowanie rozwigzania podstawowego w przypadku P(x) » xn,
a nastepnie, stosujac metode Frobeniusa rozwijania w szereg, wykazuje sie
istnienie rozwigzania w przypadku og6lnym.

MSTOJ, KOHCTPyKITHH. HHBAPHAHTHOr0O OCHOBHOrO PEUEHHH MR P£&m)

i e 3 0u e

B pa6oTe aaeTCH Mercu KOHCTpyKEjiz ®ytmaMeHraliLsoro pemeHza. oneparopa P(A),
rae A - oneparop Jiaruiaca a P — npoz3sojibHHIii uHorozJien. nepBiiS nar 3aKlJi»-
zaerca b KOHCTpyKzzz peniehzh "jis cay>?aa.| P(X) » XN . 06nzft caywafi zcnojit -

3yer KliacczzeckhA Meron $po6eimyca.



