Jerzy SKRZYPCZYia

A NOTE ON NONLINEAR VOLTERRA INTEGRAL EQUATIONS OVER LOCALLY COMPACT ABELI AN GROUPS

Abstract:A nonlinear II-kind integral equation of the Valterra type in the form

$$
x(t)=z(t)+\int_{[e, t]} k(t, s, x(s)) / d(d s)
$$

is studied where $t \in P, a$ subsemigroup of some locally compact abelian group G, which is assumed to be linearly complete-ordered. The integral is a Haar integral over some order-bounded closed interval [e,t]. A solution of the equation is defined to be continuous in some group interval topology. Two theorems are proved which give conditions such that a unique local solution exists.

1. INTRODUCTION

The mathematical formulation of many problems in the technical, physical,biological, and system sciences leads to continuous or discrete integral equations. In particular, such equations arise frequently in the theory of continuous and discrete dynamical systems.

The general outline of use of integral causal operators in dynamical systems analysis with time beeing an element of a locally compact Abelian group is very well known [6-7,9-10,16,18-19].In recent years, the theory and applications of abstract integral equation have become quite general by employing the algebraic methods and methods of functional analysis[5,9,12-13, 16, 18-21].

2. DEFINITIONS AND PRELIMINARTES

Let symbols C and ∂ denate ordinary inclusion between sets , and they do not exclude the possibility of equality (the symbols \subseteq and \supseteq are used as well). We denote by A ' the absolute complement of the set A, AnB the intersection of sets A and B, Aul the union of sets A and B.

The symbol R^{2} is reserved for the set of all real numbers, k for the eret of all complex numbers, z^{1} for the set of all integers. The complex and real n-dimensional spaces for $n=2,3, \ldots$ are denoted K^{n} and R^{n} respectively. The subepace of all rest nonnegative numaers is denoted R_{+}^{1}

Let G be a separable locally compact Abelian group, with the multiplicative group operation and let PcG be a closed semigroup of pasitive Haar measure $\mu(P)>0$.Elements of a group we denote small letters $t, 5, T, g, h, \ldots \ldots$ Let μ denote Haar measure on G and b be the neutral element of G.

For $a \operatorname{fixed} a \in G$,the mappings $x \rightarrow>a x$ and $x \rightarrow x a$ of G onto itself are called left and right translation by the element a, respectively. The mapping $x->x^{-1}$ of G onto itself is called inversion.

Let A and B be subsets of a group G. The symbol $A B$ denotes the set \{ab:a $\in A, b \in B\}$, and A^{-1} denotes $\left\{a^{-1}: a \in A^{\prime}\right.$, We write aB for fa\}B and Ba for $B\{a\}$.

Let M be any set which contains more than one element and a relation < between certain pairs of elements belonging to M. A relation < linearly orders a set M iff the following conditions are fulfilled:
(A1) I\& $x<y$ and $y<z$, then $x<z$;
(A2) $1 f x<y$ then it is false that $y<x$;
(A3) If x xy then $x<y$ or $y<x$;
for every elements $x, y, z \in M$.
If a set $M=G$ is an Abelian group, we say that a group structure and a linear ordering structure accord with each other if the following additive condition is satisfieds
(A4) If $z \in G$ and $x<y$ then $x z<y z$ for every $x, y \in G$.
A linearly ordered set M with an corresponding Abelian group structure will be called a Iinearly ordered Abelian group $[1,6,12,14,20]$.

Let M be any set which contains more than one element and a relatian \leq between certain pairs of elements belonging to M. A relation \leq orders a set M iff the fallowing conditions are fulfilled:
(B1) $1 f x \leq y$ and $y \leq z$ then $x \leq z$;
(日2) $x \leq x$;
(83) If $x \leq y$ and $y \leq x$ then $x=y$;
for every $x, y, z \in M$.
If a set $M=G$ is an Abelian group, we say that a group etructure and an ordering structure accerd with each other, if the following additive candition is sistisfied:
(BA) If $z \in G$ and $x \leq y$ then $x z \leq y z$ for ever'y $x, y \in G$.
An crdered set M with an corresponding Abelian group structure will be cailed en ordsred Abelian group $[1, B, 12,14,20]$.

If < is a linear ordering and $x<y$, then it is customary to say that x precedes y or x is less than y (relative to the order \langle) and that y follows x and y is greater than x.If Mis linearly ordered relative to the order < we can define an ordering in the follawing way

$$
x \leq y \text { iff } x<y \text { or } x=y
$$

Let G be an ordered group, relative to an order \leq. It follows from (B4) that if esx and esy then $y \leq x y$. We denate by 0 the set of $x \in G$ such that $\{x$ esx $>i s$ closed with respect to group operations. Since if $x \leq y$ is equivalent to esyx ${ }^{-1}$ it follows that $y x^{-1} \in$. Conversely me have the following result.

LEMMA [3]. If PCG, ea D and QDCQ, then the relation $y x^{-1}$ e tefines an order relation corresponding with the group structure in E.This relation defines a linear order relation iff Gna ${ }^{-1}$ fuezthis rolation completely orders Giff additionally Qua ${ }^{-1}=G$.

In an ordered group, it is usual to say that an element x, fuch that esx is positive (relatively negative if x ses. Let notice that e is the only representative which is positive and negative. Any element such that e<x is called stricly positive (stricly negative if x <e).

We say that a subset ACG is order-bounded in G if it has an upper and lower bounds in G.A set G is order-complete (relative to the ordering \rangle iff each non-void subset of G wheifh hien m upper bound has a supremum.

For $a, b \in G$ such that $a<b$, let $] a, b[=[x \in G a<x<b$, Let the family of all sets la,bl be an open basis for a topology on Ginote that G has no greatest or least element, so that G=u[]a,b[sa<b\}. Then Gis a normal To group.Further we use the notation $[a, b I=\{x \in G: a \leq x \leq b$ for clased order-bounded interval sets.

We assume further that the relation $y x^{-1} \in P(x, y$ (G) is the order relation corresponding with the group structure and additionally $P P^{-1}=\{e\}$ and $P \mathcal{P}^{-1}=6$. In consequence we consider G as a linearly ordered set with a topology having sets of the form $] a, \infty[=\{x$ E Gix $>\mathrm{a}\}$, and $] \infty$, $\mathrm{a}[=$ fx G: $x<a\}, a \in$ G, as an open basis. Since in an ordered group there aren"t the least and greatest element an alternative topology can be the system of all open intervals $] a, b[$, where $a<b$. We assume that a group G is order-complete relative to $<$.

Let $\tilde{P}=P^{-1}$ and A be a subset of G. The symbol F_{A} will demote the function defined on G such that

$$
\xi_{A}(g)= \begin{cases}1 & \text { for } g \in A \\ 0 & \text { for } g \in A^{*}\end{cases}
$$

For simplicity wepll write further $\xi_{\tilde{P}_{\tau}}=\xi_{\tau}$. If f is a measurable map on G then the truncation of f at $\tau, f \tau$ is given by

$$
f_{\tau}(g)= \begin{cases}f(g) & \text { for } g \in \tilde{P}_{\tau}, \\ 0 & \text { for } g \in \tilde{P}_{\tau}\end{cases}
$$

 depends on the semigroup P.However, we usually deal with a fixed P and so the distinction is unnecessary-

It is assumed that the reader is familiar with the classical theory of nonlinear Volterra integral equations.Following this fact a convenjent notation for integration of Volterra type kernels is proposed

$$
\int_{[e, t]}[.] \mu(d s)=\int_{e}^{t}[-\} \mu(d s)
$$

More details about ordered groups may be found in papers [1-4,9-10, 12-14,20].

3. EXISTENCE THEOREM

The purpose of this paper is to study the lacal existence and uniqueness of solution of a nonlinear Valterra type integral equation of the II-kind

$$
\begin{equation*}
x(t)=z(t)+\int_{e}^{t} k(t, s, x(s)) \mu\left(d s^{2}\right) \quad t \geq e \tag{1}
\end{equation*}
$$

He will further assume that the following hypotheses are true.
(C1) $z(t), t \in P$ is the known n-dimensional real-valued continuous function ;
(C2) the nonlinear n-dimensional real-valued function $k(t, 5, x)$ is measurable with respect to all variables for (t,s) $\Delta_{, ~} x$ e R^{n}, $\Delta:=((t, s): t, s \in P, s \leq t\}$, and continuous with respect to x for all $(t, s) \in \Delta$, and $f(t, 5, x)=0$ for any $s>t ;$
(C3) for each order-bounded element $h \in P$ and for any bounded subset $B \subset R^{n}$ there exists a real-valued nonnegative, measurable function m(t,s) suct , that

$$
\begin{equation*}
|k(t, s, x)| \leq m(t, s) \tag{2}
\end{equation*}
$$

for each $e \leq s \leq t \leq h, x \in B$ and

$$
\begin{equation*}
\operatorname{sip}_{\operatorname{estsh}} \int_{e}^{t} \operatorname{si}(t, s) \mu(d s)<\infty \tag{3}
\end{equation*}
$$

(C4) for each compact subset JCP, each bounded subset BeRn and each $t_{0} \in P$

$$
\prod_{t \rightarrow t_{0}} \int_{J}\left|k(t, s, x(s))-k\left(t_{0}, s, x(s)\right)\right| \mu(d s)=0
$$

for each function $x \in C(J ; B)$;
$C(5)$ for each compact subset ICP, each contimuous function x e $C\left(I ; R^{n}\right)$ and each $t_{0}=P$

$$
\lim _{t \rightarrow t_{0}} \int_{I}\left[k(t, s, x(s))-k\left(t_{0}, s, x(s)\right)\right) \mu(d s)=0
$$

$C(6)$ for each order-buunded element $h \in P$ and each bounded subset BdR ${ }^{n}$ there is a real-valued nonnegative , measurable function $\hat{k}(t, s)$ such that the fallowing inequality

$$
\begin{equation*}
|k(t, s, x)-k(t, s, y)| \leq \tilde{k}(t, s)|x-y| \tag{4}
\end{equation*}
$$

is satisfied for each $e \leq \leq \leq t \leq h$ and $x, y \in B$.For each $t \in[e, h]$ the function $k(t,.) \in L^{1}\left(P_{i}\right)$ and additionally

$$
\begin{equation*}
\lim _{\tau \rightarrow e} \int_{t}^{t \tau} \tilde{k}(t \tau, s) \mu(d s)=0 \tag{5}
\end{equation*}
$$

C(7). for each arbitrary: order-bounded element h se and bounded subset $B \subset R^{n}$

$$
\lim _{\tau \rightarrow e} \int_{t}^{t \tau}|k(t \tau, s, x(s))| \mu(d s)=0
$$

where convergence is uniform with respect to (t, x) for $e \leq t \leqslant h$ and $x \in C\left(P_{t} ; B\right)$.
Dne can prove, that there is an element $r \in P$ and a real-valued continuous function $x(t)$, which is the solution of the equation (1) for each $t \in[e, T]$.

Now suppose that we change variables $t \rightarrow$ tha, where a is an arbitrary element and e<a<r.Formally we have

$$
\begin{align*}
x(t \alpha) & =z(t a)+\int_{e}^{t \alpha} k(\tilde{t} \alpha, s, x(s)) \mu(d s)= \\
& =z(t a)+\int_{e}^{\tau} k(t a, s, x(s)) \mu(d s)+\int_{\sim}^{2} k(t a, s, x(s)) \mu(d s) \tag{6}
\end{align*}
$$

Let be $s=\hat{\delta} \hat{t}$. Since Haar measure is invariant we can transform the relation (6) into the fore

Suppose that $y(\dot{t})=x(t a)$. By virtue of (7) it follows from the equation (6) that

$$
\begin{equation*}
y(\tilde{t})=z(\tilde{t} \alpha)+\int_{e}^{t} k(t a, s \alpha, y(s)) \mu(d s)+\int_{e}^{a} k(t a, s, x(s)) \mu(d s) \tag{B}
\end{equation*}
$$

Now let $x(t)$ be a continuous solution of the equation (1) for te [e, $]$, then it is elear that for each o 0 [e, τ the function $y(t)=x$ (ta) is the solution of the following integral equation

$$
\begin{equation*}
y(t)=\tilde{f}(t)+\int_{e}^{t} k(t a, s a, y(s)) \mu(d s) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{f}(t)=f(t a)+\int_{e}^{a} k(t a, s, x(s)) \mu(d s) \tag{10}
\end{equation*}
$$

for each te $\left[e, \mathrm{ra}^{-1}\right]$.
Conversly, if $y(t)$ solves the equation (9) for te $[e, \delta$, and one defines $x(t a)=y(t)$, then $x(t)$ solves the equation (1) for te [e, af].

Now we consider the local existence and uniqueness of solutians of equation (1).

THEOREM 1.Suppose that hypotheses (C1)-(C4) and (C7) are satisfied, then there eximt an element $\beta \in P$ and a continuous function x (t) such that $x(t)$ satisfies the equation (1) on the interval [e, β].

Proof. This result will be proved by applying the Schauder-Tychonoff fixed paint theorem.

For arbitrary order-bounded element $h \in P$ define a set

$$
A=\left\{x \in R^{n}:|x-z(t)| \leq 1 \text { for each } t \in[e, h]\right\}
$$

Define the closed interval $J=[e, h]$. Since the group G is order-complete relative to \leqslant then every closed order-bounded subset $\quad f \quad G \quad i s$ compact. With J and t_{0} ae it follows from hypothesis (C4) that there is a possibility to pick β in the interval $\quad<\beta<h$ so "small" that

$$
\begin{equation*}
\int_{J}|k(t, s, x(s))| \mu(d s)<1 \tag{11}
\end{equation*}
$$

for each te $[e, \beta]$ and $x \in C(J ; A)$.
Let B be the Banach space of continuous functions $C\left([E, \beta] ; R^{n}\right)$ and let B_{0} be its closed, bounded and convex subset defined as follows

$$
B_{0}=\left\{x \in B: \sup _{e \leq t \leq \beta}|x(t)-z(t)| \leq 1\right\}
$$

Let T denote the following integral operator defined on B_{0}

$$
\begin{equation*}
(T x)(t)=z(t)+\int_{e}^{t} k(t, s, x(s)) \mu(d s) \quad t \geq e \tag{12}
\end{equation*}
$$

With each $x(,) \in B_{0}$ and $t \in[e, \beta]$ it follows from (C3) and (11) that

$$
\begin{equation*}
|(T x)(t)-z(t)| \leq \int_{e}^{t}|k(t, s, x(s))| \mu(d s) \leq 1 \tag{13}
\end{equation*}
$$

Therefore TB is a uniformly bounded set of functions.
Let $x(.) \in E_{0}$ and let t, th $\in[e, \beta]$. Then

$$
|(T x)(t h)-(T x)(t)| \leq|z(t h)-z(t)|+
$$

$$
\begin{equation*}
+\int_{e}^{h}|k(t h, s t, x(s t))| \mu(d s)+\int_{e}^{\beta}|k(t h, s, x(s))-k(t, s, x(s))| \mu(d s) \tag{14}
\end{equation*}
$$

Since z is continuous the first term in (14) tends to zera as h \rightarrow. The second term tends to zero uniformly since regularity of Haar measure and hypothesis (C7) . Hypothesis (C4) with $J=[e, \beta]$ and tee implies that the last component of (14) tends to zero uniformly for $\times(.) \in B_{0}$. This proves that $T B_{0} \subset B_{0}$ and that $T B_{0}$ is equicontinuous at each paint $t \in[e, \beta]$.

In order to show that T is a continuous function let $\left\langle x_{n}\right.$) be any sequence in H_{0} convergent to x. Let t be any fixed element in the interval $[e, \beta] . B y$ the continuity of k with respect to x

$$
k\left(t, 5, x_{n}(s)\right) \rightarrow k(t, 5, x(5))
$$

for alls s [e,t]. Moreover, the hypothesis (C3) implies that

$$
\left|k\left(t, s, x_{n}(s)\right)\right| \text { and }|k(t, 5, x(5))| \leq m(t, s)
$$

for each essst, $n=1,2,3, \ldots$ where $n(t, \ldots) \in L^{\prime}(e, t)$. Therefore by the Lebesgue dominated convergence theorem we can write

$$
\int^{t} k\left(t, s, x_{n}(s)\right) \mu(d s) \rightarrow \int_{e}^{t} k(t, s, x(s)) \mu(d s)
$$

Thus $T x_{n} \rightarrow T x$ as $n \rightarrow \infty$ for each $t \in[e, \beta]$.

Any equicontinuaug sequence of functions which converges at each point of closed order-bounded interval also converges uniformly an this interval.Since the interval $[e, \beta]$ is compact and the group G is Hausdorff the conditions of Arzela's theorem are fulfilled [5] It follows that T is a continuous map of B_{0} into itself.

By the Schauder-Tychonoff fixed point theorem [5,12-13] the function Thas a fixed point $\times(.) \in B_{0}$. This fixed point is a continuous solution of the equation (1) on the interval $[巴, \beta] . B^{-}$

If a function k satisfies a Lipschitz condition with respect to x, then the local solution of the equation (1) is unique. In this case it ig possible to weaken hypothesis (C4).

THEOREM 2. Suppose the integral equation (1) satisfies hypotheses (C1)-(C3), (C5) and (C6:-(C7). Let the function m(t,s) defined in (C3) has the additional property as follows

$$
\begin{equation*}
\int_{e}^{t} \operatorname{m}(t, s) \mu(d s) \rightarrow 0 \quad \text { as } t \rightarrow e_{+} \tag{15}
\end{equation*}
$$

Then there exists an order-bounded element $\beta \in P$ such that the equation (1) has a unique continuous solution on the interval [e, β].

Proof. The result will be proved by applying the principle of Banach contraction map. Let $h \in P$ be any arbitrary element. Define the closed interval $J=[e, h]$.

Let $\quad(t, s)$ be given by (Cs) and $\tilde{k}(t, s)$ be given by (C6).Pick β in the interval e< $\beta<h$ and so "small" that

$$
\begin{equation*}
\int_{e}^{t} \tilde{k}(t, s) \mu(d s) \leq 1 / 2 \quad \text { and } \quad \int_{e}^{t} m(t, 5) \mu(d s) \leq 1 \tag{16}
\end{equation*}
$$

for each $t \in[e, \beta]$ Let B, B_{0} and T are the same as in theorem 1. We notice that B is the Banach space with the norm of uniform convergence

$$
\left|x(.)\left\|_{C\left([e, \beta] ; R^{n}\right)}=\right\| x(-)\right|_{C([e, \beta])}=\sup _{e \leq t \leq \beta}|x(t)|
$$

Given $x($.$) in B_{0}$ and t in $[e, \beta]$ one has

$$
|(T x)(t)-z(t)| \leq \int_{e}^{t}|k(t, s, x(s))| \mu(d s) \leq \int_{e}^{t} m(t, s) \mu(d s) \leq 1
$$

Therefore, $(T x)(t):[e, \beta] \rightarrow B_{0}$.Let $x(.) \in 日_{0} I f t$ and th are in $[e, \beta]$ then

$$
\begin{aligned}
& |(T x)(t h)-(T x)(t)| \leq|z(t h)-z(t)|+ \\
& +\int_{e}^{h}|k(t h, s t, x(s t))| \mu(d s)+\int_{1}^{\beta}|k(t h, s, x(s))-k(t, s, x(s))| \mu(d s)
\end{aligned}
$$

The first two terms af (17) tend to zero fallowing the same arguments as in the proof of thearem i.It fallows from (CS) with J=[e, 3] that the third term tends to zera as $h->$. Therefore $T x \in B_{0}$ whenever $x \in B_{0}$.

Given x_{1} and x_{2} in B_{D} and $t \in[e, \beta]$

$$
\begin{aligned}
\left|\left(T x_{1}\right)(t)-\left(T x_{2}\right)(t)\right| & \leq \int_{e}^{t}\left|k\left(t, s, x_{1}(s)\right)-k\left(t, s, x_{2}(s)\right)\right| \mu(d s) \leq \\
& \leq \int_{e}^{t} \tilde{k}(t, s)\left|x_{1}(s)-x_{2}(s)\right| \mu(d s) \leq
\end{aligned}
$$

$$
\begin{equation*}
\leq \| x_{1}-x_{2} c([e, \beta]) \int_{e}^{t} \tilde{k}(t, s) \mu(d s) \tag{18}
\end{equation*}
$$

By the first of inequalities (16) it follows that
$\left\|T x_{4}-T x_{2}\right\|_{C([e, \beta])} \leq(1 / 2) x_{2}-x_{2} \|_{C([e, \beta])}$. Therefore T is a contraction mapping on B_{0}. By Banach fixed point theorem the map T has a unique fixed paint $x(t)$.a

REFERENCES

[1] Barut A.D., Raczka R., Theory of Group Representation and Applications, PWN, Warszawa 1977.
[2] Bourbaki N., Algebre: Groupes et Corps Ordonnes, Modules Sur les Anneaux Principaux, Elements de Mathematique., Herman Paris 1964:
[3] Bourbaki N., Theorie des Ensembles, Eiements de Mathematique, Herman Paris 1970.
[4] Cristescu R., Dredered Vector Spaces and Linear Operators, Ed. Academiei Bucuresti Romania, Abacus Press Tunbridge Welis, Kent England 1976.
[5] Dunford I.,Schwartz J.T., Linear Operators, Part I, Interscience Publ. Nem York, London 1958.
[6] Enve E., On Necessary and Sufficient Canditions for Regulation of Linear Systems Dver Rings : SIAM J.Control and Optimization, Vol. 20 (1982), pp. 155-160.

67] Emve E., Khargonekar P.P., A Note on Dynamic Output Feedback For Linear Systems Dver Rings, IEEE Automatic Control, Vol.Ac-29 (1984) ppp.8日-90,
[8] Engelking R., Topologia ogolna, PWN Warszawa 1975.
[9] Falb P.L.,Freedman M. I4, A Generalized Transform Theory For Causal Operators, SIAM J.Control, Vol. 7 (1969),pp.452-471.
[10] Freedman M.I.,Falb P.L.,Zames G., A Hilbert Space Stability Theory over Lacally Compact Abelian Groups , SLAM J.Contral, Val.7, (1969), pp. 479-495.
[11] Halmos P.R., Measure Theory, Springer-Verlag, New York-HeidelbergBerlin 1974.
[12] Hewitt E.,Ross K.A., Abstract Harmonic Analysis',Part 1,Springer Verlag, Berlin-Göttingen-Heidelberg 1963,
[13] Kantorovitsch L. W., Akilov G.P., Functional Analysis, Izd.Nauka, Moskwa 1977.
[14] Kelley J.L., General Topology Springer-Verlag, New York-Heidelberg -Berlin 1975.
[15] Miller R.K., Nonlinear Volterra Integrel Equations, W. A.Benjamin, Inc., Menlo Park , California 1971.
[16] Padgett W.J., Almost Surely Continuous Solutions of a Nonlinear Stochastic Integral Equations, Math.Systems Theory, Vol.10(1976), pp. 69-75.
[17] Reiter H., Classical Harmonic Analysis and Locally Compact Groups Cl arendon Press, Ox ford 1968.
[18] Skrzypczyk J., Frequency Methods in Hilbert Space Theory of Dynamic Systems, Proc. of the VIII ${ }^{\text {th }}$ Int. Conf. on Nonlinear Dscillations, Prague 1978, Acad. Publ. House of the Czech. Acad. of Science, Prague 1979, PP. 659-664.
$[19]$ Skrzypczyk J. , Statistical Linearization of Nonlinear Dynamic Systems Described by Integral Equations Over Locally Compact Abelian Groups , Conf.Nonlinear and Random Vibrations, Oberwolfach September 1986.
[20] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Wolters-Naordhoff Sci. Publ. Ltd., Groningen 1967°
[21] Коротков В. Б.. Интегральные операторы. Изд. Наука. Сибирское Отдепение. Новосн6ирех 1993.

Receazeat: Prof. dr hab. inz. Bogdan Skalmieraki

UWAGI O ROWNANIACH CAEKOWYCH TYPU VOLTERRY OKRESLONYCH NA LOKALNIE ZWARTYCH GRUPACH ABELOWYCH

Streszczenie

W pracy analizowane sa równania calkowe Il-go rodzaju typu Volterry postaci

$$
x(t)=z(t)+\int_{[e, t]} k(t, s, x(s)) \mu(d s)
$$

gdzie $t \in P, P$ jest palgrupa bedaca podzbiorem pewnej lokalnie zwartej grupy abelowej G, o Ltorej zakladamy, ze jest calkowicie liniowo uporzadkowana. Calka jest rozumiana w sensie miary Haar'a i calkowanie przebiega po zbiorze, ktbry iert domknietym, ograniczonym, ze wzgledu na wprowadzony w grupie porzadek liniowy, przedzialem. Zakiadamy, ze rozwiazanie jest funkcja ciagia w sensie topologii przedzialowej zgodnej z istniejaca w G struktura grupowaz. Udowodniono dwa twierdzenia dotyczace lokalnego istnienia i jednoznacznosci rozwi azań rozpatrywanych rownań calkowych.

Некотопые замечания о интеграпных уравнениях тнла Вольтерры определенных на локально бикомлактной абелевои группе

Резиме. В работе представлен анапнз ннтегральных уравненкй II-го рода типа Вольтерры предстаяленныя в виде

$$
x(t)=z(t)+\int_{[e, t]} k(t, s, x(s)) \mu(d s)
$$

где $t \in P, P$ является подпопугруппой некоторой покально Gиконпактной абепевой группы G, хоторой мы предлагдем что она комплетно пинеяно упорядочена. Интеграл мы понимаем в смысле меры Хаара и интегрирование ведется по мноместве, хоторое явпяется замхнутым, ограниченным , в смыспе вяеденного в группе линейного порядкв, интервалом. В дальнейием мы предлагаем что решение является непрерывноА функцей в смысле введенной в группе интервалвной топологии. Мы докдзали две теоремы о существованни и единственности локапьных решении рассматриваемых мнтегральных уравненя音.

