Zofia SZMYDT
Bogdan ZIEMIAN

A METHOD FOR CONSTRUCTING INVARIANT FUNDAMENTAL
SOLUTIONS FOR $P\left(\Delta_{\mathbf{m}}\right)$
Dedicated to Prof. Z. Zahorski
Summary. This paper contains a method of constructing of fundamental solution of the operator $P(\triangle)$, where Δ is the Laplace operator and P is polynomial. First, the authors construct a fundamental solution in the case $P=x^{n}$, and then using the classical method of Frobenius the general case is solved.

Introduction. In this paper we present a method for determining fundawental solutions for the operator $P\left(\Lambda_{m}\right)$ where

$$
\Delta_{m}=\sum_{i=1}^{m} \frac{\partial^{2}}{\partial x_{i}^{2}}, m \geqslant 2
$$

is the Leplace operator and P is an arbitrary polynomial.
The method is based on the invarience of the operator PA, (cf. Uer. 1 and Th. 1) which allows us to reduce the multidimensional problea to a one-dimensional. In this way we find a fundamental solution for the hocogeneous operator $\left(\Delta_{m}\right)^{r}$ and the results obtained are then applaed ior finding a fundamental solution for an arbitrary operator $P \|_{m}$, in tne form of a suitably constructed series. The convergence of those serias results from the well-known frobenius theorems concerning ordinary differential operatore with regular singularities [2].

The fundamental solutions construced are rotation invariant (see Recark at the end of the paper) and in some cases they are homogeneous (u° in Th. 2 and u_{1} in Th. 3) in other inhomogeneous (u^{1} in Th. 2 and u_{2}, u_{3} in Th. 3) depending on the degree of the polynamial P and the dimension - of the space.

A similar method has been applied in our paper [4] for determining fundamental solutions for the operator $P\left(_{m n}\right.$) where P is an arbitrary polynomial and $\square_{\operatorname{mn}}=\sum_{i=1}^{m} \frac{\partial^{2}}{\hat{i x_{1}^{2}}}-\sum_{i=1}^{n} \frac{\hat{j}^{2}}{\partial y_{1}^{2}}$, and in paper [3] for a wide ciass of invarient operatore.

1．NOTATION AND DEFINITIONS
R^{D} will denote the m－dimensional Eclidean space．N_{0} stands for the set of non－negative integers．N－for the aet of positive itegers．We apply the notation commonly used in the theory of distributions and of differential operators．In particular $C_{0}^{k}(\Omega)$ stands for the set of compactly supported $c^{k} \quad(0<k \leqslant \infty)$ functions with support in an open set $\Omega \subset R^{m}$ ．The value of a distribution u on a test function $\varphi \in C_{0}^{\infty}(\Omega)$ will be written an $u[4]$ ．By \mathcal{E} we denote the Dirac measure at zero．

In this paper wo assume $m_{2} \geqslant 2$ and put 蹦 $=\frac{m-2}{2}$ ．By S_{a} we denote the set，$S_{m}=\left\{\left(x_{1} \ldots \ldots x_{m}\right): x_{1}^{2}+\ldots+x_{m}^{2}=1\right\}, \omega \omega_{m}^{2}$ is the Lebesque measure on this surface end

$$
\left|s_{m}\right|=\int_{s_{m}} d \omega_{m}
$$

By R_{+}wo denote $\left.R_{+}=R_{+}^{1}=\left\{B \in R^{1} \& s>0\right)\right\}_{j}$ and \bar{R}_{+}stands for $\bar{R}_{+}=\left\{s \in R^{2}: s \geqslant 0\right\}$ ．Let $k \in N_{0}$ ．We say that a function defined on \bar{R}_{+} is of class $c^{k}\left(\bar{R}_{+}\right)$if it extends to a function in $C^{k}\left(R^{2}\right)$ ．We denote by F the function $F(x)=|x|^{2} \Rightarrow x_{1}^{2}+\ldots+x_{m}^{2}$ for $x \in R^{m}$ playing a fun＝ damental role in the study of the operator Δ m $\sum_{1=1}^{n} \frac{\rho^{2}}{2 x_{1}^{2}}$（or its itera－ ＇tions）．By X we denote an arbitrary function in $C_{0}^{\infty}\left(R^{1}\right)$ equal to 1 in a neighbourhood of zero．

We shall relate to the function F a linear operation $F_{\text {业 called the }}$ operation of averaging．The name is motivated by condition（1）which appears in Lemma 1 in which the existence of the operation f and an asymptotic expansion for $F_{\text {米 } \varphi}$ with $\varphi \in \mathcal{C}_{0}^{\infty}\left(R^{m}\right)$ ara established．

Lemma 1．There exists a linear operation F_{*}

$$
C_{0}^{\infty}\left(R^{m}\right) \ni \varphi \longrightarrow F_{4} \varphi \in C^{0}\left(\overline{R_{+}}\right)
$$

such that for every function $f \in C^{0}\left(\bar{R}_{+}\right)$and $\varphi \in C_{0}^{0}\left(R^{m}\right)$

$$
\begin{equation*}
\int_{R^{m}}(f \circ F)(x) \varphi(x) d x=\int_{0}^{\infty}\left(F_{*} \varphi\right)(s) f(s) d s \tag{1}
\end{equation*}
$$

supp $F_{*} \psi$ is bounded ice．there exists $A>0$ such that supp $F_{*} \varphi \subset O$ ．A ． Moreover

$$
C_{0}^{\infty}\left(R^{m}\right) \ni \varphi \rightarrow \quad F_{*} \varphi \in C^{\infty}\left(R_{+}\right)
$$

and for every $N \in \mathbb{N}$

$$
\begin{equation*}
\left(F_{*} \varphi\right)(s)=\chi(s) \sum_{i=0}^{N} s^{\bar{W}+i} c_{i}(\varphi)+\left(R_{N} \varphi\right)(s) \text { for } s \geqslant 0 . \tag{2}
\end{equation*}
$$

where: $\mathrm{R}_{\mathrm{N}} \varphi$ is a function with compact support of class $\mathrm{N}+1+\left[\right.$ [a] ${ }^{\circ}$ and flat at zero up to order $N+1+\left[\right.$ 可 $\left.; C_{1}(\varphi) \nmid i=1 \ldots \ldots N\right)$ are linear functional, $C_{o}(\varphi)=\left|S_{m}\right| \varphi(0)$. Consequently putting for $s \leqslant 0:\left(F_{*} f\right)(s)$ equal to zero if $\overline{\text { wi }}>0$ and equal to $\%(s) C_{o}(f)$ if $\overline{\text { m }}=0$ we get
 Proof. For $f \in C^{0}\left(\bar{R}_{+}\right), \varphi \in C_{o}^{0}\left(R^{(\mathbb{W}}\right)$ we have the following relations

$$
\begin{aligned}
& \int_{R^{m}}(f \circ F)(x) \varphi(x) d x=\int_{0}^{\infty} f\left(r^{2}\right) r^{n-1}\left\{\int_{S_{\infty}} \varphi(r \omega) d \omega\right\} d r= \\
& =\frac{1}{2} \int_{0}^{\infty} f(s)\left\{\int_{S_{m}} \varphi(\sqrt{\delta} \omega) d \omega\right\}_{m} s^{\bar{m}} d s=\int_{0} f(s)\left(F_{*} \varphi\right)(s) d s .
\end{aligned}
$$

where

$$
\left(F_{*} \varphi\right)(s)=\frac{1}{2} s^{\text {而 }} \int_{S_{m}} \varphi(\sqrt{s} \omega) d \omega_{m} .
$$

To prove (2) take $\varphi \in C_{o}^{\infty}\left(R^{(n)}\right)$ and put

$$
\begin{aligned}
& (H \varphi)(\mu)=\int_{S_{m}} \varphi(\mu \omega) d \omega \mathrm{for} \mu \in R^{1} . \\
& (\phi \varphi)(s)=(H \varphi)(\sqrt{s}) \quad \text { for } s \geqslant 0 .
\end{aligned}
$$

Observe that $H P$ is a $C^{\infty}\left(R^{2}\right)$ even function and that

$$
\begin{align*}
& \left(F_{*} \varphi\right)(s)=\frac{1}{2} \cdot s^{\bar{m}}(\varnothing \varphi)(s) \text { for } s \geqslant 0 . \tag{3}\\
& \emptyset \varphi \in C\left(\bar{R}_{+}\right) \cap c^{\infty}\left(R_{+}\right) .
\end{align*}
$$

It follows that $\left(H_{2} \varphi(\mu)\right.$ equal to $\frac{1}{2 \mu} \frac{d(H \varphi)}{d \mu}(\mu)$ is a $c^{\infty}\left(R^{1}\right)$ ven function and that

$$
\left(\phi_{1} \varphi\right)(s)=\frac{d(\phi \varphi)(s)}{d s}=\left(H_{1} \varphi\right)(\sqrt{s}) \quad \text { for } \quad v \geqslant 0
$$

We conclude as before that $\phi_{2} \varphi \in c\left(\bar{R}_{+}\right) \cap c^{\infty}\left(R_{+}\right)$. hence $\emptyset \varphi \in c^{1}\left(\bar{R}_{+}\right)$. By induction $\emptyset \varphi \in C^{\infty}\left(\bar{R}_{+}\right)$and for every $N \in N$

$$
\phi \varphi(s)-\sum_{i=0}^{N} \frac{(\phi \varphi)^{(1)}(0)}{1 T} s^{1}=\frac{1}{N T} \int_{0}^{0}(\phi \varphi)^{(N+1)}(t)(s-t)^{N} d t
$$

Hence from (3) follow the assertion (2) witt $c_{1}(\varphi)=\frac{1}{2} \frac{(\phi \varphi)^{(1)}(0)}{11}$ $(1-0,1 \ldots \ldots N), C_{0}(\varphi)=\frac{1}{2}(\phi \varphi)(0)=\frac{1}{2}|S| \varphi(0)$ and the continuity of the operation $\left.D\left(R^{m}\right) \ni \varphi \rightarrow F_{\text {半 }} \varphi \in D^{[-1}\right]\left(R^{1}\right)$ 。

Definition 1. Let P be a linear differential operator of finite order M with sooth coefficients defined on R^{m}. We say that P is F-invariant if there exists on ordinary fifferential operator L defined on $\bar{R}_{+}^{-}=F\left(R^{(n)}\right)$ such that

$$
P(f \circ F)=L f \circ f \quad \text { for } f \in C^{M}\left(\bar{R}_{4}\right)
$$

In this paper we shall consider the operator

$$
P_{r}=\sum_{V=0}^{r} a_{v}\left(\Delta_{m}\right)^{v}, \quad\left(\Delta_{m}\right)^{0}=I d \text { in } D^{\prime}\left(R^{m}\right), \quad a_{r}=2
$$

with constant coefficients av*
Theorem 1. The operator P_{r} of order $2 r$ is F-invarient. Mora precisely

$$
\begin{equation*}
P_{r}(f \circ F)=\left(L_{r} f\right) \circ F \quad \text { for } f \in C^{2 r}\left(\bar{R}_{+}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& L_{r}=\sum_{v=0}^{r} a_{v} L^{v} \cdot L^{0} \text {. Id in } D^{\prime}\left(R^{1}\right) \\
& L=2 m \frac{d}{d s}+4 \varepsilon \frac{d^{2}}{d s^{2}}
\end{aligned}
$$

Moreover for every function $\varphi \in \mathrm{C}_{0}^{(}\left(\mathrm{R}^{m}\right)$ wa have

$$
\begin{equation*}
F_{*}\left(\left(P_{r}\right)^{t r_{\varphi}}\right)(B)=\left(L_{r}\right)^{t r}\left(F_{\text {最 }} \varphi\right)(a) \text { for } \quad \geqslant 0 \tag{5}
\end{equation*}
$$

where $\left(P_{r}\right)^{t r}$ denote the formal transpose af the operator P_{P}

$$
\begin{equation*}
\left(L_{r}\right)^{t r}=\sum_{v=0}^{r} a_{v}\left(L^{\nu}\right)^{t r}=\sum_{\nu=0}^{r} a_{v}\left(L^{t r}\right)^{v} \cdot L^{t r}=2(4-m) \frac{d}{d s}+4 s \frac{d^{2}}{d s^{2}} \tag{6}
\end{equation*}
$$

Proof. We restrict ourselves to the proof of (5) because the other assertions ere very easy to verify. Take $\left.f \in c_{o}^{\text {an }} R^{m}\right)$ and $f \in C_{0}^{2 r}\left(\bar{R}_{t}\right)$. Then from Lemma 1 wo get

$$
\begin{aligned}
& \int_{0} f(s) F_{*}\left(\left(P_{r}\right)^{t r_{\varphi}} \varphi\right)(s) d s=\int_{R^{m}}(f \circ F)(x)\left(P_{r}\right)^{t r^{m} \varphi(x) d x=} \\
& \int_{\pi^{m}} P_{r}(f \circ F)(x) \varphi(x) d x, \\
& \int_{0}^{\infty} f(s)\left(L_{r}\right)^{t r}\left(F_{*} \varphi\right)(s) d s=\int_{0}^{\infty}\left(L_{r} f\right)(s)\left(F_{\text {糔 }} \varphi\right)(s) d s= \\
& =\int_{R^{m}}^{m}\left(L_{r} f \circ F\right)(x) \varphi(x) d x .
\end{aligned}
$$

Using the invariance relation (4) wa deduce from (7) assertion (5).
In Section 2 we construct a fundamental solution of the homogeneous operator $P_{r}=\left(\Delta_{m}\right)^{r}\left(i . \theta_{0}=0\right.$ for $\left.=0.1 \ldots . ., r-1\right)$ and than in Section 3 we consider the general case.
2. FUNDAMENTAL SOLUTION OF THE OPERATOR $\left(\Delta_{\text {g }}\right)^{r}, r \geqslant 1$

Let $P=\left(\Delta_{m}\right)^{r}$. $r \geqslant 1$. Observe that in this case the corresponding onedimensional operators $L_{r}=L^{r}$ and $\left(L_{r}\right)^{t r}=\left(L^{r}\right)^{t r}=\left(L^{t r}\right)^{r}$ are homogeneous of order r. This means that for any real number λ

$$
L^{r}\left(s^{\lambda}\right)=p(\lambda) s^{\lambda-r} \cdot\left(L^{t r}\right)^{r}\left(s^{\lambda}\right)=w(\lambda) e^{\lambda-r}
$$

where

$$
\begin{aligned}
& p(\lambda)=4^{r} \lambda(\lambda-1) \ldots(\lambda-r+1)(\lambda+\bar{m})(\lambda+\bar{m}-1) \ldots(\lambda+\bar{m}-r+1) . \\
& w(\lambda)=4^{r} \lambda(\lambda-1) \ldots(\lambda-r+1)(\lambda-\bar{m})(\lambda-m-1) \ldots(\lambda-m-r+1) .
\end{aligned}
$$

The polynomials p, w are called characteristic polynomials of the ope－ raters L^{r} adn $\left(L^{t r}\right)^{r}$ respectively．If λ is a root of the polynomial w of multiplicity k ，then $=\hat{j}_{+}+r-1$ is a root of p of the same multi－ plicity．

Let $x \in C_{0}^{\infty}(R), x=1$ in a neighbourhood of zero．Then there exist constants $c_{2}(\lambda)(v=1, \ldots .2 r)$ such that

Note that $\lambda=\overline{\text { m }}$ is a root of the polynomial w ．hence $r-\bar{m}-1$ is a root of p ．There are precisely two possibilities：
（i）［is a simple root of the polynomial w．
（iii）而 is a root of w of multiplicity 2 precisely． Define formally a functional $E^{h}(h-0.1)$ putting ${ }^{2}$ ）

$$
E^{h}[\beta]=P f \int_{0}^{\infty} s^{r-\bar{m}-1}(\ln s)^{h} \beta(s) d s \quad \text { for } \beta \in D^{[\bar{m}]}(R)
$$

Clasarly E^{h} is a distribution of order［ $\left.\bar{m}\right]$ with support in $[0,+\infty)$ ． We begin by considering the case（i）．In this case

$$
w\left(\lambda_{0}\right)=(\lambda-\bar{m}) v^{0}(\lambda)
$$

1）For $\alpha \geqslant 1$ we define

$$
\text { Pf } \int_{0}^{\infty} \frac{(\ln s)^{k}}{s^{\alpha}} \beta(s) d s=\lim _{\varepsilon \rightarrow 0}\left\{\int_{\varepsilon}^{\infty} \frac{(\ln s)^{k}}{s^{\alpha}} \beta(s) d s+\sum_{i=0}^{[\alpha]} \frac{\beta(1)(0)}{i 1} v_{i}^{\alpha, k}\right\}
$$

where

$$
\begin{aligned}
v_{i}^{a k}(s) & =\sum_{j=0}^{k}(-1)^{j} \frac{k!}{(k-j)!} \frac{s^{j-\alpha+1}}{(1-\alpha+1)^{j+1}}(\ln s)^{k-j} \text { for } 1<\alpha-1 \\
& =\frac{1}{k+1}(\ln s)^{k+1} \text { for } i=\alpha-1, \text { and integer }
\end{aligned}
$$

In $\alpha<1$ the symbol $P f$ in the definition of E^{h} can be neglected．
where

$$
\begin{equation*}
v^{0}(\bar{w})=4^{r} \bar{m}(\bar{m}-1) \ldots(\bar{m}-r+1)(-1)^{r-1}(r-1)!\nmid 0 \tag{9}
\end{equation*}
$$

He shall show that

$$
\begin{equation*}
L^{r} E^{0}\left[F_{*} \varphi\right]=-\frac{1}{2}\left|S_{m}\right| v^{a}(\bar{m}) \zeta(0) \text { for } \varphi \text { © } c_{0}\left(R^{\infty}\right) . \tag{10}
\end{equation*}
$$

Observe first that $L^{r}\left(s^{-\bar{m}+r-1}\right)=0$ for $s>0$. Thus the distribution E^{0} satisfies the equation

$$
\begin{gather*}
L^{r} E[\beta]=0 \text { for } \beta \in c_{0}^{[\bar{\omega}]+2 r}\left(R^{1}\right) \text { flat at zero up to order } \tag{11}\\
{[\bar{m}]+2 r}
\end{gather*}
$$

and therefore by Lemme 1 it verifies also the relation

$$
\begin{equation*}
L^{r} E\left[R_{N} \varphi\right]=0 \tag{12}
\end{equation*}
$$

for $\varphi \in C_{0}\left(R^{m}\right)$ and $N \in N$ sufficiently large.
Thus by Lemma 1^{1})

$$
\begin{equation*}
L^{r} E^{0}\left[F_{*} \varphi\right]=\sum_{i=0}^{N} C_{i}(\varphi) L^{r} E^{o}\left[s^{\bar{m}+1} \chi(\theta)\right] \tag{13}
\end{equation*}
$$

To compute this sum take $\lambda \geqslant \overline{\mathrm{m}}$ and observe that in view of (8) wa have

$$
\begin{aligned}
& L^{r} E^{a}\left[s^{\lambda} \alpha_{(s)}\right]=w(\lambda) P f \int_{0}^{\infty} s^{\lambda-\bar{m}-1} \gamma(s) d s+ \\
& +\sum_{v=1}^{2 r} c_{v}(\lambda) \int_{0}^{\infty} \chi^{(v)}(s) s^{\gamma-\bar{m}+v-1} d s .
\end{aligned}
$$

Integrating the last integral by parts (s-1)-times we get for suiteble constant $b(\lambda)$:

1) According to (5) ($\left.L^{r}\right)^{t r}\left(F_{, ~ f} f\right)$ is computed outaide zero.

Suppose $\lambda>\overline{\text { wi }}$. Then in the second integral integration by parte can be performed once again leading to

$$
\begin{align*}
& L^{r} E^{0}\left[s^{\lambda} x(s)\right]=w(\lambda) \int_{0}^{\infty} s^{\lambda-\bar{m}-1} x(s) d s-b(\lambda)(\lambda-\bar{m}) \int_{0}^{\infty} x(s) s^{\lambda-\bar{m}-1} d s \\
& =(w(\lambda)-b(\lambda)(\lambda-\bar{m})) \int_{0}^{\infty} s^{\lambda-\bar{m}-1} x(s) d s . \tag{15}
\end{align*}
$$

The left-hand side of (15) is independent of χ because E^{0} is a solution of (11). For the right-hand side to be independent of X the relation $w(\lambda)=b(\lambda)(\lambda-\bar{m})$ must hold. Then from (15) we get

$$
\begin{equation*}
L^{r_{E}}\left[s_{8} \lambda_{x}(s)\right]-0 \text { for } \lambda>\text { 画. } \tag{16}
\end{equation*}
$$

 fore (14) yields the following formula:

$$
\begin{equation*}
L^{r} E^{0}\left[8^{\bar{m}} x(8)\right]=-v^{0}(\bar{\square}) \tag{17}
\end{equation*}
$$

From Lemma 1. formulas (12). (16) and (17) we derive easily assertion (10)
Let us consider now the case (ii) when $\overline{\text { i }}$ is a double root of the polynomial w. In this case $\overline{\mathrm{W}}=\mathrm{j}$ where $\mathrm{j} \in \mathrm{N}_{0}, 0 \leqslant 1 \leqslant r-2, \quad w(\lambda)=$ - $(\lambda \bar{m})^{2} v^{1}(\lambda), v^{1}(\bar{\Phi}) \neq 0$ and $r=\bar{\omega}-1$ is a double root of p. Hence $L^{r}\left(s^{r-m}-1 / n s\right)=0$ for $s>0$ and consequently E^{1} satisfies equation (11) which together with Lemme 1 implies that E^{1} Batisfies also (12) and consequently

$$
\begin{equation*}
L^{r} E^{1}\left[F_{*} \varphi\right]=\sum_{i=0}^{N} c_{i}(\varphi) L^{r} E^{1}\left[s^{\bar{\eta}+i_{2}} x_{1}(s)\right] \tag{18}
\end{equation*}
$$

As in case (i) using (B) and integration by parts we obtain for every $\lambda \geqslant$ 需 the relation

$$
\begin{align*}
& L^{r} E^{2}\left[s^{\lambda} \chi(s)\right]=w(\lambda) P f \int_{0}^{\infty} s^{\lambda-\bar{m}-1} \chi(s) l n s d s+ \\
& +b_{1}(\lambda) P f \int_{0}^{\infty} s^{\lambda-\bar{m}} 1 n s X^{\prime}(s) d s+b_{2}(\lambda) P f \int_{0}^{\infty} s^{\lambda-m^{\prime}} \chi^{\prime}(s) d s \tag{19}
\end{align*}
$$

with some constents $b_{1}(\lambda), b_{2}(\lambda)_{a}$

Suppose $\lambda>\bar{m}$. Then in the last two summand the integration by parts can be performed once again leading to the formula

$$
\begin{align*}
& L^{r} E^{1}\left[s^{\lambda} \chi(s)\right]=\left(w(\lambda)-b_{1}(\lambda)(\lambda-\bar{m})\right) \int_{0}^{\infty} s^{\lambda-\bar{m}-1} \chi(s) \ln s d s+ \\
& -\left(b_{1}(\lambda)+b_{2}(\lambda)(\lambda-\bar{\omega})\right) \int_{0}^{\infty} x(s) s^{\lambda-\bar{m}-1} d e . \tag{20}
\end{align*}
$$

By the same argument as in case (1) the left-hand side of (20) is independent of X. which leads to the following relations:

$$
m(\lambda)-b_{1}(\lambda)(\lambda-\bar{m})=0, \quad b_{1}(\lambda)+b_{2}(\lambda)(\lambda-\bar{m})=0
$$

Consequently

$$
\begin{equation*}
L^{r} E^{1}\left[\theta_{x(s)}^{\lambda}\right]=0 \text { for } \lambda>\bar{i} \tag{21}
\end{equation*}
$$

and on the other hand

$$
m(\bar{\pi})=b_{1}(\bar{\pi})=0, \quad b_{2}(\bar{m})=-v^{2}(\bar{m}) \neq 0
$$

Hence in View of (19) we obtain ${ }^{1}$)

$$
L^{r} E^{1}\left[s^{\bar{m}} x(s)\right]=v^{1}\left(\overline{w^{2}}\right)
$$

and so by Lemma 1 and formulas (18) and (21) wo get

$$
\begin{equation*}
L^{r} E^{1}\left[F_{\#} \varphi\right]=c_{0}(\varphi) v^{2}(\bar{m})=\frac{1}{2}\left\{s_{m} \mid v^{2}(\bar{m}) \varphi(0)\right. \tag{22}
\end{equation*}
$$

where ${ }^{2)}$

$$
\begin{equation*}
v^{1}(\bar{m})=4^{r} \bar{m}(\bar{m}-1) \ldots(\bar{m}-j+1)(\bar{m}=j-1) \ldots(\bar{m}-r+1)(-1)^{r-1}(r-1)! \tag{23}
\end{equation*}
$$

We shall construct now a fundamental solution of the operator $P=\left(\Delta_{a}\right)^{r}$. To this end put

$$
u^{i}[\varphi]=b^{1} E^{1}\left[F_{i} P\right] \text { for } \varphi \in D\left(R^{m}\right) . \quad(i=0.1)
$$

1) Note that $\mathrm{r}^{\circ}{ }^{0}\left[{ }^{\bar{m}^{\bar{m}}} \chi(s)\right]=0$ in case (ii).
2) If $\overline{\underline{w}}=0$ then $v^{1}(\bar{m})=v^{1}(0)=4^{r}(-1)^{r-1}(r-1) 1$. if moreover r - 1 then $v^{2}(0)-4$.
where

$$
\begin{equation*}
b^{0}=\frac{-2}{\left|s_{n}\right| v^{0}\left(w^{m}\right)}, \quad b^{2}=\frac{2}{\left|s_{m}\right| v^{1}(\bar{m})} \tag{24}
\end{equation*}
$$

and v^{0}（百），$v^{2}(\bar{W})$ are given by（9）and（23）correspondingly．From the Last asaertion of Lama 1 it follows easily that $u^{1} \in 0\left(R^{m}\right)(1=0.1)$ and from（5），（10）and（22）we get for $P_{r}=\left(\Delta_{m}\right)^{r}, L_{r}=L^{r}$ ：

$$
\begin{aligned}
& \left(\Delta_{m}\right)^{r} u^{i}[\varphi]=P_{r} u^{i}[\varphi]=u^{i}\left[\left(P_{r}\right)^{t r} \varphi\right]=b^{i} E^{1}\left[F_{t}\left(P_{r}\right)^{t r}\right] \\
& =b^{1} E^{i}\left[\left(L_{r}\right)^{t r}\left(F_{*} \varphi\right)\right]=b^{i} L^{r} E^{i}\left[F_{\text {米 }} \varphi\right]=\delta[\varphi]
\end{aligned}
$$

for $\varphi \in D\left(R^{m}\right)$ ．
Observe further that

$$
\begin{aligned}
& E^{\circ}\left[F_{*} \varphi\right]=\int_{0}^{\infty} s^{r-m-1}\left(F_{*} \varphi\right)(s) d s-\frac{1}{2} \int_{0}^{\infty} s^{r-1}\left(\int_{S^{m}} \varphi(s \omega) d \omega\right) d s \\
& =\int_{0}^{\infty} \rho^{2 r-1}\left(\int_{S^{m}} \varphi(\rho \omega) d \omega\right) d \varphi=\int_{R^{m}} \frac{\varphi(x) d x}{|x|^{m-2 r}} \text { for } \varphi \in D\left(R^{m}\right)
\end{aligned}
$$

Analogously

$$
E^{1}\left[F_{\dot{*}} \varphi\right]=2 \int_{R^{m}} \frac{\varphi(x)}{|x|^{m-2 r}} \ln |x| d x \text { for } \varphi \in D\left(R^{\mathbb{D}}\right)
$$

Thus we have proved the following theorem：
Theorem 2．Let $m \geqslant 2$ ． $\bar{m}=\frac{m-2}{2}, r \in N$ ．Then a fundamental solution of the operator $\left(\Delta_{m}\right)^{r}$ is given by

$$
u^{0}[\varphi]=b^{0} \int_{R^{a}} \frac{\varphi(x)}{|x|^{m-2 r}} d x \text { for } \varphi \in D\left(R^{m}\right)
$$

if 两 $\dagger \mathrm{j}$ ： $\mathrm{j} \in \mathrm{N}_{0}, 0 \leqslant \mathrm{j} \leqslant \mathrm{r}-1$ ，and by

$$
u^{1}[\varphi]=2 b^{1} \int_{R^{m}} \frac{\varphi(x)}{|x|^{m-2 r}} \ln |x| d x \text { for } \varphi \in D\left(R^{m}\right)
$$

if－ $1 \cdot \mathrm{j} \in \mathrm{N}_{\mathrm{a}} 0 \leqslant \mathrm{j} \leqslant \mathrm{r}$－The constants b^{0} ．b^{1} are defined by（24）．
3. FUNDAMENTAL SOLUTION OF THE OPERATOR $P\left(\Delta_{\text {. }}\right.$)

Let P_{r} be an operator with constant coefficients a_{v} :

$$
\begin{equation*}
P_{r}=\sum_{\nu=0}^{r} a_{v}\left(\Delta_{m}\right)^{\nu} \cdot\left(\Delta_{m}\right)^{0}=I d \quad \text { in } D^{\prime}\left(R^{m}\right), a_{r}=1 \tag{25}
\end{equation*}
$$

Retain the notation L and L_{r} of Theorem 1 and denote by p_{h} the cheracteristic polynomial of the operator L^{h} s

$$
p_{h}(\alpha)=4^{h} \alpha(\alpha-1) \ldots(\alpha-h+1)(\alpha+\bar{m})(\alpha+\bar{n}-1) \ldots(\alpha+\bar{m}-h+1)
$$

$$
h=1 \ldots \ldots r
$$

Observe that P_{r} coincides with the polynomial p from Section 2 and that

$$
t_{0}=r-\bar{w}-1
$$

is a root of the polynomial P_{r}.
Frist we shall find a classical solution of the equation

$$
\begin{equation*}
L_{r} y=0 \text { in } R_{+}^{1} \tag{26}
\end{equation*}
$$

following a method of Frobenius [2] we look for a solution of (26) of the form 8

$$
\begin{equation*}
y(s, t)=\sum_{i=0}^{\infty} c_{i}(t) s^{t+1} \text { for } s>0 \tag{27}
\end{equation*}
$$

whare t is a paramerer. Let us substitute formally series (27) to Lpy and arrange it with respect to the powers of s:

$$
\sum_{v=0}^{r} a_{v} L^{v} y(s ; t)=\sum_{v=0}^{r} a_{v} L^{v}\left(\sum_{1=0}^{\infty} c_{1}(t) s^{t+1}\right)=
$$

$=\sum_{k=0}^{\infty} \sum_{j=0}^{\min (k, r)} a_{r-j} c_{k-j}(t)^{r-1_{B} t+k-j}$.
$=\sum_{k=0}^{\infty} e^{t+k-r}\left(\sum_{j=0}^{\sin (k, r)} e_{r-j} c_{k-j}(t) p_{r-j}(t+k-j)\right)$.

By equating to zero the expressions thus obtained we arrive at the following system of equations

$$
\begin{align*}
& c_{0}(t) p_{r}(t)=0 \tag{29}\\
& \sum_{j=0}^{m i n}(k, r)
\end{align*}
$$

Neglecting the equation (29) which for $t=t_{0}$ is satisfied by an arbitracy c_{0} we can write the system (30) in the following equivalent form:

$$
\begin{equation*}
\sum_{a x(0, k-r)}^{k} a_{r-k+i} c_{i}(t) p_{r-k+i}(t+i)=0, \quad k=1,2 \ldots \tag{31}
\end{equation*}
$$

Looking for a nan zero solution $c_{1}(t), c_{2}(t) \ldots$ of the system (31) we distinguish three cases. We begin with the simplest one.

Case 1. t_{0} is not an integer. In this case $P_{r}\left(t_{0}+k\right) \neq 0$ for $k=1,2, \ldots 0$ and we compute $c_{k}\left(t_{0}\right)$ from the $k-t h$ equation of the system (31) with t_{0} instead of t and $c_{0}(t)=1$. By the theorem of Frobenius the radius of convergence of the series $\sum_{i=0}^{\infty} c_{i}\left(t_{0}\right) s^{i}$ is $+\infty$ and the function

$$
y\left(s ; t_{0}\right)=\sum_{i=0}^{\infty} c_{i}\left(t_{0}\right) s^{t_{0}+i}
$$

satisfies equation (26). We define a distribution $E_{1} \in D^{\prime}\left(R^{1}\right)$ by putting ${ }^{1}$

$$
E_{1}[c c]=\sum_{i=0}^{\infty} c_{i}\left(t_{0}\right) e_{+}^{t_{0}+1}[\alpha] \text { for ac } c_{0}^{\infty}\left(R^{1}\right)
$$

Case 2. to is a negative integer. In this case all the roots of the characteristic polynomial P_{r} are simple and $P_{r}\left(t_{o}+j\right)=0$ when $j=\left|t_{o}\right| \cdot\left|t_{o}\right|+1 \ldots . .\left|t_{o}\right|+r-1$. Put

1) We apply here the notation used by Gel'fand Shilov [1] in which $\left.s_{4}^{t} \ln \right|_{+} ^{q}[0]$ denotes pf $\int_{0}^{\infty} s^{t} \ln q^{q} \operatorname{ccc}(s) d s$ and is meromorphic extension to the complex plane of the distribution (function) $\alpha \rightarrow \int_{0}^{\infty} s^{t} \ln q^{\alpha} \alpha(s) d s$ defined for Re $\mathrm{t}_{\mathrm{j}}>-1$.

$$
\left\{\begin{array}{l}
A=p_{r}^{\prime}(0) p_{r}^{\prime}(1) \ldots p_{r}^{\prime}(r-1) \tag{32}\\
c_{0}(t)=p_{r}\left(t-t_{0}\right) p_{r}\left(t-t_{0}+1\right) \ldots p_{r}\left(t-t t_{0}+r-1\right)
\end{array}\right.
$$

and observe that

$$
\begin{equation*}
\left.c_{0}^{(p)}(t)\right|_{t=t_{0}}=0 \text { for } v=0.1 \ldots r-1,\left.c_{0}^{(r)}(t)\right|_{t=t_{0}}=A \neq 0 \tag{33}
\end{equation*}
$$

We compute $c_{k}(t)$ from the $k-t h$ equation of the system (31) successively for $k=1,2 \ldots$. Denote by $y_{q}(s ; t), q=0,1 \ldots . r_{\text {. }}=1$ the series obtained from $\sum_{i=0}^{\infty} c_{i}(t) s^{t+i}$ by a formel differentiation $\frac{\partial^{q}}{\partial t^{q}}$ term by term. Following frobenius the radius of convergence of the series $\sum_{i=0}^{i} c_{i}^{(9)}\left(t_{0}\right) s^{i}$. $\theta=0.1, \ldots . r_{\text {is }}+\infty$ and for every $q=0.1 \ldots . ., r$ the series ${ }^{1=0}$

$$
y_{q}\left(s ; t_{0}\right)=\sum_{i=0}^{\infty} \sum_{v=0}^{q}\binom{q}{v} c_{i}^{(v)}\left(t_{0}\right)\left(i n^{q-v} s\right) s_{0}^{t_{0}+1}
$$

is a solution of equation (26). We define a distribution E_{2} by putting

$$
E_{2}[x]=\sum_{v=0}^{r}\left(\frac{r}{v}\right) \sum_{i=0}^{\infty} c_{i}^{(v)}\left(t_{0}\right) s_{+}^{t}{ }^{t+1} \ln ^{r-v_{s}}+[x] \text { for } \quad x \in c_{0}^{\infty}\left(R^{1}\right)
$$

Case 3. t_{0} is an integer, $0 \leqslant t_{0} \leqslant r-1$. In this case i_{0} is a double root and $t_{0}+1 \ldots . . t_{0}+\left(r-1-t_{0}\right)=r-1$ are simple roots of the characteristic polynomial P_{r} and $P_{r}\left(t_{0}+k\right) \neq 0$ if $k \geqslant r-\varepsilon_{0}$. Put

$$
\begin{align*}
& B=p_{r}^{\prime}\left(t_{0}+1\right) \ldots P_{r}^{\prime}(r-1) \quad \text { if } t_{0}<r-1, B=1 \quad \text { if } t_{0}=r-1 . \\
& c_{0}(t)=p_{r}(t+1) \ldots p_{r}\left(t-t_{0}+r-1\right) \quad 1 f \quad t_{0}<r-1 \tag{34}\\
& c_{0}(t)=1
\end{align*}
$$

It follows that

$$
\begin{array}{r}
B \neq 0, c_{0}^{(\eta)}\left(\tau_{0}\right)=0 \text { if } \nu<r-1-t_{0}, t_{0}<r-1 \quad \text { and } \tag{35}\\
c_{0}^{\left(r-1-t_{0}\right)}\left(t_{0}\right)=B_{1}
\end{array}
$$

Proceeding as in Case 2 we find $c_{k}(t)$ from the k-th equation of the sestem (3i) successively for $k=1,2 \ldots$. Denote by $y_{r-t_{0}}$ (sit) the series obtained from $\sum_{i=0}^{\infty} c_{i}(t) s^{t+1}$ by formal defferentiation $\frac{\hat{o}^{r-t_{0}}}{\partial r^{r-t}}$ term by term. Then

We define a distribution E_{3} putting

We shall show that for $\alpha=F^{1} \varphi$

$$
\begin{align*}
& L_{r} E_{1}[\alpha]=L^{r} E^{0}[\alpha] \tag{36}\\
& L_{r} E_{2}[\alpha]=A L^{r} E^{o}[\alpha] \tag{37}
\end{align*}
$$

$$
\begin{equation*}
L_{r} E_{3}[a]=\left(r-t_{0}\right) B L^{r} E^{1}[a] \tag{38}
\end{equation*}
$$

The proof will be based on the following Lemme.
Lemma 2. Let $\beta \in C_{0}^{2 r}\left(R^{1}\right)$. Put $\alpha(s)=s^{\bar{m}} \beta(s)$ for $s>0$ and suppose that $t>r-\infty-2$. Thus for all $k=1,2 \ldots$ we have

$$
\sum_{j=0}^{\min (k, r)} a_{r-j} c_{k-j}(r) L^{r-1_{s} t+k-j}[x]=0_{+}
$$

Proof. Define $K(\beta)$:

$$
K(\beta)=\sum_{j=0}^{\min (k, r)} a_{r-j} c_{k-j}(t) s_{+}^{t+k-j}\left[\left(L^{r-j}\right)^{t r}\left(\beta(s) s^{\bar{m}}\right)\right] .
$$

Using (6) we get for suitable constants $9, *=0.1, \ldots, 2 r-21$

$$
k(\beta)=\sum_{j=0}^{\min (k, r)} a_{r-j} c_{k-j}(t) \sum_{v=0}^{2 r-2 j} q_{\nu} \int_{0}^{\infty} s^{t+k+\bar{m}-r+o_{\beta}(v)}(s) d s
$$

because in view of the inequality $t+k+\bar{n}-r+\hat{y}\rangle-1$ valid for all $k=1,2, \ldots$ the symbol Pf can be omitted. Then in the integrals in the right-hand side integration by parts can be performed s times leading to the rebasion:

$$
\begin{equation*}
k(\beta)=Q(t) \int_{0}^{\infty} s^{t+k+\bar{\pi}-r} \beta(s) d s \tag{39}
\end{equation*}
$$

with an adequate function Q. Take $\beta=X$. We shall show that $K(X)$ is independent of the choice of χ equal to one in a neighbourhood of zero. In fact if $X_{1}, \mathscr{X}_{2} \in C_{0}^{\infty}\left(R^{1}\right)$ are two such functions and if $\tilde{x}(s)=$ $=\left(X_{1}(8)-X_{2}(8)\right) s^{\bar{m}}$ for $s>0$ then $\tilde{\alpha} \in C_{0}^{\infty}\left(R_{4}^{1}\right)$ and

$$
\begin{align*}
& K\left(x_{1}\right)-K\left(x_{2}\right)=K\left(x_{1}-x_{2}\right)=\sum_{j=0}^{m i n}(k, r) \\
& a_{r-j} c_{k-j}(t) \int_{0}^{\infty} L^{r-j}\left(s^{t+k-j}\right) \tilde{r}(s) d s \tag{40}\\
& =\int_{0}^{\infty}\left(\sum_{j=0}^{m i n}(k, r)\right. \\
& a_{r-j} c_{k-j}(t) p_{r-j}(t+k-j) s^{t+k-r} \tilde{r}(s) d s=0
\end{align*}
$$

In view of (30). In order that the right-hand side of (39) with, $\mathrm{j}=\mathrm{F}$ be independent of X the function Q must be equal to zero, hence $K(3)=0$.

We shall now prove (38). The proof of identities (36) and (37) 28 simpler and therefore omitted.

Take $\beta \in c^{2 r}\left(R^{1}\right), \alpha(s)=\beta(s) s^{\bar{m}}$ for $s>0$. In view of (40), (28) Lemma 2, (35) and foot-note 1 on $p .155$ we get successively

$$
\begin{aligned}
& L_{r} E_{3}[a]-\left.\sum_{i=0}^{r} a_{p} L^{\eta} \frac{\partial^{r-t} 0}{\partial t^{r-t}}\left(\sum_{i=0}^{\infty} c_{i}(t) s^{t+1}\right)\right|_{ \pm=t_{0}}[x] \\
& =\left.\frac{\partial^{r-t} 0}{\partial t^{r-t}} \sum_{k=0}^{\infty} \sum_{j=0}^{m 1 n(k, r)} a_{r-j} c_{k-j}(t) L^{r-j} s_{t}^{t+k-j}\right|_{t=t_{0}} \quad\left[r^{t}\right]
\end{aligned}
$$

Thus Lemma 1 implies (38) for $\left.\alpha=F_{*} \varphi . \quad\right\} \in C_{0}^{\infty}\left(R^{D}\right)$.
From (36), (37) and (10) we obtain

$$
L_{r} E_{1}\left[R_{*} \varphi\right]=-\frac{1}{2}\left|S_{w}\right| v^{0}(\bar{m}) \varphi(0)
$$

$$
\text { for } \varphi \in C_{0}^{\infty}\left(R^{m}\right)
$$

$$
L_{r} E_{2}\left[F_{*} \varphi\right]=-\frac{1}{2} A\left|S_{m}\right| v^{0}(\bar{m}) \varphi(0)
$$

with $v^{0}(\bar{\pi})$ defined by (9) and A given by (33). Analogous dy (38) and (22) leads to the formula

$$
L_{r} E_{3}\left[F_{*} \varphi\right]=\frac{1}{2}\left(r-\varepsilon_{0}\right) B\left|s_{m}\right| v^{1}(\bar{m}) \varphi(0)
$$

where $v^{1}(\bar{m})$ is given by (23) and B by (34), (35).
Put

$$
\begin{equation*}
b_{1}=\frac{-2}{\left|S_{m}\right| v^{0}(\bar{m})}, \quad b_{2}=\frac{-2}{A\left|S_{m}\right| v^{0}(\bar{\pi})}, \quad b_{3}=\frac{2}{\left(r-\tau_{0}\right) B\left|s_{m}\right| v^{1}(\bar{\pi})} \tag{41}
\end{equation*}
$$

and define:

$$
u_{1}[\varphi]=b_{i} E_{i}\left[F_{*} \varphi\right] \text { for } \varphi \in C_{0}^{\infty}\left(R^{m}\right), \quad i=1,2
$$

$$
\begin{aligned}
& =\left.\frac{\partial^{r-t_{0}}}{\partial t^{r-\tau_{0}}}\left(c_{0}(t) L^{r_{+}^{t}}\right)\right|_{t=t_{0}}[\alpha] \\
& =\sum_{v=0}^{r-t} 0\binom{r-t}{v}_{c_{0}^{(v)}(t)}^{\left.\frac{\partial^{r-t} 0^{-v}}{\partial t^{r-t} 0^{-v}} L^{r} s_{+}^{t}\right|_{t=t}[x], ~} \\
& =\left(r-\tau_{0}\right) B L r^{r} s_{+}^{t_{0}} I_{n} \theta_{+}[\alpha]+c_{0}^{\left(r-t_{0}\right)}\left(\tau_{0}\right) L^{r_{s} t_{+}}[a] \\
& =\left(r-\tau_{0}\right) B L L^{r} E^{2}[\alpha]+c_{0}^{\left(r-\tau_{0}\right)}\left(\tau_{0}\right) L^{r} E^{0}[\alpha] \\
& =\left(r-t_{0}\right) c_{0}^{\left(r-t_{0}^{-1}\right)}\left(t_{0}\right) L^{r} E^{1}[\alpha] .
\end{aligned}
$$

It follows from (5) that

$$
\begin{aligned}
& P_{r} u_{i}[\varphi]=u_{i}\left[\left(P_{r}\right)^{t r_{\varphi}}\right]=b_{1} E_{1}\left[F_{*}\left(P_{r}\right)^{t r_{i}}\right]= \\
& =b_{1} E_{i}\left[\left(L_{r}\right)^{t r_{F_{k}} \varphi}\right]=b_{1} L_{r} E_{1}\left[F_{*} \varphi\right]=\varphi(0)=\delta[\varphi](1=1,2,3) .
\end{aligned}
$$

This proves that in the case $i(1=1,2,3) \quad u_{i}$ is a fundamental solution of the operator P_{p}. We formulate this result in the form anelogons to theorem 2 stated for $\left(\Delta_{m}\right)^{r}$.

Theorem 3. Let $m \geqslant 2, \bar{m}=\frac{-m-2}{2}, r \in N, t_{0}=r-\bar{m}-1$ and P_{r} be the differential operator defined by (25). The fundamental solution of Pr Le given by different formulas depending on which of the three possible cases occurs: 1) t_{0} is not an integer: 2) t_{0} is a negative integer y 3) t_{0} is an integer $0 \leqslant t_{0} \leqslant r-1$. Denote by u_{i} the fundamental solion of P_{r} in the case $i(1=1,2,3)$. We have for $f \in C_{0}^{\infty}\left(R^{m}\right)$:

$$
\begin{aligned}
& \mu_{1}[\varphi]=b_{1} \sum_{i=0}^{\infty} c_{i}\left(t_{0}\right) \int_{R}^{\infty} \frac{\varphi(x)}{|x|^{m-2 r-2 i}} d x, \\
& u_{2}[\varphi]=b_{2} \sum_{v=0}^{r}\left(r_{v}^{r}\right) \sum_{i=0}^{\infty} c_{i}^{(v)}\left(t_{0}\right) 2^{r-v} \int_{R^{m}} \frac{(\ln |x|)^{r-v}}{|x|^{m-2 r-2 i}} \varphi(x) d x, \\
& u_{3}[\varphi]=b_{3} \sum_{v=0}^{r-\tau} \sum_{i=0}^{\infty}\binom{r-t_{0}}{v} c_{i}^{(v)}\left(t_{0}\right) 2^{r-t_{0}-v} \int_{R^{m}}^{\mid\left(\left.1 n\right|^{m-2 \cdot r-2 i}\right.}
\end{aligned}
$$

where b_{1}, b_{2}, b_{3} are constants defined by (41) with A, B given of (33) and (35). correspondingly. The coefficients c_{i} (i =1,2,...) are scouttions of the system (30) with $c_{0}=1$ in case 1 and c_{0} given by (32) in case 2 and by (34) in case 3.

Remark. The fundamental solutions given by Theorem 2 and 3 ara rotation invariant since they are expressible in terms of the operation F_{z} which is clearly rotation invariant.

REFERENCES

[1] Gel'fand I.M.. Shilov G.E.: Generalized functions, Academic Prese, New York, 1964 (English translation).
[2] Kamke \bar{E}_{i} : Hand-book on ordinary differential equations, Moscow (1962) (Russian translation).
[3] Szmydt Z.. Ziemian B. : Special solutions of the equations Pu $=\delta$ Pu $=0$ for invariant linear differential operators with polynomial coefficients. Journal of Differental Equations 38 (1980).
[4] Szmydt Z. Ziemian B.: Fundamental solutions for operators preserving a quadratic form. Annales Polonici Mathematici (in print).

Recenzent: Prof. dr hub. Tadeusz Dlotko
Wpzynezo do redakcji: 20.XI. 1983 r .

METODA KONSTRUKCJI NIEZMIENNICZYCH ROZWIAZAŃ PODSTAWOWYCH DLA P(Δ_{m})

Streszczenie
Praca zawiera metode konstrukcji rozwiazania fundamantalnego operatora $P(\Delta)$, gdzie Δ jest operatorem Laplace'a, zaś P wielomianem. Pierwszym krokiem jest zbudowanie razwięzania podstawowego w przypadku $P(x)=x^{n}$. a następnie, stosując metode Frobeniusa rozwijania w szereg. wykazuje eie istnienie rozwiazania w przypadku ogólnym.

卫e 3 м 10
В работе дается метод конструкпии фундментальпого решенил оператора $P(\Delta)$, где \triangle - оператор Лапласа а P - пропзвольнын многочден. Первыи маг закльчается в конструкпи репения для случая। $P(x)=x^{n}$. Обпий случа这 вспользует классически метод Фробениуса.

