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PREFACE

Although almost a hundred years passed from the famous
Erlangen Program of Felix Klien, it is still not being used in
full. The main reason of this situation lies, among others, in
the fact that it was not presented precisely enough. The original
definition of geometry, as formulated by F. Klein (see C6J), may
be stated as follows: Geometry of the set M with respect to
a group of transformations 8 (M) of this set or, simply,

8 (M)-geometry is the set af all properties of geometric figures
which do not change under the transformations of the group 8 (M.
Such properties are called invariants or geometric properties.
When the necessity appeared to study geometries based on the sets
of transformations not necessarily forming groups, the spaces
with a group of transformations were called Klein spaces. The
present paper deals only with Klein spaces. Precise definition of
concepts of geometric spaces which do not allow groups of
transformations and studying their properties is much more
difficult. Formulation of Klein®s ideas in a precise way forms

the base for more general studies.

R. Sulanke defines Klein space (see C213, C223) as a
transitive, left Lie group of transformations, i.e. the triplet
M, G, F), where M is a manifold, G - Lie group and f a transitive
left operation of the group G on M, whereas G-geometry is some
category connected with Lie group G. It seems that the definition
of geomety as a category coincides with original Klein"s
definition. Invariants, Klein"s definition describes are simply

morphisms of a proper category.

£. J. Jasihska and M. Kucharzewski defined G-geometry in C4l
as an abstract object (M, G, f>. M. Kucharzewski in his further
papers (see 1123, C133) derived some ideas from papers by
R. Sulanke (cf. £213, 1223) and defined Klein space, geometric
object and geometry as in 8§, Section 1 of present paper.
Definitions of these concepts, however, arouse some reservations.

The main deficiency of the definition of geometric object is that



there is no correlation between the fibre of object and the fibre
of space, as well as between transformation formulas of object
and space. Moreover, it follows from the definition of geometry
as a category of geometric objects that, in some cases, hon-

equivalent Klein spaces have the same geometry.

The aim of this paper is to present in a precise way some
concepts of the theory of Klein spaces and to.discuss some of
their properties. Section 1 is a kind of introduction. Presented
there are some basic notions, necessary to clear further part of
the papeq.

Section 11 contains new definitions of geometric object and
Klein geometry. Undefined till now, the notion of equivalence of
two Klein geometries is also introduced, as well as the necessary

and sufficient condition for two geometries to be equivalent.

Section 11l is devoted to methods of construction of
geometric objects. Two new objects are defined there, i.e. the
object of transformations and the disjoint union of objects. It
is proved that the objects of transformations and factor objects
as well as G-products and disjoint unions of geometric objects of
a given Klein space are geometric objects of this space. There
are also presented some necessary and sufficient conditions for
the objects of category of abstract objects supperted by the same

group to be geometric objects of a proper Klein space.

Results obtained are illustrated in Section IV on the
examples of elementary Klein spaces such as vector space, unitary
space, affine and Euclidean space. With the use of the notion of
the object of transformations we formulate the definitions of

tensors and tensor densities in a new approach.

A reference is always given when we quote a result of some
other author. In other cases the results presented are obtained

by the author or they are generally well known facts.

B. Szoclrfskl

Katowice, 1989.



Section |

INTRODUCTION

The aim of this section is to define basic notions and to
introduce basic concepts, as well as presenting theorems, used in

further parts of this paper.

SI, Operation of the group on the set

Let X be an arbitrary nonempty set, G - abstract group and

let F be the operation
F: X*G -»X <1.1)
Definition 1 1. Any mapping <l. 1) satisfying the following
conditions:

A A FFx 0,), 92)=F<x, 92-9,), <.
X«x gi, ga£G

A F e) = x <. 3)
XEX

where e is a neutral element of G, and g)"g2 denotes the group
multiplication, will be called a (left) operation of the group C
on the set X.

The above condition are called respectively a translation

(or fundamental) condition and identity condition. If the

effectlvlty condition is fulfilled, i.e.

A(<AF<x,g)=x)=»g=e) <1.4)
g«G x€EX

then the operation F is called effective, and the group G
operates on X effectively.

It is well known that the set of all bijective mappings of
the nonempty set X onto itself with the operation of
superposition forms a group. Such a group will be denoted by 9 Q)
and called a group of all transformations of the set X

Definition 1.2. Homomorphism

@ G —*9<X> <1.5)



will be called a representation of the abstract group G in the

group of all transformations of the set X

Translation equation (1.2) and the identity condition (1.3)

imply <cf. E123) that the transformation
Ffl: X-»X, F,(xX) = F(x, 9) 1.6)

is a bijection of the set X onto itself. Hence, by (1.2), the

operation (1.1) defines a representation

P:G -89, P(9) = Fa <1.7)
of this group in the group of all transformations of the set X
It is easily seen that the reverse is true: for a given

representation (1.5) we may define an operation of the group G on
the set X as follows:

FC, @) = (90, where tm= 9(9)- .8

Definition 1.3. Homomorphism (1.7) will be called a

representation of the group G in the group of all transformations
of the set X, defined or Induced by the operation (@. 1) of the
group G on the set X Transformation (. 1) given by the formula
(1-.8) will be called the operation of the group G on the set X
defined or induced by the representation (@.5) of this group in

the group of transformations ff(X).

As the immediate consequence of these definitions we may
state a necessary and sufficient condition for the operation of

the group on the set to be effective.

Corollary 1.1. The operation (1. 1) of thegroup G on the set
X is effective iff the representation (1.7) induced by this

operation is a monomorpnism.
How, we will define a transitive operation.

Definition 1.4. The operation of the group G on the set X
will be called transitive iff for every x,, x2eX there exists a

g«G such that
F&.,9 =x2 1.9

If the element g is unique, then the operation (1. 1) will be
called directly transitive. In such cases the group G operates on

X transitively (or directly transitively).



§. The category of abstract objects

Let us begin from the definitions of abstract object and
Klein space (cf. [133, p. 12 and 153, [123, C153).

Deflnltlon 2. 1. Any triplet

X, G, P> 2. 1)

consisting of an arbitrary nonempty set X, abstract group G and
the operation F of this group on X will be called an abstract
object. The set X will be called a fibre of this object, and its
elements the points (or particular objects> The operation F will
be called a transformation formula (or transformation law) of the
object, and the representation P of the group G in the
transformation group 9 (X) induced by the operation F - the

representation of the object Q. D.

Defini tion 2.2. If the operation F of the group G on the
fibre X is effective (transitive) then the abstract object (2.1)
is called effective (transitive). Effective objects are called
Klein spaces, whereas transitive - homogeneous spaces.

Example 2. 1. Let us consider an arbitrary group G and the

transformation
L: G*G —*G, L(x, Q) :-=g7°X 2.2)
(the left translation in the group G). It is easily seenthat L
is an effective and directly transitive operation of the group G
on the set of its elements. Thus, the triplet
G G L 2.3)
is the effective abstract object. Hence, it is an example of a
Klein space.
Example 2. 2. Let X be a topological space, and let G be the
group of all homeomorphisms of X. The transformation
F: X*X -»X, F(XIg) = gX)
is an effective operation of the group G on X. Therefore the

triplet (@. 1) is a Klein space. It is called a topological Klein

space.

Example 2.3. GL(n.K) will denote multiplicative group of

nonsingular square matrixes of n-th degree with elements of a



field K. The set of all pairs:
GA(n, K> = {"((aJ), [MJI}¥ <aJt>£K" * [A]]«CGL<n, K) }
with operation defined by the formula:
(@®>), B{) ° (Cal), [AfD) := ((b*+BJa*>, [BjAJ] )
(we use the Einstein®s summation convention), forms the group

called affine group of n-th order over the field K The

transformation
f K™GA(n, K) -> K",
@9
XD, (@™>, [A] ) = (@ + Ajx1>
is the effective and transitive operation of the affine group
GA(n, K) on the set Abstract object
K, GA@M E). P 2-5)
is called n-dimensional canonical affine Klein space over the
field K

Let us consider two abstract objects

c,, G, F.D (2.6)
X,, G2. Fj) @. 7N

and two transformations
F.<P>, Q.9

where \: X, —»X2, and ?: G, —*Gs is a homomorphism G, into G2.

Definition 2. 3. Any pair of transformations (2.8) satisfying

equi variance condi tion

X'EX, g,£\G, F2(y(x.), (@) 3=y (F.(x.9,))- -9

will be called an equivariant transformation of abstract object

(2.6) into abstract object (Q.7).

Whenever such a pair (2. 6) exists, the object 2. 6) is

equivariant with the object (2.7).

It is easy to verify (see [133, p. 18 and [93, [253) that
the class of all abstract objects, as well as theclass of all
Klein spaces with equivariant transformations asmorphisms and
with superposition of pairs of transformations (.8) as

composition form categories. These categories we will denote bv



OA and PK, respectively. They will be called the category of

abstract objects and the category of Klein spaces.
Now, let

*,, G, F,> <.10."
<X2,6, ) 2. 11)

be two abstract objects, and let
<, 1ida), y. X,-»X2 2. 12)

be the equivariant transformation. The class of all abstract
objects supported by the same group G, with equivariant
transformations of the form (.12) as the composition, form the
category as well. We will denote it by 0A<G) and call the
category of abstract objects supported by the group G

As the immediate corollary of the above definitions we may
note that the categories O0A(G>. and PK are the subcategories of
QA

In C133 <cf. also [43, C12)) geometric object and Klein

geometry are defined as follows:

Definltion 2. 4. Abstract object of category 0A<G), i.e.

object (2.1) supported by the same group as Klein space
™ G H <. 131

will be called a geometric object of Klein space . !3>. The
category OA<G) will be called Klein geometry of the group G or

G-geometry.

In the following we will define the notions of invariants
and comitants, very important for Klein geometries (cf. [133, p

21, also [4)))-

Definition 2.5. The transformation y. X,—-*X2 of the fibre X,
of object (2.10) into the fibre X2 of object @. 1) will be
called invariant transformation (or simply an invariant®) iff the
pair of transformations (.21) is a morphism of the category

OA(G), 1i.e. the condition

A A F2(.).9 = pE &, ) (2.1%)
X,cX, QEG

If 9 is surjection, the geometric object (2. 11> will be called a

comitant of the object (2. 10).



The fundamental problems for each Klein geometry are to
determine geometric objects and their invariants and comitants
and to classify the objects, 1i.e. to determine classes of
equivalent objects.

Since the classes of abstract objects, Klein spaces and
geometric objects cf a given Klein space form the categories, to
define equivalence of objects we have to use the notion of

isomorphism of respective categories (cf. [131, p. 21 and 1161).
Definition 2.6. Abstract objects (Klein spaces) are
abstractively equivalent iff there exists a pair of
transformations <2.8) being the isomorphism of the category OA
(category PK).
B. Zaporowski proved in C253 the following theorem.

Theorem 2. 1. Morphism (.8) of the object (.6) into object
(2.7) is an isomorphism of the category OA iff y is a bijection
and f is a group isomorphism.

As the immediate consequence of this theorem and definition
2.6 we get:

Corollary 2. 1. Abstract objects (Klein spaces) (2.6) and
(2.7) are abstractively equivalent iff there exist a bijection
y: X,—»X2 and isomorphism p: G,—*G2 such that the equivariance
condition (2.9) holds.

Definition 2. 7. Objects (2. 10) and (2- 11) of category O0A(G>
are geometrically equivalent iff there exists a pair of

transformations (2.12) being an isomorphism cf this category.
It is easily seen that the following corollary is true.

Corollary 2. 2. Objects (2.10) and (2.11) of category OA(G)
are geometrically equivalent iff there exists a bijection
y: X, >X2, being an invariant transformation, i.e. such that the
equivariance condition. "(2. ?4) holds true.

As a consequence of the properties of the category
isomorphism we get the following corollary.

Corollary 2. 3. The relations of abstract and geometrical
equivalence are equivalence relations, i.e. they are reflexive,

symmetric and transitive.



From the definitions 2.6 and 2.7 we infer that every two
objects < .10) and <2.11) supported by the same group that are
geometrically equivalent are abstractively equivalent. The
natural problem arises, whether the abstract equivalence implies
the geometrical equivalence of objects. The answer is negative,
as demonstrates the example presented in [163. In the same paper
there are given some necessary and sufficient conditions for two
abstractively equivalent objects of the category OA(G) to be

geometrically equivalent.

In the sequel we will call abstractively (geometrically)
equivalent objects simply equivalent, unless it may cause any
misunderstandings. In particular, the equivalence of two objects

supported by the same group means geometrical equivalence

§3. Subobiects and partial objects
Let us consider an arbitrary abstract object
X, G, B 30

and the subgroup 5=G. P denotes the restriction of operation F &
the set X*S. It is easily seen that P is an operation of the
group 5 on the set X. Therefore

& 2,P, F 1=F|xx§ <3-2)
is an abstract object (cf. [133, p- 36 and [43).

Definition 3.1. Abstract object (3.2) will be called a
subobject of the object (3. 1) supported by the subgroup 5.

As the immediate consequence we get

Corollary 3.1 Everysubobject of Klein space is a Klein

space.

Such a method of defining subobjects can be generalized. Let

5 be an arbitrary group and let
95 -*G G 3
be a homomorphism. The operation
P: X*5-»X, P(x, @) :=F(x, ¢Cg) )

is the operation of the group 5 on the setX (cf. [133, p. 37).



&, 3, P), P, g> := FOc, p(@> 4. 4>
Is an abstract object.

Definition 3.2. Abstract object (3.4) will be called induced
or determined by the object (@. 1) and homomorphism <3.31.

In the particular case, if p is an isomorphism, the
following corollary holds true.

Corollary 3. 2. Object (3.4) determined by the object (G. 1)
and isomorphism <3. 3) is abstractively equivalent with the object
<3.11. Moreover, (id,, 9 is an isomorphism (of the category OA)
of object (3.4; onto object (3.1).

As a consequence of definition 3.1 of subobject and

definition 3.2 of induced object we get the following corollary.

Corel ¢arv 3. 3. Object ™3 4) induced by object @. ) and
imbedding (3.3) of the subgroup C of the grouD G into G is a
subobject 1I7.2) of the object <3. I), determined by the subgroup
S.

Now. we will prove another corollary.

Corol larv 3. 4. The object induced by a Klein space (2. 13)
and a homomorphism <3.3" is a Klein space iff this homomorphism

is a aonomor phi sn.

Proof. On account of corollary 1 1, the representation f of
Klein space <. 13) is a monomorphism It is easily seen that

the representation ? of the object (M. 3, ?)
?20-9 =T, v9)
induced by Klein space (2. 13) satisfies the equality
?=
Since f is a monomorphism, ? is a monomorphism iff ? is a
nonomorpM sm. Hence, by the corollary 1.1 we get the thesis. 0

To introduce the notion of partial object we will start from

the definition of invariant subset (cf. 1131, p. 35, also C43).

Definition 3.3. A nonempty subset X, of the fibre X of



object (3.1) will be called invariant (or permissible) Iff

A A Fix. g)£X,,
y.-~ g«G

Definition 3. 4. A subset of the fibre of object G. 1)
defined by the formula:

= {F(X,,, 9): geO]

will ba called a transitive fibre of this object, determined by
X EX.

Obviously, every transitive abstract object (G. 1) has only
one transitive fibre equal to whole fibre X. Any invariant subset
X0 of the fibre of object (@. 1) is either a transitive fibre cr a

union of 3 family of transitive fibres of this object.

It is easy to check that for arbitrary invariant subset X.
of the fibre of object (3. 1) the restriction F, of the
transformation formula F of this object is an operation ofthe

group C on the set XO. Thus, the triplet
O&,, G. F.>, f=:=f "G <3"5)
is an abstract object.

Definition 3.5. Abstract object (3.5) will be called a
partial object of the object (3.1) determined by invariant subset
X..

The following simple corollary is aconsequence of the above

definition and the effectivity condition(1.4).

Corollary 3.5. If at least one partial object of object
(3.1) is effective, then (B. D) is effective.

The method of construction of partial object can be

generalized as well.
DefInition 3.6. The bijection
r.Y-—*Xot  X0cX (3.5)

of an arbitrary set Y onto subset X, of the fibre X of object
@B.1) will be called Invariant iff X, is an invariant subset of

this object.



It can be proved (cf. t133, p. 37) that the transformation
F.o Y*G —*Y, F, (¥,Q) := EGp). D )
is an operation of the group G on the set Y. Hence, the triplet
. G, F,>, F, <y, 0> = FCy ). D) G.nD
is an abstract object.
Definition 3. 7. Object @B.7> will be called determined (or
induced) by the object (3.1) and the invariant bijection (3.6).
Two following corollaries are immediate consequences of the
defini tion.
Corollary 3.6. Object (3. 7) induced by object @B. 1) and
invariant bijection (3.6) is geometrically equivalent with

partial object (3.5) of the object (3. 1) determined by the
invariant subset X,. The pair @@ idO> is an isomorphism of object

@B.7) onto object (3.5).

Corollary 3.7. Object (3.7) induced by jthe object (3.1)
and invariant bijection idx is a partial object of the object

@B. D determined by invariant subset %m

It is always possible to define the object induced by the
given object (3.1), group homomorphism (3.3) and invariant

bijection (3.6). The simple example of such an object is the
partial subobject
cx0. 5, F (Xo,9)

of the object (3.1) determined by the subgroup 5 of the group G
and invariant subset X, of the fibre of the object (G. 1.

8. Objects of subsets of the Ffibre of object
Let
* G B @“.D

be a given abstract object. 2X will denote the family of all

subsets of the fibre of this object. The transformation
F*: 2%*0 —»2*

given by the formula



F*(A, 9) :=F<A,g) * TF<x,g>: Xx€A> 4.2)

is obviously an operation of the group 0 on.the set 2*“, whereas

the triplet
@. G, F*> “4.3)

is an abstract object. For each invariant subset Ut of the fibre

of this object we can define a partial object
Cm, G. F* ]ifcxox< mc2*. u. 4
Definition 4.1. Objects (4.4) and (4.3) will be called

object of subsets and the object of all subsets, respectively, of

the fibre of the object (4.1).
Let us consider two objects:
*,, G, F.) (4.5)
. G, F2> (4.6)

and the objects of all subsets of the fibres of these objects

X\ G, Fi) “4.7n

C2*2, G, F*> 4.8)
In the sequel two following lemmas will prove useful.

Lemma 4. 1. If objects (4.5) and (4.6) are equivalent, then
the objects (4.7) and (4.8) of all subsets of the fibres of the

objects (4.5) and (4.6), respectively, are also equivalent.

Proof. The assumption and the corollary 2.2 implies the
existence of a bijection y: X, —*X2 such that the equivariance
condition (2.1 holds true. It is easily seen that the
transformation

2X7=» 2X* .
defined by the formula
Hii(A) = y(A) = {y(X,>: X,«A}t
is a bijection. The equality
F»(y-(A)-9) = Y0 (F>(A,9)) “4.9

holds true for every AcX, and geG. Indeed, from (2.14) and the

definitions of transformation formulas Ff, F* and the bijection



v. we infer that for each subset A of the fibre X, of the object
(4.5) and each g«G

FEQ- A, 9)=F2¢<A>, 9) = FF{y %> X,€A), 9) =

= {FI1y(x,>,0): x,EA}= {y F, (X,,0>): X,£A} =

=y F.A 9 )=y (FT<A,g>)
Thus, the objects (4.7) and (4.8) are equivalent. D

Lemma 4. 2. If the abstract object

<X0, G, FO) @ 10

is a partial object of the object @@. 1>, then the object

@x°, G, Fp 4. 11)

of all subsets of the fibre of the object (@. 10) is a partial
object of the object <. 3).

Proof. The fibre 2X° of the object (4. 11) is obviously a
subset of the fibre 2X of the object <4,3). We will show that it
is an invariant subset. For each subset A of the fibre X0 of the

object (4.10) and for each g£G we have

F.A9 =FA 9 =F® 9)-

FJCA, Q)
Thus
FI(A, @) = F*(A,9) for Af2X°, gG. (4.12)

Since FJ(A, g)e2X*, by (4.12) the set 2x° is an invariant subset
of the fibre of object (4.3) and

f; = F*12x0xG

what ends the proof.0
The objects of geometric figures of a given Klein space
™ G @ 13
are the examples of the objects of subsets.

Defir.ition 4. 2. A subset Aof the fibreM of the Klein space
@. 13) will be called a geo.netric Ffigure of this space. A~ object
of subsets of the fibre of Klein sapce will be"called an object

of geometric figures of this space.

Example 4. 1. As the objectof geometric figures of

n-dimensionsl affine space (cf. example 2.3) over the fieldK we



may mention the object of k-dimensional hyperplanes (I<k<n). In
particular, the object of straight lines is such an object. The
object of pencils of lines is an object of subsets of the fibre
of the object of straight lines. The more sophisticated example
of geometric object of affine space is tensor <cf. Section V).
It can be shown that it is also an object of subsets of the fibre

of some geometric objects of affine space.

Taking all this into account we may state that the objects
of subsets of the fibre of object play a particularly important

role in the theory of Klein spaces.

85. Remarks

The definition of Klein space given in 82 is to general.
Beside geometric Klein, spaces, i.e. the spaces being the subject
of study of metageometry, it contains many other spaces, e.g.
topological Klein space <cf. example 2.2). Thus, to the
effectivity condition some other condition should be added, to
assure that Klein space is geometric. Unfortunately, such
conditions are not known, as yet. Since in all classical Klein
spaces there exist m-repers (cf. definition IIl. 2. 3), the
effectivity conditions could be replaced by a stronger one,
postulating the existence of such repers. This condition does not

solve the problem, though.

In the definition 2. 4 we do not assume any relations between
the fibre of the space and that of the object, neither we do
between the transformations laws. Whether the abstract object is
a geometric object of a given Klein space depends solely of the
abstract group. Z. Moszner suggested that abstract objects, which
are not properly related to the Klein space should not be
considered as geometric objects of that space. In geometric
studies such objects are simply useless. Therefore, we should
either prove that there are proper relations between the objects
of the category OA<G> and Klein space <M, G, f>, or to accept as
geometric only the objects of such subcategory that ensures the
existence of such relations and, moreover, that contains all

object traditionally viewed as geometric.



There are some reservations about thsT definition of Klein
space. It can be shown that beside given Klein space (M, G, )
there exist effective objects of the category OA(G) which are not
equivalent with it. As a result we have that the category OACG)
itself is a geometry of non-equivalent Klein spaces. E. Siwek and
E. Kasparek shown (unpublished result) that in the category OACG)
there exist ever primitive and transitive Klein spaces, which are
not equivalent. It seems that by a Klein geometry one should
understand a pair consisting of a Klein space and a category of
geometric objects.

Because of all the abovementioned reasons, in the sequel, by
geometric objects of the space (M, G, ) we will understand the
objects of some subcategory OG(f> of the category 0A<G), and by a
Klein geometry of this space - the pair

{0, G, ), 0G(F)).
By a Klein space we will still undarstand any effective abstract
object.

In the papers on Klein spaces that have been published, the
equivalence of two Klein geometries was not defined. It will be

done in 84 of the Section Il



Section 11

THE NOTION OF KLEIN GEOMETRY

In this section we will define basic concepts of the theory
of Klein geometries: geometric object, Klein geometry and the

equivalence of two Klein geometries.

SI. The definition of geometric object
Let
™, G f> <1.1)

be a Klein space. We will start from the definition of the
standard geometric object of rank k of the space <1.1), and then

the definition of any geometric object of this space.

Deflnition 1.1. Standard geometric object of rank k <kEN>

of the Klein space <l. 1) is an abstract object
<Gtk,<M), G, ftk>), k«N a.2)
defined as follows

(@ for k-1 the object (1.2) is the object of all subsets of

the fibre of Klein space (1.1), i.e.
Q“*”(M :=2" and f>71= 7
() object @Q=**,,(M), G, F1'-”) isthe object of all subsets
of the fibre ofthe object (QMHM), G, F<m™>, i.e.
QU *,,( := and fu— 1=
Definition 1.2. The abstract eeject
&, G, F) (1.3)

equivalent with any partial objectof a standard geometric object

@.2) will be calleu a geometric object of the Klein space (1.1).

Hence, abstract object (1.3) is the geometric object of the
Klein space <. 1) iff there exists a kN and the invariant
subset G“k>(M> of the fibre of the standard geometric object

(1.2) of rank k such that the partial object



<. 4)
is equivalent with the object (1.3). There exists then a
bisection
- x  QEk5(M) <. 5).
such that the equivariance condition
A A fik>(y(), 9) = ¥EFE (X, g> ). 0 .6)

X«X g€G

It follows that between the fibre X of an arbitrary
geometric object (1.3) of Klein space <l. 1) there exists a
relation, determined by the invariant transformation <i.5).
Transformation formulas f and F of the Klein space and its
geometric object (1.3) are closely related through the
equivariance condition (1. 6).

Lemma 1.1, If an abstract object (1.3) is equivalent with a
partial object (1.4) of the standard geometric object (1.2) of
rank k of Klein space (1. 1), then it is equivalent with some
partial object of every standard geometric object of rank m
(m>k) of this space.

Proof. Let TO denote the family of all singletons of the
fibre of the object (1.4), i.e.

TO = {(A>: AEQik, () *
It is easily seen that Hl is an invariant subset of the fibre of
standard geometric object of rank k+l. Thus, we can define a

partial object
an

of this object. It can be proved, by direct calculation, that the
bi jection

r- ilik"(> -» TO, ?2(A> = (A
satisfies the equivariance condition

Fac iy (M), 9) = \r(Fk, A, 9))-

Hence, the objects (1.4) and (1.7) are equivalent. The assumption
and the transitivity of equivalence relation imply that the
object (1.3) is equivalent with the object (1.7). Thus, the

thesis is true for m=k+l, One can easily prove by induction that



it is also true for every positive integer m> k. Q

Definition 1 3. A positive integer k will be called a rank
of the geometric object (1.3) of the Klein space <l. t) iff this
object is equivalent with some partial object <1.4) of the object
<1.2) and is not equivalent with any partial object of the
standard geometric object of rank m< k of this space.

Let us note that each object <1.2) is a geometric object of
Klein space <l. 1) in the sense of definition 1.2, and k is a rank
of this object in the sense of definition 1.3. Each partial
object (1.4) of object (1.2) is a geometric object of this space
as well. The rank of this object is no greater that k.

The following two corollaries follows immediately from the
definitions.

Corollary 1. 1. Each abstract object (1.3) equivalent with a
geometric object of rank k of Klein space (1.1) is a geometric
object of this space of the same rank.

Corollary 1.2. Each object of geometric figures of Klein

space <1.1) is a geometric object of this space of rank 1.
It is easily seen that the family
irt = {<p): pEM}
of singletons of the fibre of Klein space (1.1) is an invariant

subset of the fibre of standard geometric object of rank 1 of

this space, whereas the partial object

(R 6 T<B), (<= £S5 ax

is equivalent with the given Klein space (1. 1). As the immediate

consequence we have the following corollary.

Corollary 1.3. Each Klein space (1. 1) is a geometric object

of rank 1 of this space.

Klein space considered as a geometric object of itself is

usually called a point object.

From lemma 1. 1 and corollary 1.3 we infer that for every
positive integer k, a standard geometric object <1.2) of Klein
space (1- 1) has a partial object equivalent with this space. Such

an object is effective, as equivalent with effective object, 1i.e.



with the space (1.1). Thus, from corollary 1.3.5 we get the
corollary.

Corollary 1, 4. Standard geometric object of any rank is an
effective object.

Using objects (1.2) we can define further abstract objects.

Let
an := le Qct(M)

and let f*“5: Q"7 (M> —»Q"-"CM) be a transformation given by the
formula
f>(A, g9) = fUc @A, g> for AEQN>(M).
It is easy to verify that
& D, G F->) (1.8)
is an effective abstract object. Hence, it is a Klein space. Let
G=->(), g, £ n>), ncN a9

denote the standard geometric object of rankn of this space. The
above method of construction of abstract objects can be iterated
to define successive Klein spaces of the form (1.8) and their

standard geometric objects.

From the well known results of set theory follows that the
power of the fibre of object (1.9) is greater than the power of
the fibre of any of the objects (1.2), so the object (1.9) is not
a geometric object of Klein space (1.1) in the sense of
definition 1.2. Further considerations presented in this paper
let us assume that the objects (1.8) and (1.9) are excessive.
Geometric interpretation of these objects in not known and they
are not found in geometry. Therefore, we do not consider them
geometric objects of the space (1.1), although their fibres and
transformation formulas are related with the fibre K and

transformation formula f of Klein space <1.1).

§2. The category of geometric objects
The class of all geometric objects of a given Klein space

™, G P @.1)



with equivariant transformations of the form

QF, ida>, y: X,-»X2
X, and X2 are the fibres of geometric objects) as morphisms and
the superposition of such transformations as a composition forms

a category. This category will be denoted as OG(Ff) and called

a category of geometric objects of Klein space Q. 1.

It is not difficult to prove that 0G<f) is indeed a
category. One has only to verify the axioms of the category. It
is equally simple to check that OG(f) is a subcategory of OA(G)
of abstract objects supported by the same group G.

We will start from the following theorem.

Theorem 2. 1. Categories of geometric objects of two

geometrically equivalent Klein spaces are identical.
Proof. Let the object
M, G, 2.2

be a Klein space geometrically equivalent with the space Q. 1D
and let

(QIk*CM), G, f<k>, KEN <2.3)

<QIKk’0v), G, ?"k>), k€N 2.4
be standard geometric objects of rank k of the space (.1) and
@2.2), respectively. Using lemma 1.4.1 one can easily prove, by
Induction, that these objects are equivalent. Hence, there exists
a bijection

y: Q<k”(D -»Q %k, (W)

such that the equivariance condition

* 2k’ .9) = y(f<k>CA, 2.
AEO<k> (M) 9£6 <A).9) = y(f<k>CA,9)) @-5

holds true.
Now, let
& G, F) (2.6)

be a geometric object of rank k of the space (2.1). According to
definition 1.2 of geometric object, object (2.6) is equivalent

with some partial object (1.4) of the object (2.3). It follows



from the equivariance condition <2.5) that the set

CH" (> = £ (QNHM) )
is an invariant subset of the fibre of object (2.4) and that the
partial object (1.4) of object (2.3) is equivalent with partial
object

G-"(), G, FK’|pc>dyxG) <2.7

of the object (2.4). Since the equivalence relation is
transitive, objects (.6) and (.7) are equivalent and,

therefore, (@ .6) is a geometric object of the space (.2).

We have shown that every object of the category OG(f) is an
object of the category of geometric objects 0G(?) of Klein space
(2.2). Similarly, we can prove the converse, i.e. that every
object of the category OG(Ff) is an object of the category OGCfF).
Hence, classes of objects of these categories are equal.

Therefore, considered categories are identical.O

The converse theorem is not true. To show it. let us
consider again standard geometric obje,cts (2.3) oi Klein space
(2.1). These are effective objects (cf. corollary 1.4), and,
therefore, they are Klein spaces. Since the fibres of any two of
these spaces are the sets of different powers, these spaces

cannot be equivalent. We will prove also the following lemma.

Lemma 2. 1, For any positive integer k the categories
OGCT“k>) of geometric objects of Klein space (2. 3) and OGCF) of

geometric objects of Klein space (2.1) are identical.

Proof. It is enough to show that the classes of objects of
category OG(ftk>) and GG(f) are equal. From definition 1.2 of
geometric object it follows that each object of the category
OGCF“1”) is an object of the category GG(f). Lemma 1 1 implies
that any object of the category OGCF) is an object of the
category 0G(f<k>), Hence, classes of objects of two considered

categories are identical. 0

From the above considerations we infer that OGCF) is a
category of geometric objects not only of Klein space (. 1), but
also of infinitely many spaces (2,3), which are not equivalent.

Because of the reasons explained in 85 of Section 1 we will



define Klein geometry of a given Klein space as follows.
Definition 2. 1. A pair
@, G, f, O0GCf)), 2.8)
of Klein space (2.1) and a category of geometric objects of this
s"pace will be called Klein geometry of Klein space (2.1).
Now, let 5 be a subgroup of G, supporting Klein space @. 1.

According to corollary 1.3.1, the subobject

v, 5, ), ?:=F| Mxg .9

of the space <2.1) is also a Klein space. Let us consider the
category 0G<?) of geometric objects of Klein space <2.9) and its
geometry

@, 8, f>, 0G(P) ). (2.10)
Although 00(f) is not a subcategory of 0G(F), thefollowing
definition is usually accepted.

Definition 2. 2. Klein geometry <. 10);of Klein space (2.9),
being a subobject of the space (.1) will be called a subgeometry
of Klein geometry (2.8) of the space <. 1.

It appears that subobject ,of any geometric object of the
space (2. 1) determined by the subgroup 8 of the group G is a
geometric object of the space (2.9). This fact will be shown in

the sequel.

§3. Some properties of geometric objects
Let us consider an arbitrary Klein space

™ G f G-
and its geometric object
& G P. @G.2)
Theorem 3. 1. Each partial -object of geometric object (3.2)

of Klein space (3. 1) is a geometric object of this space and its

rank is not greater than the rank of the object (3.2).

Proof. Let (3.2) be a geometric object of rank k of the
space (3.1). In virtue of definition of geometric object there

exist a partial object (1.4) of the object (1.2) and a bijection



(1.5) such that the condition (1.6) holds. Let us consider an
arbitrary partial object

cxn, G, F,),. F.,= FIXiXG 3.3)

of the object (3.2) and a subset GSk,(M) of the fibre of the
object (1.4), defined by the formula

>0 = y(X,)- (3.4
Since X, is an invariant subset of the fibre of object (3.2), by
(1.6) the set (3.4) is an invariant subset of the fibre of object

(1.4). Hence, we may define a partial object

Q* <m, 6, =),  F{K*= fie jiit, (MXq 3-5

of the object (1.2). Let y, := . By (1.6) we have, then

A A f>@y, 7,9 =y, Fl & 9 )-
XEX, geG

Thus, objects (3.3) and (3.5) are equivalent and, therefore,

(3.3) is a geometric object of the space @B. 1. It is easily seen
that, due to definition 1.3, rank of this object is no greater
than k.D

From the above theorem and corollaries 1.3.6 and 1 1 we get,
as the immediate consequence, the following corollary.

Corollary 3. 1. Oblect induced by geometric object(3.2) of
Klein space (3. 3) and an invariant bijection is ageometric
object of this space.

Using lemmas 1.4. 1 and 1.4.2 we can prove the following
theorem.

Theorem 3. 2. Each object of subsets of the fibre of
geometric object (3.2) of Klein space (3.1) is a geometric object
of this space.

Proof. Let keN be a rank of geometric object (3.2). As we
know, it has to be equivalent with some partial object (1.4) of
a standard geometric object (1.2) of rank k. By lemma 1.4.1 the

object

<X, G, F9) (3.6)

of all subsets of the fibre of object (3.2) is equivalent with



the object

e e L T, @G.7)

of all subsets of the fibre of object (1.,4). It follows from
lemma 1.4.2 that (3.7) is a partial object of object of all
subsets of the fibre of object (1.2), i.e. standard geometric
object of rank k+l. Thus, the object (3.6) is equivalent with the
partial object (3.7) of standard geometric object of rank k+1
and, therefore, it is a geometric object of Klein space (3. ). By
theorem 3.1, any object of subsets of the fibre of object (3.2)
is a geometric object, as a partial object of geometric object

B.6).0

The next theorem and its consequences will play an important
role in further considerations. Beside Klein space (3.1) let us

consider another space

™ 2, D (ERS))
and a homomorphism
6 -+G. G. 9
Let
™, 3,2, 2@ D = @, @) (3-10)
and
& G, P, F(x, @) = F(X, ) G.1DH

be the objects determined by Klein space (3. 1) and homomorphism
(3.9) and by geometric object (3.2) and homomorphism (3.9),
respectively.

Theorem 3.3. If the object (3. 10) induced by Klein space
(3.1) andhomomorphism (3.9) is a geometric object ofKlein space
(3-8), then the object (3.11) induced by geometricobject @G3.2)
of Klein space (3. 1) and homomorphism (3.9) is also a geometric

object of Klein space (3.8).
Proof. Let
Q<k,(), 3, ?tc>, k€N (3.12)

be a geometric object determined by the following conditions (cf.

definition 1.1):



(@ for k=1 object <3. 12) is the object of all subsets of
the fibre of geometric object <3.10) of the space <3.8);

() for k=m+l object <3.12) is the object of all subsets of
the fibre of the object
<Q=>), 5, ?% ).
Using theorem 3.2 we can easily prove, by induction, that

for each kEN object <3.12) is a geometric object of the space

<3.8). Alsoby induction we can prove that the following relation

A A <k’ @A, @) =FK”A, ) ). <3.13)
AEQtK”M) gesS

Indeed, for every subset A£Q<,JM) and gf5 we have
F'1°A Q) =7<A,0) =FTA @)= T "A. @ ).
what means that <3. 13) holds true for k=I. Now, let us assume
that (3.13) holds true for k=m. Then, for every set AE£QC™1><M)
and every g£G we have
fiw*><A,g) = 2%*%°<A, g) = T A, o) ) = F->>(A,T<g>)

Thus, <3. 13) holds true for k=m+l as well.

We assumed that the object <3.2) is a geometric object of
the space <3. 1).Therefore, there exist a partial object <1.4) ot
the object<l.2) and a bijection <1.5), such that thecondition

<1.6) holds, implying that

A A FeEs(r<r), o<g)) = y(Fx, 9<g>>). <3.14)
XEX gEG

The set Qik>(M) is an invariant subset of the fibre of object
(1.2). From this fact and from the relation <3. 13) we infer that
it is an invariant subset ofthe fibre of the object <. 12), as

well. Hence, we can define a partial object
<4k* (M), 5, F>>,2<>= 2?2 k*IQ <. ,>(M)xC (3.15)

of the object <3. 12), and by<3. 13) we have

*_«<m<« . gib
and, therefore,

xéii Q}€G V<x), g) = FAk>(¥ <Tt),<f<Q) ). <3.16)



Thus, by <3. 11) and (3. 14) we get

A A fik>(¥<x),9) = <f(Fix,9) ),
xEX Qg€G

which means that the objects <3. 11) and <3. 15)are equivalent.
Object <3. 15) as a partial object ofgeometric object <3. 12) is a
geometric object of the space <3.8). Therefore, <3.11) is also a
geometric object of this space. 0

As a particular case of the above theorem <cf. corollary
1.73. 4 and corollary 1.3) we get the following corollary.

Corollary 3.2. If (3.2) is an object of category OG(f) of
geometric objects of Klein space (3.1), then the object <3.11)
determined by object <3.2) and monomorphism <3.9) is an object
of category 0G<?> of geometric objects of Klein space <3.10)
determined by Klein space (3.1) and monomorphism <3.9).

If 5 is a subgroup of G and monomorphism <3.9) an inclusion
map of 5 into G (cf. corollary 1.3.3), corollary 3.2 may be
formulated as follows.

Corollary 3. 3. If Klein space <3. 10) is a subobject of Klein
space <3.1), then subobject <3.11) of an arbitrary geometric
object <3.2) of Klein space <3. 1), determined by subgroup 5 of

the group G is a geometric object of Klein space <3. 10).

8. Equivalence of Klein geometries
The notion of equivalence of two Klein geometries
&, G, B, 0G(F) ) 4. 1)
and
@, & F>, 06<?) ) <4.2)
and, respectively, two Klein spaces
™, 6 ) <4.3>
and
™, 5 P <4-4)
we will define using a covarianC functor of category OG<f> onto

category OG(f). In the sequel the notion of the functor plays an

important role, hence we will remind its definition.



A function T"which to each object A of a category 6 assigns an(
a/
object T(A> of a category G, and to each morphism o: A —»A,
assigns a morphism T(@): T(A) —»T(A,) will be called a covariant

functor iff the following conditions hold:
FUN 1. For each object A of category G
T(idA) = idT<A>.
FUN 2. If o A —»A, ana s5,: A,—» A2 are morphisms of category
G, then

T<a, s> = T(X),) *T<m>.

oS -*G @. 5)

is an isomorphism of a group § onto G, then T, will denote a

function which:
1* to each object
X, G, F) (4.6)
of the category OG(f) assigns an object induced by the object
<4.6) and isomorphism (4.5), i.e.
T.(X G F)):= K g.F>, where P, 0) :=F & 41@))- “.n
2"to each morphism (y, idO> of the object (4.6) of category
OG(f> into object
&, G, F,) 4.8)
of this category assigns a pair (y, idk"), i.e.
T @p, ida) ) := <p, idy). 4.9)
Let us note that, by corollary 1.3.4, object
o, 5 D.ftp,g> 1= T, *<9)) (4.10)
is a Klein space. We will prove the following lemma.

Lemma 4. 1. 1f Klein space <4.4) is geometrically equivalent
with Klein space <4. 10) induced by the space (4.3) and
isomorphism (4.5), then T,, defined by the formulas (4.7) and
(4.9) is a bijective functor of the category 0G(f) onto category
0G (F)-

Proof. Let (4.6) be an arbitrary object of category 0G(F).



By corollary 3.2, object <4.7) is of the category 0G<?> of
geometric objects of the space <4. 10) induced by the space <4.3)
and isomorphism (4.5). From the assumption and theorem 2. 1, the
categories 0G<?) and OG(f) are identical. Thus, T, assigns
objects of the category O0G(f) to the objects of the category
OG(f>. Moreover, if (y, ida) is a morphism (of category OG(f>) of
the object (4.6) into the object (4.8), then

A A F, <9, 9) =y (Fx, 9) ).
xeX g«G

Thus,

A A F, (y(x>,<p(@)) = y(F(X,<p(g>)).,
X€EX g€G

and, therefore,

A * i =
oy géG PI (¥, 9) = y(p<x, 9) )-

Thus, pair 4r, idg0 is a morphism (of category 0G(f)) of the
object (4.7) into the object T, ((X,,G, F,)). Hence, T, assigns
objects (morphisms) of category OG(f) to objects (morphisms) of
category 0G(F).

Since identity morphisms of the objects (4.6) and (4.7) are
pairs (id,, ida> and (id*, idf), by (4.9) T, satisfies the condition
FUN J.

Now, let (y, ida> be a morphism of the object (4.6) into
object (4.8), and let (y,, ida> be a morphism of the object (4.8)
into object <X2,G, F2). Then

™ (., ida)=(, ida>) = T,((y,°y, ida)) = (y,»y, id?)
and
T, (1, id2) T, ((y, ida)) = (., id*)» <, idab = (y,»y, idE>.
Thus, Ta satisfies condition FUN 2 as well.

We have proved that T, is a covariant functor of category
OG(f> into category O0G(F).

Klein spaces (4.4) and (4.10) are geometrically equivalent,
by assumption. Hence, there exists a bijection y: M —»M

satisfying equivariance condition

A A T (y<p),y<g@)5 = y(f(p.9))-
piM gtG



This condition can be rewritten in the fora

A A fY-"<P), <><g))=TF" (FP,0>)
peM gto

meaninig that the space <4.3) is geometrically equivalent with
the space induced by space <4.4)and isomorphism ™. This and
the above considerations imply that we can define a covariant
functor T, of category <X>(f) into category 00(f). It is easily

seen that the functors T~ and T_"-t satisfiy the conditions

" W ,=1dOG(F) * T9-""Tg= 1dOG<F) *
Thus, Ta is a bijective functor. D

Definition 4.1. A bijective functor T of category of
geometric objects OG(F) of Kleinspace (4.3) onto category of
geometric objects OG(F) of Kleinspace (4.4) will be called
simple iff it satisfies the following conditions:

@ there exists a group isomorphism g S — such that for
each object (4.6) and each morphism (y, id6) of category OG(F) the
following equalities:

T(X G F))=Te (X, G,F), T(¢, id6))=TF(Cy, idQ>)
hold;

<b) Klein space (4.4) is geometrically equivalent with the
space T (M, G, )).

The following two lemmas state some properties ofsimple
functor. The firstone is the immediate consequence ofcorollary
1.3. 2.

Lemma 4.2. If T is a simple functor of category OG(f) onto
category OG(F), then each object (4.6) of category 00(F) is
abstractly equivalent with the object T(<X, G, F) ).

Lemma 4. 3. Klein spaces (4.4) and (4.3) are equivalent
(abstractively) iff there exists a simple functor of category
0G(f) onto category OG(F).

Proof. First, let us assume that the spaces <4.4) and (4. 3)
are equivalent. There exists, then, a pair

& Y), Y- M=»M, 9 5-»0,

where @ is a group isomorphism, such that the equivariance



condition

-Ao QeG F (Y<P5. <P<g>) =Y (FO, 0> ) (4.11)

holds. By <4. 10) we have

A. A Ty(P).9) = y(?<p, 9))- 4.12)
peM gcg

With the isomorphism y we can define a functor Tv. By (4. 12),

Klein space (4.4) is geometrically equivalent with the space
M9, ?) =T,(M, G, £>).
Thus, T, is a simple functor.

Now, if there exists a simple functor of category 0G(f) onto
category 0G(f), then, by axiom (b) of definition 4.1, there
exists a bijection y: M —»M, such that condition (4.12) holds
true. Thus, &4. 12) and (4. 10) imply that equivariance condition
(4.11) holds true as well, what, proves the equivalence of Klein
spaces (4.4) and (4.3).0

Stated above properties of simple functor motivate the

following definition of equivalence of Klein geometries.

Definition 4. 2. Xlein geometry (4. 1) of Klein space (. 3)
will be called equivalent with Klein geometry (4.2) of Klein
space (4.4) iff there exists a simple functor of category O0G(f)

onto category OG(F).

It is easily seen that the relation of equivalence of Klein
geometries is an equivalence relation, i.e. it is reflexive,

symmetric and transitive.

The following theorem is an immediate consequence of the

above definition and lemma 4.3.

Theorem 4. 1. Klein geometries (4. 1) and (4. 2) of Klein
spaces (4.3) and (4.4), respectively, are equivalent iff the

spaces are equivalent.

It would seem to be more natural to define the equivalence
of Klein geometries as follows: Klein geometries (4.1) and (4.2)
will be called equivalent if there exists a bijective covariant
functor T of category OG(f) onto category 0G(?) satisfying the

condition
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T(@, 0, )- a1, 5 *.

Such a definition should also Imply theorem 4.1, though. For "the

present, proof of such theorem is not known in this case.

To study properties of Klein geometry (@4. 1) of a given Klein
space (4.3) we usually consider the simplest (canonical) space in
the class of spaces equivalent with the given one. We will do it

in Section IV, to present elementary Klein spaces.



Section 111

PROPERTIES OF GEOMETRIC OBJECTS

We have shown, in 83 of the previous section, methods of
construction of new geometric objects of a Klein space; partial
objects and objects of subsets of the fibre of object. Mow, we
will present further methods of construction of geometric objects
and some of their consequences. We will discuss some properties
of a scalar, G-product of objects, object of transformations,

factor object and disjoint union of objects.

Sl. Scalars
In category of geometric objects of Klein space
o, G, <1.1)
the object called scalar plays an important role.
Definition 1.1. Abstract object
G, G, where 1<s, Q) := s a-2)
for all seS and g£G will be called a scalar.

The following two corollaries are the immediate consequences

of the definition.
Corollary 1. 1 Two scalars: (1.2) and
G 6 D, 1609 := <1. 3
are equivalent iff their fibres S and S are equinumerous.

Proof. Indeed, if objects Cl.2) and <1.3) are equivalent,
then there exists a pair (f, ida> where f: S—>S is a Mjectiso,

such that the equivariance equation
1 (F(s>,9) = F(its, 9) ) for all s*S and gi<G Cl. 43
holds. Tnus, S and S are equinumerous.

Conversely, if the fibres S and S are equiaumerssas, fhifea

there exists a bisection i 5 -»S. Every such bijection satisfies:



condition Cl.4) since both sides of the equation are equal to
y(s). Hence, objects (1.2) and (1.3) are equivalent.D

Corollary 1.2. Each object geometrically equivalent with a
scalar is a scalar.

Proof. Let (X, G, F> be an object geometrically equivalent
with a scalar (1.2). There exists then a bijection f: S —»X such

that

A A F(f<s), 9) * \HI G, 9) )=y (S)-
seS g«G

Taking x-fCs) we get

F(x, @) = x for all xCX and gtG.

Thus, object (X, G, F) is a scalar.0

Let us note that not every scalar (1.2)is a geometric
object of the space (1.1). Indeed, if - for example - the fibre
of the object (1.2) Is equinumerous with the fibre of
the object (11.1.9), then it is easily seen that the scalar (1.2)
in not a geometric object of the space<l.1).

Definition 1,2. Scalar (1.2) being a geometric object of
Klein space (1.1) will be called a geometric scalar of this
space.

From theorem II. 3. 1 ana corollary 1.1.we get another-
corollary.

Corollary 1. 3. A scalar (supported by a group G) whose fibre
is equinumerous with an arbitrary, nonempty subset of the fibre
of a geometric scalar of Klein space (1.1) is a geometric scalar
of this space.

Proof. Let (1.2) be a geometric scalar. Every nonempty
subset S,, of its fibre is an invariant subset. Hence, we can

define a partial object

<80, G,

which is obviously a scalar. By the theorem Il. 3.1 it is a
geometric scalar. By corollary 1 1, it is equivalent with every
scalar whose fibre is equinumerous with SO. Thus, it is a

geometric object. 0



The theorem below states that whether a scalar Is geometric
depends solely of the power of its fibre. It also gives a method

to determine geometric scalars.

Theorem 1.1. Scalar (1.2) is a geometric object of Klein
space <1.1) iff its fibre is equinumerous with some family of
invariant subsets of some standard geometric object of this

space.

Proof. If scalar <l.2) is a geometric object of Klein space

<1.1), then, by the definition of geometric object, it is

equivalent with a partial object
Q@Qi“>y, G, Fik™>, 4*> = £*-" 10" . fMjxG <1>5)
of a standard geometric object
{Q=*"(M>, G, F*»}. 1.6)
Therefore, there exists a bijection
r- S - *Qik’<M), <1.7)
satisfying the equivariance condition. By corollary 1.2, object
(1.5) is a scalar. Hence
fk’@A,9) = A for all A«Qak”(M), geG. .8
If k> 1, then the elements A of the fibre of the object (1.5) are
the subsets of the fibre of standard geometric object of rank
k-1. By (1.8) they are invariant subsets. Thus, by (1.7), the
fibre S is equinumerous with the family @,’<M) of invariant
subsets of the fibre of standard geometric object of rank k-1. IFf
k=1, then the elements A of the fibre of object (1.5) are
invariant subsets of the fibre of the space (1.1), whichis a

standard geometric object of rank 1 (cf. corollary 11.1.3). It

follows that there exists a family of invariant subsets

A= {<p>: ptA}
of the fibre of standard geometric object of rank k=I, which is
equinumerous with the fibre of the scalar <1.2).

Conversely, 1if the fibre S of scalar (1.2) is equinumerous
with a family Tit of invariant subsets of the fibre of the object

(1.6), then it is easy to note that the partial object



@i, G, i (CH9))

of a standard geometric object of rank k+3 is a geometric scalar
of the space <1.1). Thus, by corollary 1.1, objects (1.2) and
<1.3) are equivalent and, therefore, scalar (1.2) is a geometric

object of the space (1.1).0
Let us define the sets
Q 1*(\), 1=0, 1,2,- (1.10)
where N is a set of all positive integers, by the formulas

Q>(N) :=N, Q“’>(N) := 2N
Cwi a.11)

We will prove the following lemma.

Lemma 1.1. If the fibre of Klein space (@. 1) is an infinite
set, then the scalar (1.2) with the fibre equinumerous with one

of the sets <1.10) isa geometric scalar ofthis space.

Proof. In virtue of corollary 1.1 it is sufficient to show

that the scalars
@Q1*(\N), G, 1«1%), 1“ ”<x,g)=x, 1=0, 1,2,- (1.12)

are geometric objects of the space (1.1). We will do it by
induction. Let M, denote the family of all n-element subsets of
the fibre of the space (@. I). It is esily seen that for every
positive integer n, K, is an invariant subset of the fibre of
standard geometric object of rank 1 of the space <l. 1). The
family lit of all such invariant subsets is countable. Thus, by
theorem 1.1, scalar (1.12) with 1=0 is a geometric object of the
space (1.1).

Now, let us assume that the object (@. 12) is a geometric
scalar for 2=m, In virtue of theorem II. 3.2, the object of

subsets

@1I1~,<N), G, 1"
is a geometric object of the space(l1.1). It is easy to note that
it is the scalar (@. 12) for I=m+l. Hence, eachone of the objects

(1.12) is a geometric scalar. 0

Lemma 1. 2. If the fibre of Klein space (@. I) is a finite set

or is equinumerous with one of thestes (1.10), then the scalar



™ G L), 1,@.g>=p <. 13)
is a geometric object of this space.

Proof. If the fibre M of the space<l. 1) is aset
equinumerous with one ofthe sets <1.10), this lemma is an

immediate consequence of the previous one.

Now, let us consider the case when the fibre M of the space
(@- 1) is a finite set containing m elements. Similarly to the
proof of lemma 1.1, M,, (Hnt «) will denote the family of all
n-element subsets of M. Each one of these families is an
invariant subset of the fibre of standard geometric object of
rank 1. This fact and theorem 1.1 imply that the object <l. 13) is

a geometric scalar of the space (1.1),0

Geometric scalars play a significant role. As we will see in
85, whether a non-transitive object of category OA(G) is an
object of its subcategory OG(Ff) depends largely of these scalars.
Geometricity of the scalar <l. 13) implies (cf. corollary 4.3 and
the proof of lemma 3. 1) that transitive objects of category 0A(G)
are simultaneously the objects of subcategory 0G(f). From lemma
1.1 and corollary 1.3 itfollows that the setof geometric
£ < ars of a given space is relatively large. However, we do not
know if the scalar <l. 13) is a geometric object for an arbitrary

Klein space (. 1.

Z. Moszner noted (unpublished result) that lemmas 1.1 and

1.2 can be generalized as follows:

Lemma 1. 3. IFf there exists a cardinal a such that:

(@ there exist at least a distinct and less or equal than a
cardinals,

[©) az M,

(c) for some set Z of power a and some positive integer m

the fibre of scalar
Q G I> (1.14)
satisfies the condition
azZ Qs%$ Q—>®,

then the object (1.14) is a geometric scalar of the space (1.1).



We will present the sketch of the proof. As in the proof of
lemma 1.1 we can show that the scalars with the fibre QCM>() are
geometric. For m=0 we replace the family M, with family Mg of all
subsets of power 0, for 0 belonging to the set of cardinals
satisfying condition (@). Scalar (1.14) may be viewed as a
partial object of the scalar with fibre Q"“”(>. Thus, 1in virtue

of theorem 11.3. 1, (@. 14) is a geometric scalar of the space

@ 1.D
Taking a =N and Q= Ct)(N> we obtain lemma 1. 1. If the set

M is finite, by taking a =M we obtain the first part of lemma

1.2. If the set M is equinumerous with one of the sets (. 10),

then by taking a=N and Q = Q"m>(N) we get the second part of
this lemma.

Lemma 1.3 is more general than lemmas 1.1 and 1.2, since
without assuming the continuum hypothesis we can obtain some

results for cardinals between powers of the sets G“*I1(®D.

Z. Moszner noted that the problem whether in an arbitrary
Klein space (1.1) scalar (1.13) is a geometric object, together
with lemma 1.3, suggest a problem, interesting from the point of

wiev of set theory:

if for every cardinal 0 there exists such a cardinal a
satisfying condition (@) from lemma 1.3) and such positive

integer n, that
ai 0~ a(n), where a(l) =a, a(ntl) =2*<" 2

A. Tyszka proved (unpublished result), that the property
formulated in the question above is undecidable (independent) on
the basis of ZFCaxioms. Therefore the problem of geometricity of
the scalar (1.13) is either undecidable on the basis of this

axiomatic, or positively decidable.

8. G-products of objects
Let us consider m abstract objects
&, G, F,), 1=1,2, -, m Q.1

supported by the same group G, and the transformation



Fro (X, XX2X_ X X,,>XG» X, *X2Xx_xX_,
defined by the formula
F{(x,, xA _, X.),9) = EHX,,Q9), RP<x2,g>,_. FOc., g>). 2. 2>

F turnsout to be an operation of the group G on cartesian
product X,xX2x,xX. of the fibres of objects <2.1i). Hence, we can

define a new abstract object (cf. C143, p. 17, also C51
<X, XX2X_XX,,, G, P>. 2.3)

Definition 2. 1. Abstract object (2.3) with transformation
formula F defined by (2.2) will be called a G-product of objects
@. 1> or, simply, a product object.

Due to its applications, particularly important is a
G-product of m examples of a point object. We will start from a
lemma, and next we will prove a theorem concerning geometricity
of a G-product of geometric objects of a given Klein space.

Now, let us consider a standard geometric object (1.6) of

Klein space <l. i> and its two arbitrary partial objects

Q.le >, G, fi*7),

r<t>— fitd i__ 1=1,2 @9
1 1Qik>xG
and the cartesian product
Q ) (MxQ k> 2.5

of the fibres of these objects. We will prove:

Lemma 2. 1. Cariesian product (2.5) of the fibres of two
arbitrary partial objects (2.4) of standard geometric object of
rank k of Klein space (1. 1) is an invariant subset of the fibre

of standard geometric object of rank k+2
(<h-2)an, g, 12’} @-5)
of this space. For any A:<Q",K) M), 1=1, 2 and g(G the condition
Fh2>((A,, A2),9) = (FK'@A,, 9), Tt (A2,0) ) @.n
is fulfilled.

Proof. First, let us note that for arbitrary Al€3ik*\),

1=1,2, ordered pair

@A,, A2>= {{A.J, (A, A2>}



belongs to the fib"re of object (2.6). By the definition of

transformation formulas of standard geometric objects we have

Fa>((A.A),0) = F>>{{A 1, (A, AD) }.0) =

= {f.K* (A, 9). TK™L(<AV,A") ig)}=

= {f“>(<A.).0) . Fk’ ({A,AL}.0)} =
{fk«(A.9)>, (Fk>(A,.0).T<kI(A2,9)>} =
(Fk>(A..9) ., TK™(A*,0)),

what proves the equation (2.7). Since G5k>(M), 1=1,2, are
invariant, it follows from <2.7) that the cartesian product (2.5)
is invariant subset of the fibre of the object (@ .6), what ends
the proof.0
Theorem 2. 1. G-product (2,3) of geometric objects (2.1) of
Klein space (1. 1) is a geometric object of this space.
Proof. We will prove the thesis by induction. First, let us
consider two geometric objects
Xt, 6, F,), 1=1,2 (2.8)
of Klein space(1.1). Let k, and k2 be the ranks of
objects, respectively, and letk := max (k,,k2).By definition
I1. 1.2 of geometric object and lemma Il. 1. 1 there exist partial
objects (2. 4) of standard geometric object of rank k and
bijections
y,: X, —»Qik*(\), i=1,2 2.9
such that for every Xx,£Xt and g«G the conditions
Sk, (F.<x?).g) = T,(F,(xi,g)), 1=1,2 (2.10)

hold. In virtue of lemma 2. 1 the set

Qk*a)(M := D" *(M>=02"1(M) @ 1D
is an invariant subset of the fibre of the object (.6) and the
equation

o7 ((A,, A2) ,9) = {filkc (A, 9), T2k (A2,9)), 2.1
where

fCk*2> .— fCk*2> 1
*e e * |<k*a>(M)*G *

holds true for every A,«QSk>(M) and gfG.
We will prove that the partial object



E~c >, 6, T a>) (2.13)
of the object<2.6) is equivalent with G-product
X,*X2, 6, P>,  F((X,,x2>.,9) = F, ., 9), F2(20) (2-14)
of objects (2.8). For, let us considerthe transformation
yr X,«X2 —»Qi“"21 o),
defined by the formula
y{(X1.x2)): = (¢, ().y2(x2)), (2.15)
where vy, and y2 are transformations (2. S). Transformation (2.15)

“is obviously a bijectlon. Using relations (2.15), (2.12), (2.10)
and (. 14) we get

fi2> ((X,, X2)), 9) = FK2>((y,(X,),y2(x2)),9) =
Fie <y, ), 9, FEO (y2(x2>,9) ) =

. F. ., 9 ). y2(F2<x2,9))) =

=y (CF.,<x,, @), F2(x2 g>) )= y F (., x2), 9)),

what proves the equivalence of objects (. 13) and (2. 14). It
follows that (2. 14) is a geometric object of Klein space (1.1).

So, we have proved the thesis of the theorem for m=2.
Now, let us assume that G-product of objects (2.1)
(1=1,2,_, 1)
X, xX2*_*X1, G, P>,

where

F((X, X2,-,%,),09) = F, X, 09, F2(x2,9), _, F, e»,9))
and object

&.*,, G, F,+,))
are geometric objects of the space (1. 1). Due to the Tfirst part

of the proof, G-product of these objects
(X, xX2*-xXDxX,,,, G, F> (2.16)
where
FE®, X2, %), %,,),9)= (F(X,, X2,-, X,), @), Fors (%55 ) ).

is a geometric object. We will show that it is equivalent with

the object



€. XXN=XXAX, .,, G. F>- 2.17)

where

F(X., XkiJpg)- (ft o), HHF(Xi+i, g)).

Let
Yo (KX XXD)*X,»1 =» XMXXIXX, ™,
be a bijection defined by the formula
YO{(X,, XD, X,,,} 1= <X,,=,X,, *F>

Easy calculation shows that the pair (y,,, ida) is an isomorphism
(in category OG(f)> of the object (2.16) onto the object (. 17).
Thus, these objects are equivalent. Object . 17) is a geometric
object of the space (1.1) as an object equivalent with geometric
object (2. 16) of this space. In virtue of induction principle,

for any positive integer m G-product (2.3) of m geometric objects

(2.1) of the space (1.1) is a geometric object of this space. 0
We will prove one more important lemma. First, we will

introduce the concepts of non-effectivity subgroup and reper of

order m (cf. Cl14), pp. 24 and 49, also £81).

Definltion 2. 2. Subgroup

{ogG: A F(y. 9> = vy}
yEY

of the group G will be called a non-effectlvity group of a
nonempty subset Y of abstract object (X, G, F).

Definition 2. 3. Every finite sequence of m distinct points
Pi, Pn -1 p» belonging to the fibre of Klein space (1. 1) such
that the non-ef fectivity group of the set (@,, p2, p,) is trivial
will be called a reper of order m or simply m-reper in this
space.

It appears that in some Klein spaces m-repers may not exist
(cf. 1143, p. 49).

Lemma 2. 2. If there exist m-repers in Klein space (1.1),

then the abstract object (cf. example 1.2.1)
G, G, L, L&, 9) =0g-Xx (2.18)

is a geometric object of this space.



Proof. Let us define G-product of m~spaces <i. 1)
M, G, >
Flp. P EOL P TG D). =19
By corollary 11. 1. 3 and theorem 2, 1 it is a geometric object of
this space. It can be, proved (cf. £141, p. 57, also [81) that the
set M” of all m-repers is an invariant subset of the fibre of the

object (2. 19). Thus, we can define partial object

OB, G, FjMSXG>. <. 20)

Let Ut be an arbitrary transitive fibre of the object (2.20) @Gf
the object is transitive itself, we define Ut = MS). In virtue of

theorem 11. 3. 1 partial object
at G, f-j”Q) (2.21)

of the object (2.19) is a geometric object of the space (1.1). It
can be shown (cf. £141, p. 58), that objects(. 18) and(2.21)

are equivalent.Therefore, (2.18) is ageometric object. 0

§3. Objects of transformations
Let
*,, G, F,) G-1)
and
X2, G, F2) G.2)
be two abstract objects supported by the same group G, and let
~(X,, X2) be a set of all transformations y: X, —*X2 defined on the
fibre of object (@B. 1) with values in the fibre of object (3.2).
Let us consider also representations and P2 of objects (3.1)
and (3.2), respectively, (cf. definition I.2. 1), and the
transformation
F: <HX,, X2)*G -»¥(X,, X2),
defined by the formula
F<Y.S>:=F2g°-rFlg-.. <33>
where Fjg-,=Mg " 1), F2g= £2<g>.

It is easily seen that transformation F is an operation of the



group G on the eei of transformation i(X,,X2). Hence, we can
define new abstract object
(FICX™X)), G, P). <3.4)

Definition 3. 1. Abstract object (3.4) with transformation
formula F defined by <3.3) and its every partial object will be
called objects of transformations of the fibre of object (3.1)
into the fibre of object (3.2) or simply transformation objects.

First, we wiil prove the theorem concerning geometricity of
transformation object.

Theorem 3. 1. If abstract objects (3.1) and (3.2) are
geometric objects of Klein space (. 1), then each object of
transformations of the fibre of object (3.1) into the fibre of
object (3.2) is a geometric object of this space.

Proof. In virtue of theorem Il. 3. 1 concerning geometricity
of partial objects, it is enough to prove the thesis for the
object (3. 4) of all transformations. Let us consider G-product of

objects (3.1) and (3.2)
X,*X2, G, P),  F((X,, XD, 9 = F &, 9>, F3(x2,9) }
and then the object of all subsets of the fibre of this
G-product:
@X<xX*, G( p.)"  F*(A, @) = P(A, Q). 3.5

It follows from assumption and theorems 2. 1 and Il. 3.2, that
(3.5) is a geometric object of Klein space (1.1). Since each

transformation y: X, —*X2 can be represented in the form
y = {¢.- y ) ) x.€X, }
9°(X,,X2) is a subset of the fibre of object (3.5). For any

yeNiXuXj) and g«G we have

P*<Y_ S> = 2( (., Y ix,)): X, «X, xgj=
{F(=x,, Yy (X,)), 9 ) X, BX,} =
{(Fi<x»1S>, "Fa<y(X,),0)): X,EX, }

Denoting
y,:=F,(x,,g> (then x, =F1(y,,9-"))

we get



F*(y,9> = {(¢,- F2 (Y<F,<y,, g->>>,0)): y"X, }

and, therefore,

FP<y, 9 = {(x,, Fgg-yFjg-, (x,) ) x,€X, } (3.8)
for each ytKX,, X2) and g«G. Hence ¥(X,,Xa) is an invariant
subset of the fibre of geometric object (G.5), By theorem II. 3.1,
partial object

?(X,,X2), G, RJ)), F; = F*lg-(X, ,x2>*G <3"7>
9

of the object (3.5) is a geometric object of the space (. D.
Moreover, by @G.6) we have
(7, g> = i2g’y°Fig-n

what means, by @3.3), that transformation formulas Fi andFare
identical. Therefore, object of transformations @G. 4) and
geometric object (3.7) are identical. 0

Till today, objects of transformations were not considered
in papers on theory of Klein spaces. Further parts of thispaper
will convince us about their usefulness.

For an arbitrary abstract object

& G B <3.8)
we can define the object of all transformations
(9-<X,X), G, k), "MY.9) =Fg-yFg-, <3-9>

of the fibre of object (3.8) into itself. If y: X ->Xis a

bijection,” i.e. it belongs to the group $<X> of all

transformations of the set X, then, since Fg is also abijection,

we have

A A F «y”™F 9<X>.
Y«9(X)g€G § °

Thus, 8 (X) is an invariant subset of the fibre of object (3.9).

Moreover,

x, £g *(Fx’S> =V Fx*“Fg-,= Fg-x-g-.E P{G>"
and, therefore, image P(G) of the group G by representation of

object @ .8) is also an invariant®"subset of the fibre of object

(3.9). Partial objects

90, G, *»]9 X)xG) <3" 10)



and

(<G>, G, ¢.{><GixG) <3.11)
of object (3.9) are the examples of transformation objects of the
fibre of object (3.8) into itself. As the immediate consequence

of theorem 3.1 we have the following corollary.

Corollary 3.1 For each geometric object (3.8) of Klein
space (1.1) transformation objects @@.9)-(3. 11> are .geometric
objects of this space. In particular, object

G, G, «, 4KFx Q) - <3.12)
is a geometric object of the space (1.1).
It is easy to note that the triplet
G, G, J, I, 0 :=g-X-g- G.13»
is an abstract object. Using the above corollary we will prove

Corollary 3.2. For an arbitrary Klein space (1.1) abstract
object (3. 13) is a geometric object of this space.

Proof. It is easy to check that the pair (f, ida) is an

equivariant transformation of the object (3. 13) into object

@B- 12). Indeed, for all x,gf£G we have

QP <X),9) = fg*fx*fg-,= fg-x.g-"" fg-x-g-">= A<, 9) )
Moreover, the representation f: G —» fCG) of Klein space is’a
bijection (cf. corollary 1.1.1). Hence, objects (3.13) and (3.12)
are equivalent. Thus, 1in virtue of corollary 3.1, @. 13) is a

geometric object. D
Let C(G> denote the centre of the group G. Then

A A J&, 0> =g"Xx-g-"= X
xeC(G) g«G

Hence, C(G) is an invariant subset of the fibre of object (3. 13).
Thus, we get
Corollary 3. 3. Partial object
€@©, G, (3.14)

of the object <3. 13) is a geometric scalar of the space (1. 1.

In the previous part of this section we have shown (lemma
2.2) that if in Klein space there exist m-repers, then (2. 18) is

a geometric object of this space. The object <. 18) can be also a



geometric object in the case when m-repers do not exist in the
space (1.1), as will be shown by the following lemma.

Lemma 3. 1. 1Ff the fibre of Klein space (.1) is a finite or

equinumerous with one of the sets

Q<1<(N) for 1=0, 1, 2, -
then abstract object <2.18) is a geometric object of the space
(1. 1).

Proof. By assumption and lemma 1.2, scalar (1.13) is a
geometric object. Thus, in virtue of theorem 3. 1, object of

transformations

G, G, «i. «,<fx,g) = fg "Viig-~ vV fx <3" 15>
1
of the fibre of scalar (1.13) into the fibre of space (@. 1 is
also a geometric object. It is easy to verify that the objects

C2. 18) and (3. 15) are equivalent. |Indeed, for all X, geG we have

i1, ) = {9'fi. = fg .x = F<g-x) = F(L(x, 9) ),
where f: G —»F(G) is a bijection. Object (2. 18) is equivalent
with geometric object (3. 15) and, therefore, it is a geometric

object, as well. 0

84. Factor objects

To define a factor object we will start from the notion of
congruence (cf. C131, p. 39, also 141) in the fibre of abstract

object

& G B 4.1)
Deflnition 4. 1. Every equivalence relation r defined on the
fibre X and consistent with the object (4.1), i.e. satisfying the

condition

A A X, rx2=» F(,,0) rF2,0) 4. 2)
X,, X2«XgeG

will be called a congruence in the fibre X of object (4. I).
Let X/r denote factor set with respect to the congruence r,
and let Cxi denote abstraction class determined by x«X. It is

easy to check that the transformation

F1: (X/r)*G-+X/r, F" (Cxi,g) := [FCx, g>] “4.3)



is an operation of the group G on the set X/r (see 1131, p. 40).
Thus, the triplet

sr, G, F9) <4.4)
is an abstract object supported.by the group G.

Definition 4.2., Abstract object <4. 4) with operation Fr
defined by formula (4.3) will be called a factor object of the
object <4.1) with respect to congruence r.

The following two lemmas state certain important properties
of factor objects. Their proofs are to be found in 1131, pp. 45
and 43.

Learoa 4. 1. Each comitant of geometric object (4.1) of Klein
space (1.3) is equivalent with some factor object 4. 4) of the
object (4.1) with respect to congruence r defined in the fibre X
of object (“4. D).

Lemma 4. 2. Every transitive abstract object (4.1) is
equivalent with factor object

G/r, G, LO (4.5)

of the object <2.18) with respect to some congruence defined in
the fibre G of the object (. 18).

It is a well known fact (see e.g. 121, pp- 68-69) that the
fibre G/r of object (4.5) is a factor set G/H of the group G by
some subgroup H. Hence, the elements of the set G/r are left

cosets of the group G with respect to subgroup H.

liov, let us consider the object

@x, G, F9) (4.6)
of all subsets of the fibre of object (4.1). Let us note that the
fibre of factor object (4.4) is an invariant subset of the fibre
of object (4.6;. Indeed, due to condition (4.2), for all CxItX/r
and g(G we have

P @xl,g}* F((YCX: xry).g} =
= {F<y.g@)cX: F(X,9) rF(y.9)}= [F&, 9) J«X/r.
Also, it follows that the factor object (4.4) is identical with

partial object



Ir, G, F| )G/
of object (4.6). Hence, factor objects of the object (4.1) are
the objects of subsets of the fibre of object (4.1). Thus, as the

immediate consequence of theorem Il. 3. 2 we get

Theorem 4. 1. 1f abstract object (4. 1) is a geometric object
of Klein space (1. I), then each factor object (4.4) of this

object is also ageometricobject of this space.
The above theorem andlemma 4. 1 imply the following

Corollary 4.1. Each comitant of geometric object of Klein

space (1.1) is ageometricobject of this space.

At last, in virtue of lemmas 2.2, 3.1, 4.2 and theorem 4.1

we get the corollary.

Corollarv 4. 2. If there exist m-repers in Klein space (. 1)
or the fibre M of this space is finite or equinumerous with one

of the sets
Q" 1S(\) for 1-0, 1,2,- @n

(defined by the formulas (1.11>), then every transitive abstract

object (4. 1) is a geometric object of the space (1. i).

From geometrical point of view, assumptions of the above
corollary are not too restricting <cf. Section I, 85), since they
are satisfied by all Klein spaces discussed in geometry.
According to corollary 4.2, for a geometric Klein space (1,1)
every transitive object of category OA(G) is an object of

category 00 ().

Since abstract object (2.18) is transitive (cf. example
1.2. 1), bytheorem 4.1 and lemma 4.2 we get the followingsimple

corollary.

Corollary 4.3. Kecessarv and sufficient condition for that
every object of category OA(G) is an object of category O0G(f) of
geometric objects of Klein space <, 1)j is that abstract

object (2.18) is a geometric object of this space.

Unfortunately, it is not known if there exist Klein spaces

(1-1) such that abstract object (@.1!8) is not a geometricobject.

Using corollary 4.2 we will prove one more lemma.
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Lemma 4. 3. 1T there exist m-repers in Klein space <l. 1) or
the fibre M of this space is finite or equinumerous with one of
the sets <4.7), then for each epimorphism qx G —»H of the group G
onto the group H the triplet

. G, F,>, F.(,9) := <p@*h, <4.8)
where * denotes group operation in H,is a geometric object
the space <1.1)

Proof. First, we will show that F, is an operation of the
group G on the set of elements of H. For all h«H and g,, g2£G we
have

F, <h, gi"g,) = 4>=<g2°g,)*h = 9<g2)*9<g,)*h =

= 9<92)*F.(h,9,) = F, & (, 9,> g2).
Thus, F, satisfies the translation equation. Moreover, for h«H we
have
F, <h, e) = p(e)*h = eH*h = h,

where e and eM are the neutral elements of G and H, respectively.
Hence,F, satisfies the identity condition as well and,
therefore, it is an operation of G on H,and the triplet <.8) is
an abstract object. It is easy to note that <4.8) is a transitive
object (since 9 is a surjection). Thus, in virtue of corollary
4.2, abstract object (4.8) is a geometric object of Klein space

<1.1).D

§5. Disjoint union of objects
Let
*x., G, F), seS S D
be a family of abstract objects and let
«XS X. = «L(J<£ X.xts)
be a disjoint union of the family of all fibres of objects <5, 1).

Let us also consider a transformation

- *
Pr (Vg Xm)*G =% Vo X.

_*
a«8
defined by the formula

F((X-,s),9) = (F.CX,,,9),s) TFor x««X, and s«S. 5-3)

of



It is easy to note that F is an operation of thegroup G on the
set (5.2). We will call it a disjoin union of operationsF, and

denote

V F. :=F. G. 4>

HCS
Definition 5 1 Abstract object
(Vg X< G, Y F. ) G-5
with transformation formula (5.4) defined by (5.3) will be called
a disjoint union of abstract objects @G. D).

Expressively speaking, object (5.5) is constructed of
objects (5.1) by "glueing” together their fibresX., preserving

operations F. of the group G on these fibres.
Let us also consider a scalar
G G D, 1.9 =s. G- 6)
We will start from the following theorem.

Theorem 5. 1. If abstract objects (G. 1) and (5.6) are
geometric objects of Klein space (1. 1) and the set of ranks of
all these object is bounded from above, then disjoint union (5.5)

of objects (. 1) is a geometric object of this space.

Proof. Let k, (s«S) denote the rank of the object (G. 1) and
k, - the rank of the scalar (5.6). By assumption, there exists a

positive integer k such that

A k,™ k and k«$ k.
SES

In virtue of assumption and lemma Il1.1.1 there exist Dartial

objects

Qi-(W, G, fi">). <> = £,k Q->(M)XG <5 rj
and

@;-M, g, fik>), fi"> = £, QK>(M)*G <5-8>

of the standard geometric object of rank k of the space (1.1),

and bijections
y.: X —»QJ->(M), SsS€S, S —>QJIk*(\)
such that for all x.«X., seS and g«G the following equalities

fi-"01-.ix.), 9) = n(F.(X.-S>) (G-9>



and

file ¢7*(s), 9) = y* (s, g> ) = ¥p<s> <5. 10)
hold true. By <5.10), object (5.6) ia a scalar. Thus, by lemma
111. 2, 1, for all s£S the set

Qik><M>*<¥ ,<s)}

Is an Invariant subset of the fibre of standard geometric object

of rank k+2 and the equality
27 (A, £,<8)),09)= (FKk’<A,, 9).y. (S ). .11

where A«EQ™k><M), holds true. It follows that the set

Qjk**=>a = U Cik)<m)*{w,<s)>
S£S

is also an invariant subset of the fibre of standard geometric

object of rank k+2. Hence, we can define a partial object

@Qjk-2>), G, Tfjk*2>) <5.12)
where
f rfc-*2>— f<k.»2i i
1Q:k*2><M)*G
By <5. 11) we get
f:k*s,(<A.,y.is)).gt= (f;ko<A., ), y.<s) J <5.13)

for every A»£Q;ks<M> and s£S. It is easy to check that the
transformation
- V X, =*GEK*2"M)
defined by the formula
¥(X. ,9)) = ¥-<X.), ¥,<8))
is a bijection. Thus, due to <5. 13), (G.9) and <5.3) we get
succesively

Fik2>(y(<x., ) ), g } = fike>(<¥.<x,),y, <5)).9) =
(Fk"¥ x>, @), w<s) )= ¢, [F- X, 9) )Yy, <s>)=
=¥ (<r.(x, 9), s> }= w(F (., ), 9J).

what proves the equivalence of objects (5.5 and G- 12). Thus,
disjoint union (5.5) of objects (5.1) is a geometric object of

Klein space <l.D.Q



flov, let

X, G, FJ G. 149
be an arbitrary, non-transitive abstract object supported by the

group G and let iX.) ,«s be the family of all transitive fibres of
this object; Then the triplets

*., G, FJ), f*:=f |x,*G * stS <5.15)
are transitive partial objects of the object <. 14). This, with
the definition 5.1, imply the following corollary.

Corollary 5. 1. Each non-transitive abstract object <. 14) is
equivalent with the disjoint union <5.5) of all its transitive

partial objects <. 15).

Now, we will formulate necessary and sufficient conditions
for a ncn-transitive abstract object (5.14) to be a geometric

object of the space <1.1).

Theoi em 5. 2. It is necessary and sufficient for a
non-transitive abstract object <. 14) to be a geometric object of

Klein space (i. 1), to satisfy the follobring three conditions:

ta) each transitive partial object <5.15) of the object

G. 34) is a geometric object of the space <l 1);

(b> the set of ranks of all transitive partial objects

(G- 15) of the object <5. 14) is bounded from above;

© there exists a geometric scalar of Klein space <. 1)
with the fibre equinumerous with the set of all transitive fibres

of object <5. 14).

Proof. Let us assume that the abstract object <. 14) is a
geometric object of rank k of the space (@. 1). In virtue of
theorem Il1. 3.1, every transitive partial object (5.15) of object
<$5.14) is a geometric object of this space, and its rank k, is no
geater than the rank k of object <. 14). Thus, conditions <a> and
<b> are satisfied. By de.inition of geometric object, the object

<5.14) is equivalent with some partial object

@i“*=M). G, ° <57 i6>
of a standard geometric object of rank k of the space <l. 1). Let

Tit denote the set of all transitive fibres of partial object



(. 16). It is easily seen that lit is an invariant subset of the
fibre of standard geometric object of rank k+1, and the partial

object
e, g, 7). fi-” = 7 *,>]|1RxG G.,17)

is a geometric scalar of the space (i.1). Due to equivalence of
objects (. 14) and <. 16), there exists a bijection

y: X =>Q;k”iM,
satisfying the equivariance condition. It is a well known fact
“<cf. 1251, 1233) that such bijections transforms transitive
fibres of object <5. j4) into transitive fibres of object <. 16).
Thus, the set of all transitive fibres of object (5,14) is
equinumerous with the fibre 1Ilc of geometric scalar (. 17), what
ends the proof of condition (C)-

Conversely, let us assume that a non transitive abstract
object <. 14) satisfies conditions (@), <b) and (c). By corollary
5.1, object (. 14) is equivalent with the disjoint union <. 15)
of all its transitive partial objects and, due to condition ()
and corollary 1.1, scalar (5.6) is a geometric object of the
space (1- 1). Hence, by conditions (@ and (b), all assumptions of
theorem 5.1 are satisfied and, therefore, a disjoint union (5,5)
is a geometric object of Klein space (1.1). Since the object
G- 14) is equivalent with this disjoint union, it is a geometric
object, what ends the proof of the theorem. 0

We know, Tfrom considerations conducted in 8 ™ that in Klein
space satisfying the assumptions of corollary 4.2 every
transitive abstract object supported by the group G is a
geometric object of this space. Hence, in virtue of above
theorem, the following corollary is true.

Corollary 5 2. Let us assume that there exist m-repers in
Klein space (. 1) or that tne fibre M of this space is finite or
equinumerous with one of the sets (4.7). Then & non-transitive
abstract object (. 14) is a geometric object of this space iff

conditions (b) and (c) are satisfied.



Section 1V

ELEMENTARY KLEIN SPACES

General properties of Klein spaces arid its geometric object
will be now illustrated by examples of elementary Klein spaces,
such as vector space, unitary space, affine space and Euclidean

space.

81 Abstract linear objects

First, we will define a linear object and linear Klein space

(cf. ti131, p. 47 and 1231).

Definition 1 1 Abstract object

v, GP ()
will be called linear over the field K iff its fibre V is a
linear space over K and transformation formula F satisfies the

condit ion
F@A,v,tX2v2,0> = X,F(v,,9) + \2F(v2,0)-
Linear object over K (1. 1) will be called n-dioensional iff

dim*V = n. Effective linear objects over K will be called linear

Klein spaces over the Tfield K

Let Uk and W’ be a k-dimensional and m-dimensional,
respectively, linear spaces over the same field K. Let us
consider two linear object over K

Uk, G,F,> 1.2)
and

w, G,F,,> (1.3)
supported by the same group G, and the object

GU\NW), G B, ?(y,9) = Fos*"lg-"1 a,4>
of all transformations of the fibre of object (1.2) into the
fibre of object (1.3). Let £(Uk,W*) denote the set of all linear

transformations of the space Dk into the space W'. According to

definition 1.1 of linear object, bijections Fjg and F*g are the



linear transformations. Hence, the implication
Y<:£(Uk,W») => FO0goy»Flg-,EE(Uk,W”>
holds true for all gfG. Thus, £<Uk,W*> is an invariant subset of
the fibre of object (1.4). Therefore, we can define a partial
object
(EUKW>, G, F).,F(y,g> = FOg°y°Flg., .5
of object (@.4). 1t is a well known fact (cf. 1191), that the
fibre of object (1.5) with operations defined as follows:
ft +Y2>) =Y i +Yziu), Xy><u> := Xy(u)
is (k-m)-dimensional linear space over K. We can check by simple
calculation that for all X,, X2«K, yu y2«E(Uk,W*“> and g«G we have
F(X,y,+X2y2,09) = X,Fy,, @) +X2F (¥2,9)- .6
It follows that (1.5) is a linear object over K. Thus, we get the
following corollary.

Corollary 1 i. If (1.2) and (1.3) are two linear objects
over K and their dimension is k and m, respectively, then the
object (1.5) of all linear transformations of the fibre of object
(1.2) into the fibre of object (1.3) is a (kem)-dimensional

linear object over the field K
By theorem Il1l. 3. 1 we get another corollary.

Corollary 1 2. If linear objects (1.2) and (1.3) are

geometric objects of n-dimensional linear Klein space over the
field K

v, G D, a.n
then linear object (1.5) is also a geometric object of this
space.

We can generalize the above considerations. Let us examine

(instead one object (1.2)) k linear objects over K
?, GF,), n,=dimkKv,* 1-1,2,-, k .8
and G-product of these objects

V2’x=*2k, G, F). 1.9)



Let

PYyQ?2™* <ViA V), G, F) <1.10)
be the object of all transformations of the fibre of G-product

(1.9) into the fibre of object (1.3). It is easily seen that the

set

E£(V?\ VIS Wm>
of all k-linear transformations (i.e. linear with respect to each

variable separately, with remaining variables fixed)

y: ->V®

is an invariant subset of the fibre of object <l. 10). Let us

consider a partial object

(E<V2\V?2k;Wy, G, F> 1.11)

of this object. We know (cf. £133>, that the fibre of object
(1.11), with operations defined as usual, is an

(n, —mvmm)-dimensional linear spare over K It is easy to check
by direct calculation that for all X,, Xj£K, gtG and every

Vh V2EE(V"?, -, ViZ;WRD) the equality (1.6) remains true. Therefore,
(@. 11) is a linear object over the field K. Thus, we get another

corollary, being a generalization of corollaryl.1.

Corollary 1.3. If (1.8) and (1.3) are the linear objects
over K, then the cfoject (1.11) of all k-linear transformations of the
fibre of object (1.9) into the fibre of object (1.3) is an

(n, =-mnkem>-dimensional linear object over thefieldK

Subsequent corollary follows immediately from theorems

1. 2.1 and . 3. L

Corollary 1 4. If linear objects (1.8) and (1.3) are
geometric objects of linear Klein space (1.7), then linear object

(1.11) is also a geometric object of this space.

To study the properties of Klein geometry of a given Klein
space, it is convenient to choose the simplest (canonical) space
of the class of equivalent spaces and conduct studies in it We

will do it in the following parts of this section.

Let GLCn, K) denote the multiplicative group of all

non-singular square matrixes of n-th order with elements
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belonging to the f*eld K, and GL(n, K> - an arbitrary subgroup of
GL(n,K). Abstract object (cf. 1133, p. 23, [53,C233)

«', GLCn.K), f), fF{Cx*>, [AI]) := A] x°) <.,12>
(we use the Einstein®s sumation convention) and each its

subobject

(Kn, GL(N,K), 2, ?=FPEXQL(n, K) <1.13)
are the examples of n-dimensional linear Klein space over the
field K. In the sequel they will be called canonical linear Klein
spaces. It follows from considerations presented in 1233 that
every n-dimensional linear Klein space over K is equivalent with
one of the spaces (@. 12), <l. 13). Object (1. 13) is also called an
n-dimensional canonical vector Klein space. Due to accepted
definition, vector Klein space is a linear Klein space, but the
converse generally is not true. In the sequel we will discuss the

most important geometric objects of vector Klein space.

8§2. Covariant and contravariant vectors

Let us consider an n-dimensional (canonical) vector Klein

space over the field K
®, GL(M, K, B, F(x), [AIl)= A x7). @.D

Due to corollary Il. 1.3, space (2.1) is its own geometric object
called, in general case, a point object. For a vector Klein
space, though, we will bring the following definition (cf. [133,
p. 23).

Definitlon 2. 1. Point object of a vector Klein space <. 1)

will be called a contravariant vector.

As we know, the centre of a general linear group GL (n, K) is
a group of scalar matrixes. We will denote this group by S(n, K).
By corollary IlIl. 3. 3, the object

S0, K, GL(M, K, D, 1X,A) =X Tfor XeS(n,D, A«GL (n, K)
is a geometrid scalar of Klein space (2.1). Since the set of all

scalar matrixes is equinumerous with the field K, by corollaries

1. 1.1 and 11. 1. 1 we get the following corollary.



Corollary 2. 1. Abstract object
& GL@ D, D, 1K =X .2
Is a geometric scalar of n-dimensional canonical vector Klein
space over the field K
It is easily seen that the following corollary Is also true.

Corollary 2.2. Geometric scalar (2.2) of the space (2.1) is

a one-dimensional linear object over the field K

The next corollary follows easily from the previous one and

corollaries 1.1 and 1.2.
Corollary 2.3. Object

GEK’, K, 6L, K, F)

F(a, A) = = anf @3

of all linear mappings a: K' —-»K of the fibre of contravariant
vector into the fibre of scalar (.2) is a geometric,
n-dimensional linear object of Klein space (2.1).

Definition 2. 2. Geometric object (2.3) will be called a
covector or a covariant vector of vector space Q.1).

Now, let us consider abstract linear object over K (cf.

£131, p- 23, also £231)
', GL(n, K), B, x> [AIl) == A x.), .9
where A] are the elements of matrix A"1, inverse of the matrix

A= [A<], and the mapping of the fibre of object (2.3) into the
fibre of object (2.4)

y: ECCL K > K, y@ = @), .5
where a,:=a(e,), and e, = GJ]>, 1,j=1,2, ,n is a base of the
fibre Kn of contravariant vector (2.1) (&{ denotes the
Kronecker®s symbol). It is proven (see e.g. £191) that such
defined mapping is a linear isomorphism. We will show that the
pair <y, idSL(,-K)> is an isomorphism (of category OG(f>) of object
(2.3) onto object (2.4). Due to definition of mapping (2.5) and
the transformation formula F of object (2.3), for each a*t (K", K>

and AtGL(n, K) we have

YE@A)=y(a»T>= (@>f (e,))= (afE,,A™) D.



Let
fE,,A") =v, = (vj) c K"
Then f(v,, A) = e, and
F(v..A> = F((vD), [&51} = B2 v =ed= 6ED.
Thus,
A“ vV} = 6%
Therefore, [vi] is an inverse matrix of A, 1i.e.
vi = A
Hence,
Y(FG A I= Otv,; )= (Ve))= A e,))=
= (AjGle,) ) = F(><©), [All ).
and, therefore,
(<0, A) =y Fto. A) ).
Since y is a bijection, pair (, idal<nK!> is an isomorphism of
category OG(F). The results obtained above we will formulate as a
lemma.
Lemma 2.1. Transformation (2.5) is a linear isomorphism, and
pair (y, idau<n.«)5 " an isomorphism of object (2.3) onto object
@. 9.

As the immediate consequence of this lemma we get:

Corollary 2. 4. Object (2. 4) is a geometric object of a

vector Klein space (2.1), equivalent with covariant vector (2.3).

Deflnition 2. 3. Geometric object <2.4) will be ceiled a

canonical covariant vector of vector Klein space (2. D.

It appears (cf. £163, 1233 ) that objects (2.1) and (2.4) are
abstractively equivalent, but not geometrically equivalent. In
geometric interpretation it means that these objects, considered
as Klein spaces are equivalent, but treated as geometric objects
of vector Klein space are not. It can be shown that the covector
of covariant vector (.4) is an object equivalent with

contravariant vector.



83. Tensors

Let us consider a contravariant vector and a covariant
vector <2.4) of vector Klein space (2.1). Define the cartesiaxi
product

E<p «> 1= Knx_ XxK"XK"x«.xK", G D
q p
where the first ofactors are the fibres of object<.1),and the
next p - thefibres of object (2.4). One of thenumbers p,q can

be equal to zero. Let
E“r 7, GL(n, K, B,
- T G-2
Fv,, ,uB),A) = (F(v,, A, ~ T(up,A) }
be a product object defined of objects (. 1) and (2.4). Since
covariant and contravariant tensors are geometric, n-dimensional

linear objects over K, in virtue of corollaries 1.3 and 1.4 we

have
Corollary 3. 1. Abstract object

EE >, K), GL(n, K, F)

k-3
F@, A) = IA»aS>FA-1= o»FA_,

of all (p+g)-linear mappings a: E10*1" —»K of the fibre of object
(B-2) into the fibre of scalar @.2) is an n»*a-dimensional,

linear over K, geometric object of the space (2.1).

Definition 3. 1, Geometric object (3.3) of vector Klein space
@-.1) will be called a tensor of valence (o, gq) or tensor

contravariant of degree p and covariant of degree g
Now, let us consider the cartesian product Kr=>q of the

lleld K. Any element of this product we will denote by the symbol

PN - L . ~
(a:!lﬂﬁ ), where i, ip.jt, Jj.* 1,2,~n.
Let us define an abstract linear object over K (cf. 1131, p. 25

and 153)
KnP~, GL(n,K>, F) <3.4)
with the transformation formula defined as follows:

iTeip L1 ~x 1 i»ip . J
2 Y= W, -Aip ALT 1, “j.-jj’

where A3 are the elements of a matrix A"’, inverse for A-[A4].



Finally, let

y: £ (E"=I1K) >=KnP*Q B3, 6)

be 3 transformation of the fibre of object (3.3) into the fibre
(3.4), defined by the formula

Y(0) = (0(ey .- -eK\ eKp>), @G.7
where

el= (0j). 1*1, 2, .n G- 8)
ancs

ek = @iiksi, 2, n @ 9>

are the bases of contravariant vector (.1) and covariant vector

(2.4), respectively, and Si denotes Kronecker"s symbol.
We will prove the following lemma.

Lemma 3. i. Transformation (3.6) defined by the formula (3.7)
is a linear isomorphism, and the pair (v, idds,K,) is an

isomorphism of the object (3. 3) onto object (3. 4).

Proof. Let us note that transformatlon (3.6)is alinear
isomorphism (see e.g. C193). In the previous part of this section

we have shown (see the proof of lemma 2,1) that the implication
f<e,,A) =v, = (V> =* vj = A @G. 10
Similarly, we can show that
'k, A*7) = u* = (U*>=* u? = A~ @G. 11)
For the sake of simplicity, we will carry the proof of second
part of the lemma in the case p=q =1 Using the above
implications and relations (3.3), (3.7) and (3.2), for each
aff E™” KJ and AEGL(n, K) we have
ifF@ A)) - y(@FA_,) = (@FA_.(es,e")) =
= @ E,,A 7, ?(Ek,A“>5} = {o(vi,uk)) =
= {o(vi es,use))= (@@t e, A e’>) -
= (AN A| ate,, e')) =P (y(a), A).

Thus, the pair (y, idat,,,,K>) is an isomorphism of the object (3.3)

onto object (3.4). For arbitrary p and gq the proof is similar. 0



As an immediate consequence of the above lemma we get the

following corollary.

Corollary 3.2. Abstract object (3. 4) is a geometric object

of vector Klein space (2.1), equivalent with tensor (3.3).
Definition 3.2. Geometric object (3.4) of Klein space (2.1)
will be called a canonical tensor of valence (, ¢p-

Using denotations:

A- A1, A--Lal-]l
and

-i- i,_ip
{a” e)=F((a )- A1)
J%0, J™jg

we can express the transformation formula of the object <3.4) in

in the form well known in tensor calculus:

ar ,~£ i) i"V. jJsaj.-~j«

Contravariant and covariantj vectors are obviously tensors of
valences (1,0) and (0,1), respectively. Some of the properties of
tensors over the field of real numbers are discussed in C131.
They can be easily transferred to the tensors over arbitrary

field K

84. Beng;4 eg-
Let be given an n-dimensional vector Klein space over the

field of real numbers R

R, GLin,R), P, F(&D, [AI]1)= @I x), <4.1)
and a homomorphism jD: R,, —»R,, of a multiplicative group
RO= R\(0) .of reals into itself.

In the space (4.1) there exist h-repers. These are (cf.
C141, p. 52) all bases of the fibre R". Moreover, the mapping
= o,,»det 1is an epimorphism of the group GL(nh, R) onto the group
i® (RO). It follows (cf. lemma Il1l. 4. 3) that the triplet
@ (RO>, GL(n, R), F,)), F,(X, A) :=»0(det A) =x “4.2)

is ageometric object of the space (4. 1). Object (4.2) will be



called a generalized density. It appears (cf. til) that the only

measurable homomorphisms :R,, —*R= are the functions of the .
form
Pp.<t> = Ftl* <*.3)
and
= (sgnt)ftf 4.9

where a is an arbitrary real number. Hence, we can define (cf.
1133, p. 25, also £51) abstract objects
R, GL(n,R), F,), F,<x, A) := ldet At*ex <4.5)

and
R, GLCn, R), F2), F, (X A) :* sgn<det A) =ldet Al *=x. (4.6)

Definition4. 1 Abstract object (4.5) and (4.6) will be
called a W~density(or Weyldensity) of weight (-a) andG-density

(or ordinary density) of weight (-a)-
It is easily seen that the following corollary holds true.

ICorollary 4.1, W-densities and G-densities of an arbitrary

weight are linear object over the field R.

Let us note that W-density of weight 0 is a scalar (with
K=R), and G-density of weight O is an abstract object of the

form
R, GL(n, R), F3), Fs x ,A) = sgn(det A)"X @.7
called a blscalar.
First, we will prove the following theorem.

Theorem 4. 1. W-density of weight (-a) is a geometric object
of vector Klein space (4.1).

Proof. If a=0, then the object (4.5) is a scalar and,
therefore, a geometric object (cf. corollary 2.3). Hence, we can
assume that a™0. Let us note that the mapping

g GL (n, R> —* R~ = (0,+«>), P = i, skt

where (@, is defined by the formula (4.3), is an epimorphism of
the group .gL (0, R) onto multiplicative group R,. Thus, due to

lemma I11. 4. 3, abstract object

®R*, GL(n, R),F4), F4(x, A) := Idet Al*-x,  a*0 “.8)



is a geometric object of the space <4. 1). Moreover, the object

R-, GL(n, R), Fs), Fs(x, A) := ldet Ala-x, o, (4.9)
wnere R_ := {-<»,0), 1is equivalent with the object (4.6). Indeed.
y: R- —>R,, y(x> 1= -x

is a bijective function, and since
Fs(y(x>,A) = idet Al "oy (X) = -l det Ai -<x = y<ldet AL*x) =y (F4<x, A) )
the pair (y, idal <,.R>) is a morphism of object (4.8) onto object
(4.9). It follows that (4.3) is a geometric object of the space
<4. 1). Since the scalar (2.2) (K=R) is geometric, in virtue of
corollary Ill. 1.3, each scalar with a finitefibre is geometric.
In particular, the scalar withone-element fibre
(<0), GL<n, R), 10). lo<0, A) =0 tR u. 10)
is geometric. Geometric objects (4.8)-(4. 10) formsa family of
all transitive partial objects of the object (4.5) for c<0. It
fellows then, by theorem I1Il. 5.2, that W-density. of weight <-0)
(@*0) is a geometric object of Klein space (4. 1), what ends the
proof. D
Lemma 4. 1 Biscalar (4. 7) is a geometric object of vector
Klein space (@. 1.
Proof. Mapping
9: GKn, R) —* <1, 1>, 9 (A) := sgnCdet A)
is an epimorphism of the group GL(n, R> onto multiplicative group
<-1,1} Due to lemma IIl. 4.3, the object
(i-1,i), GL(, R), F<), Ft(, A) = sgn(det A) =x (4.11)
is ageometric object. It is easy to note that, tor an
arbitrarily fixed acR,, it is equivalent with the object
H{a, a, 6L M, R), F7), F7(,A) = sgn (det A) =x. “4.12)

Therefore, (4.12) is a geometricobject. Objects <. 10>-(4. 12)
forms the family of all transitive partial objects of biscalar
(4.7). Geometricity of biscalar (4.7) follows immediately from

this fact and theorem I111.5.2.0

Theorem 4. 2. G-density of weight (-a) is a geometric object

of vector Klein space (4.1).



Proof. It follows from lemma 4. 1 that the theorem is true

for a=0. Let us assume then, that or*0. Mapping
 GL<n, R> —»R,,, P := <p,»det,
where <p denote the function <4. 4), is a group epimorphism. Thus,
by lemma 111. 4. 3, the object
(RO, GL<n,R), F.), F8<x, A) = Q<A> =X <4.13)

is geometric. G-density of weight (-a) <a*Q) hasonly two
transitive partial objects, i.e. <4.13) and <4.10). Invirtue of

theorem 111. 5.2, it is a geometric object of the space 4. D.0O

85. Tensor densities

Let us consider again the n-dimensional vector Klein space

<4. 1) over the field R of real numbers, and the object
R,GL<n, R), 4),5<x, A) := ?CA) X, <5.1)
where ® GLCn, R) —*R is a transformation defined by the formula
®<A> = ldetAl *, a«<R, 5.2)
or the formula
Sp<A>= sgnidet A) I det Al“ atR <5.3)

Depending on whether ¢ is defined by (5.2) or <5.3), geometric
object <5.1) is either W-density or G-density, respectively, of

weight <-a). Let us also consider product object <3. 2> <K=R)

GL<n, R),
). P . 45
F(<v,, Up),A}= (F<v,a,-, f <UpAT)

and object

E<Etp™>,R), GL<n, R), F}

(E<Etp )) i D). F} G, 5)

F 10, A) = ®Aca‘“ A"’

of all <p+qg)-linear mappings a: —*R of the fibre of object

<5.4) into the fibre of object <. I).
Corolldries 1.3 and 1.4 imply the following:

Corollary 5. 1 Object <5.1) is a linear over R geometric

object of vector Klein space <4,1),

Definition 5. 1. Geometric ob-iect <5.5) of vector Klein space



(4. 1) will be called a tensor density of valence (p, g> and weight
(-a) (or, more precisely, tensor V-density or G-density of
valence (@, 9) and weight (~a>, depending of whether ¢ is defined
by formula (5.2) or (5.3)).

Let us consider a linear object over R <cf. C131, p. 25,
also [5))
(RrP a, GL(n, R), F), (5.6)
with the transformation formula P defined as follows
F(<a3ii:"iaﬁ)’ A) = (tpCA) ,A,*ﬁ,;) «1 a;\’“p:1 ), (5.7)
where ® is defined by (5.2) or (56.3) and
A= [AIl, A- = [All-
Let (3.8) and (3.9) be the bases of, respectively, fibres of
contravariant and covariant vectors over R, and let
y: E<£PP*,R) ->Rn (5.8

be a mapping of the fibre of object (5.5) into the fibre of
object (5.6), defined by the formula (3.7).

Leag.o 5. 1. Pair (, where y denotes the
transformation (5.8) defined by (3.7), is an isomorphism of

object (G.5) onto the object (5.6).

Proof. As in 8§83, we will carry the proof only for the
particular case p=g=l- For all other p and g the proof is quite
similar. Using (5.5, @G.7), G4, (3.10), (3.11) and (G.1) we
get, for each crce(E"p-a\ R) and A£GL(n, R),

YEE A )=y A<a»FA-, )= @A°0°FA_, (e,, €) ) =

@a (a(f (e,- A-7), F<e®.A"")))) = @A (a<v,, uk>)) =

= (™(aivi e,, { el))) = (®CA) Ai Ai o(ej, e“))
and, therefore,
yEE AN)=P Y@, A.-
Since y is a linear isomorphism (cf. lemma 3. 1), it is a
bijection. Kence, pair (, ida,(,,,J) 1is an isomorphism of
category O0G(f).0

Corollary 5.2. Abstract object (.6) is a geometric object



of Klein space (4,"i), equivalent with tensor density (5.5).

Definition 5.2. Geometric object <5.6) of vector Klein space
(@ .1; will ba called a canonical tensor density of valence (@, Q)
and weight (-a).

Tensor densities and their properties are presented in 113).

86 . Geometric cfojects of..cQ.ementary %lci.n .spaces

Let us consider an n-dlmehsionai vector Klein space over the
field K

K, GL(n, K>, P, F(<x), [AII )= (AS x*; 6.1>

and an n-dImensional affine Klein space over the same field (cf.
example 1.2.3)

K', GA(n, K, B, FIXD, (D). M{1))= @I+A x> (6.2)

Let H(n,K) denote an arbitrary subgroup of lineargroup

GL(n, K). An important example of such a group is orthogonal group

over K, defined by the formula
0(n, K> = (AcGLcn, K): A-AT= AT-A = bE),

where E denotes unit matrix and AT - transposed matrix of ATo a
subgroup H(n, K) corresponds a subgroup (cf. 1131, p. 29 £53,
123))

GH(n, K) := (@, A): atK" * AtH(n, K>)
of the affine group GAvn, K). Subgroup
E(h, K) :- (@, A): aeK"» AeOin, £))

of the affine group, corresponding to the orthogonal group

O(n, K), will be called Euclidean group of degree n over A.
Let us consider subobjects
«K'. H(.,K), Ff.>, == 1 jK-vH (n, K) <6-3)
and
iK', GH(n, K), 2., : FIK"«GH(n K) <6°4)

ol spaces (6.1) and (6.-2), determined by subgroups H(n, K> and
GH(n,K), respectively. Due to corollaries 1.3. 1, they are also

Klein spaces. As we know, the space (6.3) is called an



n-dimensional linear Klein space over K

Definltion 6.1 Abstract object (6.4) will be called an

n-dImenslanal subaffine Klein space over K

Space <6,3) supported by the orthogonal group 0(n, K) is an
important example of Klein space. It is called an n-dimensional
unitary Klein space over K. Subaffine space (6.4) supported by
the group E(n,K) is called an n-dimensional Euclidean Klein space
over K More examples of subaffine spaces over S can be found in

C133.

Definition 6.2. Klein space (M, G, f) equivalent with one of
the spaces (6-1)-(6-4) will be called an n-dimensional elementary

Klein space over K

To study the properties of elementary Klein.spaces we
usually consider canonical elementary spaces (6.1><6.4). The

following lemma is a base for further considerations.
Lemma 6.1 Abstract object
K', GA(n, K, B, FWVv), (@), [Af])) = Ai v*> (6.5)
is a geometric object of affine Klein space (6.2).
Proof. Let us consider product object of the space (6-.2)
@PxKn GA (h, K), 2>, 6-6)
where
2 (((x), (y*>), (@D, [A]] ) = (@ + Al x1), (al + Ai y*)),
and the transformation
yr KAK™ —» K,y (((XD), (YD) ) == (y* - x*>
of the fibre of object (5.6) into the fibre of object (6.5). Dur
to theorem I1l1. 2. 1, object (.6) is a geometric object of the
affine space (6.2), whereas y, as is easily seen (cf, 1133, p. 32,
[53 >, is an invariant and surjective transformation. Thus,
object (6.5) is a comitant of geometric object (6 .6). Hence, by

corollary 111.4.1, (6.5 1is a geometric object of Klein space

(6.2).0

Definition 6.3, Geometric” object (6.5) of affine Klein space

G- 2) will be called a contravariant vector of this space.



It is easy tg note that the transformation
¥ GA(h, K> -*GL(n, K), ®(<a, A)) := 6.7
is a homomorphism of affine group into general linear group (cf.
C133, p- 28). Moreover, object (6.5) is induced by vector Klein

space (6.1) and homomorphism (6.7). Hence, by lemma 6.1 and

theorem 11. 3.3, the following important corollary is true.

Corollary 6.1. Each object induced by a geometric object of
vector Klein space (6.1) and homomorphism (6.7) is a geometric

object of affine Klein space (6.2).
For example, the object
Kn, GA(n, K), F.,), F, (), (@D, [AfD)= (A" u,)

induced by covariant vector (2.4) of vector Klein space (¢.!) and
homomorphism (6.7), is a geometric object of affine space (6-.-2).

We will call it a covariant vector of affine Klein space (6.2).
Now, we will introduce the following general definition.

Definition 6.4. Object Induced by tensor (3.5) (by W-density
(4.5), G-density (4.6), tensor density (5.6) for K=R) and
homomorphism (6.7) will be called a tensor of valence <P, Q)
(V-density, G-density, tensor density) Of affine Klein space
(6. 2).

Tensors (and also densities and tensor densities for K=R)
can be defined for an arbitrary linear Klein space (6.-3) and
arbitrary subaffine Klein space (6.4), using the following

corollary, being an immediate consequence of corollary Il. 3.3

Corollary 6.2. Subobject of an arbitrary geometric object of
vector Klein space (6,1) (affine Klein space (6.2)), determined
by subgroup H(n, K) of the group GL(n, K> (subgroup GH(n, K) of the
group GA(n, K>) is a geometric object of linear Klein space (6.3)

(subaffine Klein space (6.4)).

It follows that for an arbitrary elementary Klein space,
beside the objects of geometric figures (cf. definition 1.4.2 and
corollary 11. 1.2) there are other geometric objects: tensors,
and, in the case K-R, also densities and tensor densities. These
are all geometric objects of elementary Klein spaces with
practical applications. So, indroducing the definition Il. 12 of

geometric object is fullv reasonable.



CONCLUSIONS

We noted, in 85, Section 1, that one should expect certain
correlations between the fibres and transformation formulas of a
given Klein space and its geometric object. These correlations
exist for all objects of category OG(f) (cf. 81, Section 11).
Hence, 1in virtue of corollary 111.4.2, the existence of repers
of finite order in Klein space guarantees such correlations for
every transitive object of category OA(G). So, if we replaced
the effectivity condition in definition of Klein space by the
stronger axiom of existence of m-repers (cf. 85, Section 1),
then the category OA(G) could be called a category of geometric

objects and a pair

((M,G,F), OA(G))

a Klein geometry of this space. The notion of equivalence of
geometries can be introduced with the use of simple functor (cf.
84, Section Il1) for such defined Klein geometries. It seems,
though, that even in this case, definition 11.1.2, accepted in
this paper, is more properly designed, as prove the properties of
geometric objects of elementary Klein spaces, discussed ia
Section IV.

This paper, although it forms a certain whole, does not
exhaust the subject. Beside, undoubtedly important, elementary
spaces, in geometry there are also discussed classical Klein
spaces, such as projective, elliptic, hyperbolic, Grassmaa and
Stiefel space (cf. 043, 87, Section 1). Presenting the
properties of these spaces and their geometric objects exceeds

the limits of this paper, though.
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PODSTAWOWE POJECIA GEOMETRIN KLEINA

Streszczenie

Chociaz od stawnego Programu z Erlangen Feliksa Kleina uptyne-
4o juz ponad sto lat, nie jest on do tej pory w pedni wykorzysta-
ny. GHoéwna przyczyna tego tkwi miedzy innymi w tym, ze nie zostat
on dostatecznie precyzyjnie przedstawiony. Oryginalng definicje
geometrii, podang przez F. Kleina (p- [6]), mozna przedstawi¢ na-
stepujaco: Geometrig zbioru M, wzgledem grupy przeksztatcen G(M)
tego zbioru, lub krétko G(M)-geometriag, nazywamy zbidr wszystkich
whasnosci Ffigur geometrycznych, ktére nie ulegaja zmianie przy
przeksztatceniach grupy G(M). Whasnosci takie nazywamy niezmienni-
kami lub wkasnosciami geometrycznymi. Po pojawieniu sie konieczno-
Sci uprawiania geometrii opartych na zbiorach przeksztatcen, nie
koniecznie tworzacych grupy, przestrzenie z grupa przeksztatcen
zaczeto nazywac¢ przestrzeniami Kleina.

R. Sulanke przez przestrzen Kleina rozumie (p. [z1) , [22]) tran-
zytywna, lewostronng grupe Liego przeksztatcen, tzn. tréojke (M,G,T),
gdzie M jest rozmaitoscig, G - grupa Liego, zas f - tranzytywnym,
lewostronnym dziataniem grupy G na M. G-geometrig natomiast nazywa
pewng kategorie zwigzang z grupa Liego G. Wydaje sie, ze okreslenie
geometrii jako pewnej kategorii jest zgodne z oryginalnag definicja
Kleina. Niezmienniki, o ktérych méwi definicja Kleina, sg po prostu
morfizmami odpowiedniej kategorii.

E.J. Jasinska i M. Kucharzewski w pracy [4] G-geometrig nazwali
efektywny obiekt abstrakcyjny (M,G,f). W dalszych swych publikacjach
M. Kucharzewski (p- [12], [13])., opierajac sie na pewnych ideach,
zawartych w pracach R. Sulanke (p. [21]. [22] ), pojecia przestrzeni
Kleina, obiektu geometrycznego i geometrii okreslit tak, jak to

przedstawiono w 82 rozdziatu I niniejszej pracy. Definicje tych po-



jac¢ budza jednak pewne zastrzezenia (por. 85, rozdz. 1). Podstawo-*
wym mankamentem w definicji obiektu geometrycznego jest brak zwigz-
ku miedzy wtdéknem obiektu a wkéknem przestrzeni oraz brak zalezno-
&ci miedzy prawami transofrmacji obiektu i przestrzeni. Ponadto
okreslenie geometrii jako kategorii obiektéw geometrycznych prowa-
dzi do tego, ze niektdére nierdéwnowazne przestrzenie Kleina posia-
daja te samg geometrie.

Celem tej pracy jest uscisSlenie niektérych pojec¢ teorii prze-
strzeni Kleina i podanie pewnych ich wkasnosci. Rozdziat 1| ma cha-
rakter wstepny. Oméwiono w nim podstawowe pojecia, niezbedne do
zrozumienia dalszej czesSci pracy.

W rozdziale Il podano nowe definicje obiektu geometrycznego
i geometrii Kleina. Wprowadzono w nim réwniez niezdefiniowane do-
tychczas pojecie réwnowaznosci dwéch geometrii Kleina oraz wyka-
zano warunek konieczny i dostateczny na to, aby dwie geometrie byty
réwnowazne.

Rozdziat 11l poswiecony jest metodom konstrukcji obiektéw geo-
metrycznych. Okreslono w nim dwa nowe obiekty, a mianowicie obiekt
odwzorowah oraz sume rozdgczng obiektéw. Wykazano réwniez, ze
obiekty odwzorowan, obiekty ilorazowe, a takze G-produkty i sumy
roztaczne obiektow geometrycznych danej prz-strzeni Kleina sa
obiektami geometrycznymi tej przestrzeni. Podano takze pewne warun-
ki konieczne i dostateczne na to, aby obiekty kategorii obiektow
abstrakcyjnych, opartych na tej samej grupie, byty obiektami geome-
trycznymi odpowiedniej przestrzeni Kleina.

Uzyskane rezultaty zilustrowano w rozdziale 1V na przyktadach
elementarnych przestrzeni Kleina, takich jak przestrzen wektorowa,
unitarna, afiniczna i euklidesowa. Wykorzystujac pojecie obiektu
odwzorowah podano definicje tensoréw i gestosci tensorowych w no-

wym ujeciu.



OCHOBHHE nOHHTHH TECMETPiffl KJIEEHA

P e 3 KM e

Xoxh 3HaM6HHTaa "BpsanreHCKaH nporpaMMa™ 6Hjxa K3xo-
KSHa KaegHOM yate cto Xxtex xXoMy nasa#» ,3 3Thx nop OHa He
HcnojibSOBaHa, noaxoMy hio OHa He ¢j-ocxaxohho XOHEaa.

OparHHasLHoe onpeflejieHne reonexpHH H3jiosceHO KxegHOM
(cm. [6]1) mohho npeflCTasHTb cjie”yBmHM o06pa30M; PeoMexpas
MH osteciBa M cxHocnhxejiBHo rpynnH npeo6pa30BaHzg g(m) sxoro
MKOXeCTBa, HJIH KOpOTKO G(M)-reOMetrpHH, 3X0 MHOateCTBO
Bcex cboéctb reoMexpHHecKHX (Jaryp, Koxopne ne H3MeHHBTCH
npn npeo5pa3 0BaHHHX rpynnn g(m) . 3xh cBoficTBa Ha3HBaeM
HHBapHaHTaMH HXH VQOMelpHHeCKHMH CBOMCXBaHH.

Korfla BosHHKJia He o6xoadhmoctb paccMaxpasaniih reoMexpKéa
OHHpatoiiiHxaH na MHOxecisax upe0O6pasOBAHHU He olasaTejiBHO
rpynn, npocTpaHciBa c¢ rpynnofi npeo6pa30BaHH& Hanaxo Ha3 j-
BaTb npocTpaHCvBaMH KxeEHa.

CyjiHHKe P. npooxpaHCTBOM Kxeadsa sasHBaex (cm. [21] ,
{22J) xpaH3HTHBHYK), jxesocxopoHHyio rpynny Jlh npeoflRpasoBa-
hhé, x.e. xpofikKy (m,g,f) r~e M-MHoroo6pa3He? G - rpyn-
na Jih, f - xpaHSHTHBHoe, neBocxopoEHee #£enCXBHe rpynnH
G Ha M. G -reoMexpHH b choio onepe”™B oxo EeKciopaa Kaxero-
OHH CBH3aHa c¢ rpynnoa Ja. OnpesexeHHe reoMexpim KaK ae-
KoxopoK KaxeropHH cxoflHo e opnrHHaJiBHHM onpeflexeHHeM
KaedHa, noxoMy nxo HHBapnaHTh 3x0 mop$h3mh cooxsexciBy-
Kiniefi KaxeropHH.

fICHHCKaa E., KyxaxeBCKEE M. b padoxe [j4 G-reoMexpaeS
HaSHBaKJX 3(Jx|>eKXHBHHE, aOCXpaKXHHE 00BekKX (M,G,f). 3 Flpy-
rnx pabdoxax KyxaseBCKHE M. (cm. [i2] ., [13]) Hcnhojibsya ne-
Koxopne HfleH CyasHKe P. (cm. [21] ,[22D, hohhxhh npocxpaE-
cTBa Kaeffasa, reoMexpHaecKoro ofineKTa h reoMexpHH onpeflejiHE
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sax, KaK npeflcxaBJxeso b §2 rxasu i aiod paOoTu. 3th
onpe”ejieHHH BO036yx,ii;aK)2 0”aaKO HeKOiopue coraesEa (cm,
85 rs, I1. Ochobhhm HeflocsaikaM onpenexeHHH reowetpa-
necKoro ofiteKTa 3io otcyxcTBHe cbx3h Mexny paccxoeHHeM
oBneKTa h paccjioeHHeM npocTpaHciBa, a sose otcyrcTBHe
3aBHCHMOCTH UeSifiJ 3aKOHEVH TpaHG$OpMapHH OOBeKTa H
npocTpaHciBa,.KpoMe xoro onpenexenne reoMeipHH KaK
KaTeropnH reoMeTpHHecKHx oSbcktob npHBoaht k TOMy, hto
HeKOTopae HeaKBHBaxeHTHHe npocxpaHCTsa Kxetaa HMerai
0"HHaKOByK) reoMeTpHia.

liexBm btoS padoTH sBJiaeTCH yio®neme HekotopHX hohh-
thd TeopHH npocipaHCTB KxedHa h nonaaa HeKOTopnx hx
CBOECTB»

B rxase | H3JiosceHH ocHOBHHe hohhthh neobxonHMHe nxx
hohhthh flajiBHedmefi nacra paRoTH.

PjiaBa 11 coflepscHT HOBue onpenexeHHs reoneTpHHecKoro
006BeKTa h reoMeTpHH Kxedna. llpeflCTaBxeHO Mosce b HeR
Heonpe”ejieHO no chx nop noHHTne SKBHBaxeHTHOcCSH reoMe-
Tpirn KxeEHa, a laxxe noKa3aHO neotxonHMoe h nocTaTOHHoe
ycHOBHe sKBHBajieHTHOCTH fiByx reoMeT pnft.

B rxaBe Ill paccMOTpeHH MeioflH nocTpoeHHH reoMeipa-
necKHx 00BeKTOB. OnpenexeHo b HeE nsa HOBHe oRBeKXH
T.e. 00BeKT DTo6paz,eHHE h npsMyio cyMMy o0oneKTOB. Ao~
KasaHO Tose, hto oBRteKTH oTo6paxeHH#, (JaKTop-ofBeKTH,
G-npoH3BeneHHH h npxMne cyuuu reoMeipHHecKnx ofRneKTOB
npocTpaHciBa KxedHa oto reoMeipHHecKHe oRneKTH oToro
npocTpaHCTBa. llpencTaBjieHo lose HeolRxofHMHe h nocTa-
TOHHHe yCJIOBHH TOrO, HTO OOBeKTH KaTerOpHH aOCTpaKTHHX
06be KT OB HBXHKTCA reOMeTpHHeCKHMH OO"eKTaMZ COOTBeT-
c.TByx)aero npocTpaHCTBa KxedHa.

TloxyneHN pe3yxBTaiH npoHxxiocTpHpoBaHo b. rxaBe IV
upHMepaMH sxeMeHTapHHX npocipaHCTB Kxedna thkhx KaK
BeKTopHoe, yHKTapHoe, a$$HHHoes eBKxanoro' npocTpancTBa.
HcnoxB3yn. hohhth6 00teKTa oToRpaxeHHa npeflCTaBxéHO ho-
BH6 onpenexeHHa ieH3 opoB h TeH3opanx hxothocth.



