SAFIA: MATEMATYKA-FIZYKA 2. 48

Nr kol. 853

by T. SWIATKOWSKI

QUASI-UNIFORM CONVERGENCE ON DENSE SETS

Summary. In this paper quasi-uniform sequences of real-valued functions on topological space X are considered. Sufficient conditions are formulated under which the quasi-uniform convergence on a dense subset of X implies the quasi-uniform convergence on X.

If is well known that if a sequence of functions f_n , real-valued and continuous on some topological space X, is uniformly convergent on a dense subset of X then it is uniformly convergent on whole space X (to a continuous function f). In the above assertion one cannot replace the uniformity of convergence by the quasi-uniformity [1].

Let, for example, $\{f_{2n}\}\$ be the sequence of cotinuous on <0,1> functions with limit-function equal to 0 in instional and to $\frac{1}{q}$ in rational x of the form $\frac{p}{q}$ (with minimal integer positive q). Put yet $f_{2n+1}(x)=0$ for $x \in <0,1>$ and $n=0,1,2,\ldots$. The sequence $\{f_n\}$ is then quasimulational y convergent on the set of irrational to zero (for every irrational x, $\{f_n(x)\}\$ converges to zero and subsequence $\{f_{2n+1}\}\$, as a constant, converges uniformly). On the other hand $\{f_n\}\$ does not converge quasimulational y on <0,1> because for rational numbers $x, \{f_n(x)\}\$ does not converge.

In the present example essential role played the fact that $\{f_n\}$ was not convergent and (what is not so easy to seen) that the subsequences $\{f_{2n}\}$ was not quasi-uniformly convergent on the set of irraional numbers. The aim of this paper is to prove that these two condition (convergence of $\{f_n\}$, and quasi-uniform convergence of its subsequences), which are not fulfill by the sequence in above example, are sufficient for the quasi-uniformity of convergence of a sequence, which converges quasi-uniformly on some dense set.

All functions in this paper will be real-vaued on topological space X.

Theorem 1. Let f_n be continuous on the topological space X, for $n = 1,2,3,\ldots$ and let $\{f_n(x)\}$ converge to f(x) for all $x \in X$. Let moreover $\{f_n\}$ converge quasi-uniformly on some dense subset Z of X. Then $\{f_n\}$ is quasi-uniformly convergent on X $(f_n(x) \rightarrow f(x) \text{ on } X \text{ and } x \in X)$

 $\bigwedge_{\varepsilon \ge 0} \bigwedge_{n} \bigvee_{p} \bigwedge_{x \in X} \bigvee_{1 \le j \le p} |f_{n+j}(x) - f(x)| \le \varepsilon).$

<u>Proof</u>. Let $\mathcal{E} = 5 \eta \ge 0$ and $n \in N$ be arbitrary. There exists a number p such that

$$\bigwedge_{x \in \mathbb{Z}} \bigvee_{1 \leq j \leq p} |f_{n+j}(x) - f(x)| < \gamma$$

Put

$$A_j = \{x \in Z: |f_{n+j}(x) - f(x)| < \gamma\}$$
 for $j = 1, 2, ..., p_n$

Let now $x_0 \in X$. Since $f_n(x_0) \to f(x_0)$ there exists n_0 (we may asume $n_0 > n$) such that for $m > n_0$ is $|f_m(x_0) - f(x_0)| < \gamma$. Because of quasi-uniformity of convergence of $\{f_n\}$ on Z there exists a number q such that

$$\bigwedge_{x \in \mathbb{Z}} \bigvee_{1 \leq i \leq q} |f_{n_0 + i}(x) - f(x)| \leq \eta$$

Put now

$$B_{i} = \{x \in Z: |f_{n_{0}+i}(x) - f(x)| < \gamma\}$$
 for $i = 1, 2, ..., q$.

It follows from density of $Z = \bigcup_{j=1}^{p} \bigcup_{i=1}^{q} A_{j} \cap B_{i}$ that x_{o} belongs to or is an accumulation point of one (or more) of sets $A_{j} \cap B_{i}$. Choose the j, i for which $x_{o} \in \overline{A_{j} \cap B_{i}}$. It follows from continuity of f_{n+j} and $f_{n_{o}+1}$ that there exists a neighbourhood U of x_{o} such that

$$|f_{n_0+i}(x) - f_{n_0+i}(x_0)| < \eta$$
 and $|f_{n+j}(x) - f_{n+j}(x_0)| < \eta$ for $x \in U$.

Let now $x_1 \in B_{\underline{H}} \cap A_{\underline{H}} \cap U \neq \phi$. Thus

$$|f_{n+j}(x_0) - f(x_0)| \le |f_{n+j}(x_0) - f_{n+j}(x_1)| + |f_{n+j}(x_1) - f(x_1)| + |f_{n+j}(x$$

+
$$|f(x_1) - f_{n_{+1}}(x_1)| + |f_{n_{+1}}(x_1) - f_{n_{+1}}(x_0)| +$$

+
$$|f_{n_{1}+1}(x_{0}) - f(x_{0})| \le 5\% = 8$$
.

Quasi-uniform convergence on dense sets

We have proved that for every $x_0 \in X$ there exists a number j=1,...,p such that $|f_{n+j}(x_0) - f(x_0)| \le \epsilon$. Then finaly

$$\bigwedge_{n} \bigwedge_{\xi > 0} \bigvee_{p} \bigwedge_{x \in X} \bigvee_{1 \leq j \leq p} |f_{n+j}(x) - f(x)| < \varepsilon ,$$

what means that the sequence $\{f_n\}$ is quasi-uniformly convergent on X. Definition [3]. The sequence $\{f_n\}$ of functions is said to be strong quasi-uniformly convergent to f on A iff every its subsequence $\{f_n\}$ converges quasi-uniformly to f (we well then write $f_n \xrightarrow{s \cdot q} f$)

<u>Theorem 2</u>. Let f and f_n (n = 1,2,...) be continuous on X and let $\{f_n\}$ converge strong quasi-unformly to f on some dense set $Z \subseteq X$. Then $\{f_n\}$ is strong quasi-uniformly convergent on X.

Proof. According to the theorem 1 it suffice to prove that $\{f_n(x)\}\$ converges to f(x) on X. Let then $x_o \in X$. We will prove that every subsequence $\{f_{n_k}(x_o)\}\$ of the sequence $\{f_n(x_o)\}\$ posses a subsequence converging to $f(x_o)$, from what will be follow that $\{f_n(x_o)\}\$ converges to $f(x_o)$. Let $\{f_{n_k}\}\$ be arbitrary subsequence of $\{f_n\}$, and put $g_k = f_{n_k}$. The sequence $\{g_k\}$, as a subsequence of $\{f_n\}\$ also converges strong quasiumiformly to f on Z. Thus for every $m \in N$ there exists p such that

$$\bigwedge_{x \in \mathbb{Z}} \bigvee_{1 \leq j \leq p} |f(x) - g_{m+j}(x)| < \frac{1}{m}$$

Put

$$A_{j}^{m} = \left\{ x \in Z_{2} \mid |g_{m+j}(x) - f(x)| \leq \frac{1}{m} \right\}.$$

For density of Z, x_0 is an accumulation point of the union of sets $\bigcup_{j=1}^{p} A_{j}^{m} = Z$ or belongs to Z. Then x_0 belongs to the closure \tilde{B} of one of this sets, say $B = A_{j_m}^{m}$. Because of continuity of g_{j_m+m} and f there exists a neighbourhood U of x_0 such that

$$|f(x) - f(x_0)| < \frac{1}{m}$$
 and $|g_{m+j_m}(x) - g_{m+j_m}(x_0)| < \frac{1}{m}$ for $x \in U$.

Let x, C U A B. Then

$$|g_{m+j_{m}}(x_{0}) - f(x_{0})| \leq |g_{m+j_{m}}(x_{0}) - g_{m+j_{m}}(x_{1})| + |g_{m+j_{m}}(x_{1}) - f(x_{1})| + |f(x_{1}) - f(x_{0})| < \frac{3}{m}.$$

We have obtain a sequence $\{n+j_m\}$ of integer positive numbers such that $n+j_m \rightarrow n$ and $g_{n+j_m}(x_n) \rightarrow f(x_n)$. Let now $\{k_1\}$ denote arbitrary increasing subsequence of $n+j_m$. Then the sequence $\{g_{k_1}\}$ is simultanously a subsequence of each $\{g_k\} = \{f_{n_k}\}$ and $\{g_{n+j_m}\}$. Thus we have prove that for every subsequence $\{f_{n_k}(x_n)\}$ of the sequence $\{f_n(x_n)\}$ there exists a subsequence $\{f_{n_k}(x_n)\}$ converging to $f(x_n)$. This finishes the proof.

<u>Theorem 3</u>. Let functions f_n be continuous on X and let $\{f_n\}$ converge strong quasi-uniformly on some danse subset Z of X to a function $f_1Z \rightarrow R$.

Then $\{f_n\}$ is (strong) quesi-uniformly convergent on X to a function F, obviously continuous, which restriction to Z is identical with f.

Proof. First we will show that for every x_0 and increasing sequences $\{n_k\}$ of indices the sequence $\{f_{n_k}(x_0)\}$ posses a convergent subsequence. Put for simplicity of denotations $g_k = f_{n_k}$. The sequence $\{g_k\}$ converges quasi-uniformly on Z, then there exists a number p_1 such that

$$\bigwedge_{x \in \mathbb{Z}} \bigvee_{1 \leq j \leq p_1} |g_j(x) - f(x)| < \frac{1}{2^1}$$

Put

$$A_{j}^{1} = \left\{ x \in \mathbb{Z}_{2} \mid \left[g_{j}(x) - f(x) \right] \leq \frac{1}{2^{1}} \right\} \quad \text{for} \quad j = 1, \dots, p_{2}.$$

For x_0 belongs to closure X of dense set $Z = \bigcup_{j=1}^{r_1} A_j^1$ there exists $j_1 \in \{1, \dots, p_1\}$ such that x_0 belongs to the closure of $A_{j_1}^1$. Put now $A_{j_1}^1 = A_j$ and $k_1 = j_1$.

Let us assume that we have define sets $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_1$ and numbers k_1, \cdots, k_1 such that x_0 belongs to closure of $A_1, A_1 \subseteq Z$ and

$$\bigwedge_{x \in A_j} |g_{kj}(x) - f(x)| \leq \frac{1}{2^j} \quad \text{for} \quad j = 1, \dots, l.$$

For quasi-uniformity of convergence of $\left\{g_k\right\}$ on $A_1 \subseteq Z$ there exists a number p_1 such that

$$\bigwedge_{x \in A_{1}} \bigvee_{1 \leq j \leq p_{1}} |g_{k_{1}+j}(x) - f(x)| \leq \frac{1}{2^{1+1}}.$$

Put

$$A_{j}^{l+1} = \left\{ x \in A_{l} : |g_{k_{1}+j}(x) - f(x)| \le \frac{1}{2^{l+1}} \right\} \text{ for } j = 1, \dots, p_{l}$$

and let A_{l+1} denote such one of A_j^{l+1} , say $A_{j_{l+1}}^{l+1}$, that x_0 belongs to its closure. Put yet $k_{l+1} = k_1 + j_{l+1}$.

In this way have defined, by induction process, two sequences: a) the sequence of sets A_1 such that $Z \supseteq A_1 \supseteq A_2 \supseteq \ldots$ and x_0 belongs to the closure of A_1 for every 1, b) the increasing sequence of indices $\{k_1\}$ such that for every 1

$$|g_{k_1}(x) - f(x)| \leq \frac{1}{2^{T}}$$
 for $x \in A_1$.

Thus for 1 = 1,2,... we have inequality

$$|g_{k_{1+1}}(x) - g_{k_{1}}(x)| \leq |g_{k_{1+1}}(x) - f(x)| + |f(x) - g_{k_{1}}(x)| \leq \frac{1}{2^{1-1}} \text{ for } x \in A_{1}.$$

Since functions $g_{\rm k}$ are continuous on X and ${\rm x}_{\rm o}$ belongs to the closure of ${\rm A}_{\rm l}$ we obtain the inequalities

 $|g_{k_{l+1}}(x_0) - g_{k_1}(x_0)| < \frac{1}{2^{l-1}}$ for l = 1, 2, ...,

from which follows convergence of $\{g_{k_1}(x_0)\}$ to some finite limit a. We have proved that every subsequence of $\{f_n(x_0)\}$ posses a convergent subsequence. It remains to prove that limits of such convergent subsequences are equal.

Let then a = lim $g_k(x_0)$, where $x_0 \in X$ and $\lfloor g_k \rfloor$ is a subsequence of $\{f_n\}$. Let furthermore $\varepsilon > 0$ be arbitrary. There exists a number ε such that

 $|g_k(x_0) - a| \leq \varepsilon$ for $k = m, m+1, \ldots$

Since $\{g_k\}$ is quasi-uniformly convergent on Z there exists a number q that $Z = \bigcup_{j=1}^{q} E_j$, where

$$E_{j} = \left\{ x \in Z_{1} \mid g_{m+j}(x) = f(x) \right\} \leq \epsilon$$

Functions g_{m+1},\ldots,g_{m+q} are continuous, hence there exists a neighborhood U of x, such that

$$|g_{m+1}(x) - g_{m+1}(x_0)| \le \varepsilon$$
 for $x \in U$ and $j = 1, 2, ..., q_0$

Let now $x \in Z \cap U$ and let j_x be such number that $x \in E_{j_x}$. Then

$$f(x) - a \le |f(x) - g_{m+j_{o}}(x)| + |g_{m+j_{o}}(x) - g_{m+j_{o}}(x_{o})| + |g_{m+j_{o}}(x_{o}) - a| \le 3\varepsilon,$$

what means that there exists $\lim_{x \to x_0} f(x) = a$, when x_0 is an accumulation $x \to x_0$ point of Z or $a = f(x_0)$ when $x_0 \in Z$. In both cases we obtain equality of limits of convergent sequences $\{f_n(x_0)\}$. We have then proved simultanously the convergence of sequences $\{f_n(x)\}$ for all $x \in X$, and existence of continuous extension F of function f from Z to whole X in this way that the extended function F fultills the following condition

 $\lim_{n\to\infty} f_n(x) = F(x) \quad \text{for } x \in X_*$

Using now or theorem 1 ($f_n(x)$ converges for every $x \in X$) or theorem 2 (for continuity of function F) we obtain quasi-uniformity of convergence of $\{f_n\}$ to F. Since this is true also for every subsequence of $\{f_n\}$ thus $\{f_n\}$ converges strong quasi-uniformly.

Remark. Theorem 2 is simultanously a corollary from theorem 3 and, on the other hand, a lemma for its. By some modifications of the proof of theorem 3 it was possible to omit the theorem 2. We did not that for the following cause.

One can, without essential exchanges in the proofs, obtain for nets of functions [2], [3] results similar as presented in theorem 1 and 2 for usualy sequences, but it is not so easy in the case of theorem 3 (the proof of convergence of $\{g_k(x_0)\}$ are typical for usualy sequences - by using criterion of summability of series). In connection with this is the following question:

Problem. Does theorem 3 remain valid by replacing in it the usualy sequences by nets?

REFERENCES

- Arzela C.: Intorno alla continuita della suma infinita di continue. Rend. dell'Acad. di Bologna (1883-1884).
- Bartle R.G.: On compactness in functional analysis. Trans. of Amer. Math. Soc. 79 (1955).
- [3] Świątkowski T.: Characterization of quasi-uniform convergence. Zeszyty Naukowe Politechniki Łódzkiej. s. Matematyka, zesz. 17 (w druku).

Recenzent: Prof. zw. dr hab. Zygaunt Zahorski

Wpłynęło do redakcji: 20.XII.1983 r.

QUASI-JEDNOSTAJNA ZBIEŻNOŚĆ NA GĘSTYCH ZBIORACH

Wyniki pracy zebrane są w poniższych twierdzeniach:

Twiardzenie 1. Niech ciąg $\{f_n\}$ funkcji ciągłych na X będzie zbiezny na X do funkcji ciągłej f. Jeżeli | ponadto $\{f_n\}$ jest zbieżny quasijednostajnie na pewnym zbiorze gęstym Z \subset X, to $\{f_n\}$ jest zbieżny quasi-jednostajnie na X.

Twierdzenie 3. Niech funkcje $\{f_n\}$ będą ciągłe na X. Jazeli ciąg $\{f_n\}$ jast silnie quasi-jednostajnie zbieżny (tzn. quasi-jednostajnie zbieżny jest każdy jego podciąg) na gęstym zbiorze $Z \subseteq X$, to jest on silnie quasi-jednostajnie zbieżny na X (do funkcji będącej ciągłym rozszerzeniem na X funkcji granicznej dla zbioru Z).

Problem. Czy twierdzenie 3 jest prawdziwe dla cięgów uogólnionych (Moore'a-Smithe)?

КВАЗИ-РАВНОМЕРНАЯ СХОДИМОСТЬ НА ПЛОТНЫХ МНОНЕСТВАХ

Резюме

В работе рассматриваются квазиравномерно сходяциеся последовательности непрерывных функций f:X — R, где I - топологическое пространство. Даются достаточные условия того, что из квазиравномерной сходимости на плотном подмножестве следует квазиравномерная сходимость на всём пространстве X.