ZESZYTY NAUKOWE POLITECHNIKI ŠLĄSKIEJ

Seria: MATEMATYKA-FIZYKA z.60

Er kol. 999

Stanisław 205

WPŁYW PODSTAWOWICH PARAMETRÓW TECHNOLOGICZNICH NA PRZEBIEG PROCESU ANODYZACJI GRAS

Streszczenie.W artykule tym przedstawiono w sposób syntetyczny wpływ podstawowych parametrów technologicznych na przebieg procesu anodyzacji GaAs.

1. WPŁYW ZDEFEKTOWANIA POWIERZCHNI UTLENIANEJ I MIESZANIA ROZIWORU WA PRZEBIEG PROCESU ANODYZACJI

Zauważono, że kolejne anodyzowanie tej samej powierzchni powoduje wydłużenie czasu pasywacji t_{pas.}. Na rys. 1 przedstawiono zależności napięcia od czasu trwania procesu anodyzacji. Z zależności tych wyznaczano czasy pasywacji i wycignięto wniosek, że proces anodyzacji powoduje defektowanie utlenianej powierzchni lub ujawnianie w objętości defektów strukturalnych (o ile są).

Rys. 1. Zależność napięcia od czasu trwania procesu anodyzacji: 1-t_{pas.}= 20 s, 2-t_{pas.}= 35 s (pierwsza i druga anodyzacja)

Fig. 1. Dependence of the voltage on the anodic oxidation process duration: 1-tpas. = 20 s, 2-tpas. = 35 s W celu zminimalizowania defektowania powierzchni zastosowano przegrodę mechaniczną między anodą i katodą [1, 2] : Zauważono wyraźny wpływ przegrody na stopień zdefektowania arsenku galu; szczególnie jest to widoczne przy brzegach anodyzowanej próbki.Brzegi próbki zachowują się podobnie jak defekty strukturalne na anodyzowanej powierzchni [1, 3] : Zastosowanie przegrody wyeliminowało wzrost czasu pasywacji (rys. 1). Uszkodzenia powierzchni anodyzowanej powoćują miejscowe przebicia tlenku. Następne procesy anodyzacji przeprowadzano wyłącznie z zestosowaniem przegrody mechanicznej. Nie badano wpływu keztałtu przegrody ani jej odległości od anody.

W celu zminimalizowania powstających podczas anodyzacji gradientów stężeń substancji wchodzących w skład elektrolitu stosowano mieszanie roztworu. Zapobiega ono również przyleganiu pęcherzyków powietrza lub innych gazów do anodyzowanej powierzchni.

Na rys. 2 przedstawiono zależności zmian napięcia od czasu trwania procesu anodyzacji. Z wykresów wynika, że mieszanie roztworu skraca czas pasywacji powierzchni i zwiększa szybkość narostu tlenku.

- Rys. 2.Zależności napięcia od czasu trwania procesu anodyzacji GaAs typu n: A- bez dodatkowego oświetlenia powierzchni, B- z dodatkowym oświetleniem
- Fig. 2.Dependecne of the voltage on the n-type GsAs anodic oxidation process: duration: A- without additional lighting of the surface, B- with additional lighting

2. WPEYW GESTOŚCI PRĄDU NA PRZEBIEG PROCESU ANODYZACJI

W zastosowanej metodzie anodyzacji można wyróżnić 3 etapy tworzenia się tlenku.Pierwszy etap, podczas którego następuje zarodkowanie tlenku i pasywacja powierzchni, powinien mieć istotny wpływ na własności międzyfazy tlenek-półprzewodnik [4, 5]. Zbadano dokładnie wpływ gęstości prądu anodyzacji na czas trwania tego etapu. Na rys. 3 przedstawiono zależności napięw. cia od czasu trwania procesu anodyzacji dla różnych gęstości prądu.

Rys. 3.Zależności napięcia od czasu trwania procesu anodyzacji dla różnych gęstości prądów: 1= 30 A/m^2 , 2= 10 A/m^2 , 3= 5 A/m^2 , 4=3 A/m^2 , 5= 2 A/m^2 , 6= 1 A/m^2

Fig. 3. Dependence of the voltage on the anodic oxidation process duration for different current densities: 1= 30 A/m^2 , 2= 10 A/m^2 , 3= 5 A/m^2 , 4= 3 A/m^2 , 5= 2 A/m^2 , 6= 1 A/m^2

Z zależności tych wyznaczono czasy pasywacji i przedstawiono na rys. 4. Znajomość czasów pasywacji pozwala na wyznaczenie krytycznej gęstości prądu (j_{kr.}), powyżej której możliwy jest wzrost tlenku.

Na rys. 5 przedstawiono zależności odwrotności czasu pasywacji od gęstości prądu. Przedłużenie tej prostej do przecięcia z osią X pozwala na wyznaczenie $j_{kr_{-}}$, w tym przypadku (1,420;5) A/a^2 .

W miarę zwiększania stosowanych gęstości prądu wzrasta napięcie pocz. U Na rys. 6 przedstawiono zależność napięcia początkowego od gęstości prądu. Gdy zachodzi konieczność otrzymania tlenków o precyzyjnie określonej grubości, należy ten fakt uwzględnić przy ustawianiu końcowego napięcia.U.

Na rys. 7 przedstawiono sależności grubości tlenku od stosowanegogęstości prądu przy ustalonym napięciu U_.

Rys. 7.Zależność grubości tlenku od gęstości prądu dla ustalonego napięcia 40 V, przewidywana grubość tlenków 88 nm Fig. 7.Dependence of oxide thickness on the current density for the fixed voltage 40 V predicted thickness of the oxides 88 nm

W tabeli I zestawiono najważniejsze parametry charakteryzujące rozpatryw wany problem. W tym przypadku widać, że przy stosowaniu gęstości prądu anodyzacji do 3 A/m^2 różnica między planowaną a otrzymaną grubością tlenku wynosi mniej niż 0,2%. Z chwilą stosowania większych gęstości prądu należy uwzględnić wartość napięcia początkowego U₀.

100				-
- 494.	o h	A 1	0	- T
- 1- 1	av	σ.	. 0.	- 44

$j_m (A/m^2)$	Ū _m (∀)	υ _ο (Ϋ)	d _{tp} (nm)	d _{to} (nm)	Błąd (%)
3	40	0,1	88	87,8	0,2
5	40	0,4	88	87,1	1,0
10	40	1,1	88	85,6	2,7
30	40	2,7	88	82,1	6,7
150	40	7,1	88	72,4	17,7

Ze zmianą gęstości prądu j_m zmienia się szybkość narostu tlenku $\ll V/s$. Na rys. 8 przedstawiono zależność szybkości narostu tlenku od stosowanej gęstości prądu. W rozpatrywanym zakresie \propto jest wprost proporcjonalny do j_m .

Na rys. 9 przedstawiono zmiany napięcia i gęstości prądu podczas całego procesu anodyzacji dla trzech różnych gęstości prądu.

Procesy anodyzacji arsenku galu przeprowadzane w szerokim zakresie gęstości prądu (1 * 150) A/m² przebiegały stabilnie (stała szybkość wzrostu napięcia i stabilny spadek prądu).Wyjątek stanowiły płytki z defektami strukturalnymi na anodyzowanej powierzchni.

Analogiczne parametry procesu anodyzacji dla krzemu zawiera tabela II."

ľa	be	1	a	I	I

j _m (A/m ²)	15	40	50	100	150
σ _ο (V)	13,3	24,6	37,6	71,0	84,0
d _{to} (nm)	78,0	83,0	90,0	78,0	90,0
	0,012	0,037	0,042	0,075	0,158
t _{pr.} (h)	3,0	1,0	0,9	0,4	0,5

Wpływ podstawowych parametrów technologicznych .4.

Rys. 9. Zmiany napięcia i gęstości prądu podczas anodyzacji GaAs dla różnych gęstości prądu (krzywe ciągłe- zmiany U_a, krzywe przerywane- zm. ja
Fig. 9. Changes in voltage and current density during GaAs anodic oxidation for different current densities (solid lines- changes in U_a, dotted lines- changes in j_a

3. WPŁYW KWASOWOŚCI ROZTWORU ANODYZACYJNEGO NA KRYTYCZNĄ GESTOŚĆ PRĄDU CZAS PASYWACJI I SZYBKOŚĆ NAROSTU TLENKU

Zbadano wpływ kwasowości roztworu na przebieg procesu anodyzacji. W tym celu przeprowadzono szereg anodyzacji powierzchni arsenku galu. Aby wyeliminować wpływ oświetlenia, stosowano GaAs typu p. W każdym procesie anodyzowano powierzchnię $3 \cdot 10^{-4}$ m². Zmieniano gęstość prądu w zakresie (1 ÷ 10) A/m². Ustalano kwasowość roztworu w granicach pH= (5,3 ÷ 9,5). Szeroki zakres stosowanych zmian parametrów pozwolił na optymalizację takich parametrów, jak: pH roztworu i gęstość prądu anodyzacji ze względu na stabilność procesu anodyzacji.

Na rys. 10 przedstawione zależności zmiany napięcia od czasu trwania procesu anodyzacji. Zależności te były wykreślane na rejestratorze (Y-t) w układzie do anodyzacji. Przedstawiono trzy rodziny charakterystyk dla gęstości prądu: 3 A/m^2 , 5 A/m^2 i 10 A/m^2 . Na szczególną uwagę zasługują zależności otrzymane przy gęstości prądu 5 A/m^2 . Mimo szerokiej zmiany kwasowości pH= 5,3 \div 8,3 krzywe te pokrywają się. Świadczy to o jednakowym czasie pasywacji i szybkości narostu tlenku. Można wyciągnąć wniosek, że gęstość prądu 5 A/m^2 zapewnia powtarzalność parametrów I etepu anodyzacji.

Na rys. 11 i 12 wykreślono zmiany czasu pasywacji i prędkości narostu tlenku w zależności od kwasowości roztworu anodyzacyjnego.

Ze zmlaną kwasowości roztworu zmienia się też krytyczna gęstość prądu (rys.13).Jak można było przewidywać, gęstość prądu krytycznego przyjmuje najmniejszą wartość przy pH= 7. W tym przypadku trawienie tlenku przez elektrolit jest znikome. Jednak takiego elektrolitu nie można stosować, gdyż jakiekolwiek minimalne zanieczyszczenia roztworu powodują nie dające się kontrolować zmiany pH. Należy sporządzić roztwór o możliwie dużej zdolności buforującej β [6]. W skład elektrolitu wchodzi m.in. słaby kwas (winowy lub cytrynowy). Aby sporządzić roztwór buforowy, należy dodać mocnej zasady, np. NH₄OH.

Zmieniając kwarowość roztworu, stwierdzono, że do pH = 6,5 roztwór posiada dużą zdolność buforującą. Stąd wniosek, że roztwór anodyzacyjny nie może przekroczyć pH = 6,5. W praktyce, aby zachować margines bezpieczeństwa, należy stosować kwasowość rzędu pH = (6,1,6,3). W tym miejscu nasuwa się pytanie, dlaczego nie stosować roztworu o kwasowości np. pH = 4. Otóż, ze wzrostem kwasowości lub zasadowości odczynu roztworu następuje zmniejszenie prędkości narostu tlenku, spowodowane procesem konkurencyjnym do purostu tlenku - trawieniem. Także kontakt utlenianej powierzchni arsenku galu z roztworem w warunkach braku prądu lub przepływu prądu o gęstości mniejszej niż krytyczna powoduje selektywne trawienie powierzchni arsenku galu.

NDEAN podstawowych parametrów technologicznych

- Rys. 12. Zmiany prędkości narostu tlenku w zależności od kwasowości roztworu dla różnych gęstości prądu (... 10 A/m², XXX 5 A/m², 444 3 A/m²)
- Fig. 12.Changes in the oxide accretion rate depending on the acidity of the solution for different current densities (... 10 A/m², XXX 5 A/m², 444 3 A/m²)

St. Los

Rys. 13.Zmiany gęstości prądu krytycznego w zależności od kwasowości roztworu fig. 13.Changes in the critical current density depending on the acidity of the solution

4. ROLA OŚWIETLENIA PODCZAS ANODYZACJI PÓŁPRZEWODNIKÓW TYPU M

W przypadku utleniania półprzewodników typu n należy stosować dodatkowe oświetlenie powierzchni anodyzowanej. Światło powoduje bipolarną generację dodatkowych nośników nadmiarowych, co przyspiesza przebieg reakcji elektrodowych na granicy półprzewodnik-elektrolit [7, 8, 9]. Na rys. 14 przedstawiono zmiany napięcia i gęstości prądu podczas anodyzacji arsenku galu typu n, < 111> c poziomie domieszkowania $N_d = 2,7\div3,3\cdot10^{22}m^{-3}$ bez oświetlenia i z zastosowaniem dodatkowego oświetlenia lampą typu TGL-11559 mocy 50 W.

W przypadku anodyzacji bez dodatkowego oświetlenia powierzchnia tlenku ma charakter mozaikowy. Można tu łatwo zauważyć przynajmniej trzy kolory: fioletowy, ciemnoniebieski i niebieski [10]. Świadczy to o dużej niejednoredności grubeści wytwerzenege w tych warunkach tlenku (tabela II).

Rys. 14.Zmiany napięcia (linie ciągłe) i gęstości prądu (linie przerywane) podczas anodyzacji bez oświetlenia (krzywe 1 i 1), z oświetleniem (krzywe 2 i 2)

Fig. 14. Changes in voltage (solid lines) and current density (dotted lines) during anodic oxidation without lighting (curves 1 and 1'), with lighting (curves 2 and 2')

Mozaikowy charakter tlenku może być także spowodowany niejednorodnością domieszkowania półprzewodnika [11].

Tabela II

Barwa		Grudosć nm	tlenku
Szara		22	
Brunatna		49	
Ciemofioletowa		79	
Jaskrawoniebieska		100	
Jasnoniebieska		130	
Jasnozielona		150	
26lta		170	
Zlota		180	
Czerwonozłota		190	0.1
Czerwonopurpurowa	1000 100	220	
Ciemonisbieska		240	
Zielona		290	
Różowa		520	and the states

Zależność barw interferencyjnych tlenków z GaAs od ich grubości wg [12] (tab. uzupełniona przez autora) Na powierzchni tlenku widoczne są ostre wąskie linie koloru niebieskiego, mogą to być defekty strukturalne na powierzchni półprzewodnika [7].Podczas anodyzacji z dodatkowym oświetleniem powierzchnia tlenku ma jednolitą barwę, co świadczy o jednakowej grubości tlenku.

Na rys. 15 przedstawiono zmiany napięcia od czasu trwania procesu anodyzacji. Zależności te charakteryzują początkowy etap anodyzacji w przypadku utleniania powierzchni GaAs typu n. Widzć tu wyraźny wpływ poziomu domieszkowania półprzewodnika i dodatkowego oświetlenia anodyzowanej powierzchni. Zbadano też przebieg procesu podczas całkowitego zaciemnienia komory do anodyzacji (krzywa A rys. 15).

Rys. 15.Zależności napięcia od czasu trwania anodyzacji: A-całkowite zaciemnienie komory do anodyzucji, B-przy oświetleniu dziennym, D-z zastosowaniem dodatkowego oświetlenia, krzywe A, B, D-półprzewodnik typu n, N_d = 3 · 10²⁴ m⁻³, krzywa C-półprzewodnik typu n, N_d = 9 · 10²³ m⁻³ bez dodatkowego oświetlenia Fig. 15.Dependence of the voltage on the anodic oxidation duration: A-complete blackout of the anodic oxidation chamber, B-in daylight, D-with the use of additional lighting, curves A, B, D-semiconductor

of the type n, $N_d = 3 \cdot 10^{22} \text{ m}^{-3}$, curve C-semiconductor of the type n, $N_d = 9 \cdot 10^{23} \text{ m}^{-3}$ without additional lighting

Początek przebiegu procesu przedstawia krzywa C (rys. 15). Pozostałe parametry anodyzacji były takie same jak w przypadku narostu tlenku z rys.14.

Należy jeszcze zwrócić uwagę na konieczność stosowania matówki w celu uzyskania światła rozproszonego dla jednorodnego oświetlenia próbki typu n"

5. PODSUMOWANIE

W artykule tym przedstawiono w sposób syntetyczny wpływ niektórych parametrów technologicznych na przebieg procesu anodyzacji.

- Potwierdzono konieczność stosowania przegrody między anodą i katodą w celu ograniczenia zjawiska defektowania utlenianej powierzchni. Dodatkową zaleta stosowania przegrody jest powtarzalność czasu pasywacji. Na fakt ten nie zwracano uwagi w zacytowanych pracach.
- Stwierdzono konieczność mieszania roztworu anodyzacyjnego i przedstawione skutki jego braku. Szybkości mieszania nie można jednoznacznie określić. gdyż zależy ona od wielu czynników, np. temperatury procesu, rodzaju roztworu, kształtu komory do anodyzacji i konstrukcji uchwytu do mocowania próbek.
- Zbadano dokładnie wpływ stosowanej gęstości prądu na czas trwania procesu. krytyczną gęstość prądu j_{kr.} i czas pasywacji t_{pas.} . Wyznaczono najkorzystniejsze gestości prądu dla GaAs około 5 A/m .
- Szczegółowo zbadano wpływ gęstości prądu anodyzacji na wielkość napięcia początkowego Un [13] . W literaturze problem ten był pomijany. Mogło to prowadzić do licznych błędów, np. mylnego określenia przyrostu tlenku na jeden wolt przyrostu napięcia anodyzacji lub otrzymania tlenku o grubości znacznie odbiegającej od zaplanowanej.
- Dokładnie zbadano rolę kwasowości roztworu w przebiegu procesu anodyzacji. Wyznaczono najkorzystniejszy przedział kwasowości roztworu AGW pH=6.1=6.3. Stwierdzono, że roztwór AGW powoduje selektywne trawienie powierzchni Gals przy braku przepływu prądu lub gdy wartość jego jest mniejsza niż j_{kr.}:
- Uzupełniono tabelę kolorów tlenków z GaAs pozwalającą na wstępną ocenę grubości i jednorodności otrzymanego tlenku.
- Zbadano wpływ dodatkowego oświetlenia anodyzowanej powierzchni w przypadku utleniania półprzewodników typu n.

Przestrzegając powyższych uwag, otrzymywano tlenki o jednorodnych i soczystych barwach, o grubościach 20-520 nm dla GaAs. Maksymalna możliwa do otrzymania w tym procesie grubość tlenku wynosi 800 nm dla GaAs.

LIPERATURA

[1] Spitzer S.M. i in.: J. Electrochem. Soc., Vol. 122, No 3, 1975, pp.397-~402.

[2] Ishii T. i in.: J. Electrochem. Soc., Vol. 124, No 11, 1977, pp. 1784-1794 [3] Harvey W.W.:J. Electrochem. Soc., Vol. 114, No 5, 1967, pp.472-478. [4] Croset M. 1 in.: J. Electrochem. Soc., Vol. 126, No 9, 1979, pp.1543-154

Wpływ podstawowych parametrów technologicznych ...

[5] Szpak S.:J. Electrochem. Soc., Vol. 124, No 1, 1977, pp.107-112.
[6] Libuś W. i in.:Elektrochemia, FWN, Warszawa 1975, 5S.272-276.
[7] Hasegawa H. i in.:J. Electrochem., Soc., Vol. 123, No 5, 1976, pp.713--723.
[8] Wolkenberg A.:Phys. Stat. Sol. (a), Vol. 50, 1978, pp.249-256.
[9] Faktor M.M. i in.:J. Electochem. Soc., Vol. 125, No 4, 1978, pp.621-629.
[10] Łoś St.:Praca doktorska, Politechnika Wrocławska, 1935, (nie publik³)
[11] Samochwałow M.K. i in.:Mikroelektronika, t. 7, wyp. 6, 1978, ss.562-563.
[12] Matsushita K. i in.:J. Electrochem. Soc., Vol. 126, No 7, 1979, pp.1268--1272.
[13] Łoś St.:Metody wytwarzania tlenków naturalnych z GaAs, Zeszyty Naukowe Politechniki Śląskiej, s. Mat.-Fiz. z. 60, Gliwice 1939.

Recenzent: Prof. dr hab. Sławomir Kończak

ВЛИЯНИЕ ГЛАВНЫХ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ НА ТЕЧЕНИЕ ПРОДЕССА АНОДИРОВАНИЯ GeAs

Резюме

В этой статье представлено синтетическое влияние главных технологических параметров на течение процесса анодирования Gaas.

INPLUENCE OF BASIC TECHNOLOGICAL PARAMETERS ON GAAS ANODIC OXIDATION PROCESS

Summary

In this paper the influence of basic technological parameters on GaAs anodic oxidation process has been presented in a synthetic way.