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PREFACE

Although almost a hundred years passed from the famous 
Erlangen Program of Felix Klien, it is still not being used in 
full. The main reason of this situation lies, among others, in 
the fact that it was not presented precisely enough. The original 
definition of geometry, as formulated by F. Klein (see C6 J), may 
be stated as follows: Geometry of the set M with respect to 
a group of transformations 8 (M) of this set or, simply,
8 (M)-geometry is the set af all properties of geometric figures 
which do not change under the transformations of the group 8 (M>. 
Such properties are called invariants or geometric properties. 
When the necessity appeared to study geometries based on the sets 
of transformations not necessarily forming groups, the spaces 
with a group of transformations were called Klein spaces. The 
present paper deals only with Klein spaces. Precise definition of 
concepts of geometric spaces which do not allow groups of 
transformations and studying their properties is much more 
difficult. Formulation of Klein's ideas in a precise way forms 
the base for more general studies.

R. Sulanke defines Klein space (see C 213, C 223 ) as a 
transitive, left Lie group of transformations, i.e. the triplet 
(M, G, f), where M is a manifold, G - Lie group and f a transitive 
left operation of the group G on M, whereas G-geometry is some 
category connected with Lie group G. It seems that the definition 
of geomety as a category coincides with original Klein's 
definition. Invariants, Klein's definition describes are simply 
morphisms of a proper category.

£. J. Jasihska and M. Kucharzewski defined G-geometry in C 41 
as an abstract object (M, G, f>. M. Kucharzewski in his further 
papers (see 1123, C 133) derived some ideas from papers by 
R. Sulanke (cf. £213, 1 223 ) and defined Klein space, geometric 
object and geometry as in §2, Section 1 of present paper. 
Definitions of these concepts, however, arouse some reservations. 
The main deficiency of the definition of geometric object is that
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there is no correlation between the fibre of object and the fibre 
of space, as well as between transformation formulas of object 
and space. Moreover, it follows from the definition of geometry 
as a category of geometric objects that, in some cases, non­
equivalent Klein spaces have the same geometry.

The aim of this paper is to present in a precise way some 
concepts of the theory of Klein spaces and to.discuss some of 
their properties. Section I is a kind of introduction. Presented 
there are some basic notions, necessary to clear further part of 
the papeq.

Section II contains new definitions of geometric object and 
Klein geometry. Undefined till now, the notion of equivalence of 
two Klein geometries is also introduced, as well as the necessary 
and sufficient condition for two geometries to be equivalent.

Section III is devoted to methods of construction of 
geometric objects. Two new objects are defined there, i.e. the 
object of transformations and the disjoint union of objects. It 
is proved that the objects of transformations and factor objects 
as well as G-products and disjoint unions of geometric objects of 
a given Klein space are geometric objects of this space. There 
are also presented some necessary and sufficient conditions for 
the objects of category of abstract objects supperted by the same 
group to be geometric objects of a proper Klein space.

Results obtained are illustrated in Section IV on the 
examples of elementary Klein spaces such as vector space, unitary 
space, affine and Euclidean space. With the use of the notion of 
the object of transformations we formulate the definitions of 
tensors and tensor densities in a new approach.

A reference is always given when we quote a result of some 
other author. In other cases the results presented are obtained 
by the author or they are generally well known facts.

B. Szoclrfskl

Katowice, 1989.



Section I 
INTRODUCTION

The aim of this section is to define basic notions and to 
introduce basic concepts, as well as presenting theorems, used in 
further parts of this paper.

SI, Operation of the group on the set
Let X be an arbitrary nonempty set, G - abstract group and 

let F be the operation

Definition 1. 1. Any mapping <1. 1) satisfying the following 
conditions:

A  A  F (F <x, g,), g2 ) = F <x, g2-g,), <1.
X«x gi, ga£G

where e is a neutral element of G, and g)'g2 denotes the group 
multiplication, will be called a (left) operation of the group C 
on the set X.

The above condition are called respectively a translation 
(or fundamental) condition and identity condition. If the 
effectlvlty condition is fulfilled, i.e.

A ( < A F < x , g ) = x ) = » g = e )  <1.4)
g«G x€ X

then the operation F is called effective, and the group G 
operates on X effectively.

It is well known that the set of all bijective mappings of 
the nonempty set X onto itself with the operation of 
superposition forms a group. Such a group will be denoted by 9 (X) 
and called a group of all transformations of the set X

Definition 1. 2. Homomorphism

F: X*G -»X <1 . 1 )

A F (x, e) = x 
x£X

<1. 3)

<p: G —* 9 <X> <1. 5)
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will be called a represent at ion of the abstract group G in the 
group of all transformations of the set X

Translation equation (1.2) and the identity condition (1.3) 
imply <cf. E123) that the transformation

Ffl: X-»X, F„(x) : = F(x, g) (1.6)

is a bijection of the set X onto itself. Hence, by (1.2), the 
operation (1.1) defines a representation

P: G -»§ (X), P(g) : = Fa <1. 7)

of this group in the group of all transformations of the set X.
It is easily seen that the reverse is true: for a given 
representation (1.5) we may define an operation of the group G on 
the set X as follows:

F(x, g) : = <ps(x), where tpg = <p (g). (1.8)

Definition 1. 3. Homomorphism (1.7) will be called a 
representation of the group G in the group of all transformations 
of the set X, defined or Induced by the operation (1. 1) of the 
group G on the set X  Transformation (1. 1) given by the formula
(1.8) will be called the operation of the group G on the set X 
defined or induced by the representation (1. 5) of this group in 
the group of transformations ff(X).

As the immediate consequence of these definitions we may 
state a necessary and sufficient condition for the operation of 
the group on the set to be effective.

Corollary 1. 1. The operation (1. 1) of the group G on the set
X is effective iff the representation (1.7) induced by this 
operation is a monomorpnism.

How, we will define a transitive operation.

Definition 1.4. The operation of the group G on the set X
will be called transitive iff for every x,, x2eX there exists a 
g«G such that

F (x,, g) = x2 (1. 9)

If the element g is unique, then the operation (1. 1) will be
called directly transitive. In such cases the group G operates on
X transitively (or directly transitively).
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§2. The category of abstract objects

Let us begin from the definitions of abstract object and 
Klein space (cf. [133, p. 12 and 153, [123, C153).

Deflnltlon 2. 1. Any triplet

<X, G, F> <2. 1)

consisting of an arbitrary nonempty set X, abstract group G and 
the operation F of this group on X will be called an abstract 
object. The set X will be called a fibre of this object, and its 
elements the points (or particular objects>. The operation F will 
be called a transformation formula (or transformation law) of the 
object, and the representation P of the group G in the 
transformation group 9 (X) induced by the operation F - the 
representation of the object (2. 1).

Def ini t ion 2.2. If the operation F of the group G on the 
fibre X is effective (transitive) then the abstract object (2.1) 
is called effective (transitive). Effective objects are called 
Klein spaces, whereas transitive - homogeneous spaces.

Example 2. 1. Let us consider an arbitrary group G and the 
transformation

L: G*G —* G, L(x, g) : = g ’X (2.2)

(the left translation in the group G). It is easily seen that L
is an effective and directly transitive operation of the group G
on the set of its elements. Thus, the triplet

(G, G, L) (2.3)

is the effective abstract object. Hence, it is an example of a 
Klein space.

Example 2. 2. Let X be a topological space, and let G be the 
group of all homeomorphisms of X. The transformation

F: X*X -»X, F(Xlg) := g (x)

is an effective operation of the group G on X. Therefore the
triplet (2. 1) is a Klein space. It is called a topological Klein 
space.

Example 2.3. GL(n.K) will denote multiplicative group of 
nonsingular square matrixes of n-th degree with elements of a
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field K. The set of all pairs:

GA(n, K> : = {'((aJ), [A{ J }: <aJ>£K" * [A|]«GL<n, K) }

with operation defined by the formula:
((b>), [B{] ) ‘ (CaJ), [Af]) := ((b'+BJa‘>, [BjAj] )

(we use the Einstein's summation convention), forms the group 
called affine group of n-th order over the field K The 
transformation

f: K"*GA(n, K) -> K",
(2. 4)

f ((x‘), ((a'>, [Aj] )) := (a* + Ajx1 >

is the effective and transitive operation of the affine group 
GA(n, K) on the set Abstract object

<K", GA (n, £), f) (2.5)

is called n-dimensional canonical affine Klein space over the 
field K.

Let us consider two abstract objects

OC,, G„ F.) (2.6)
(X„ G2. Fj) (2. 7)

and two transformations

(f,<P>, (2.S)

where \r: X, —»X2, and ?: G, —* Gs is a homomorphism G, into G2.

Definition 2. 3. Any pair of transformations (2.8) satisfying 
equi vari ance condi t i on

\  \  F2 (y(x,), f (g.) } = y (F,(x„g,)). (2.9)x,£X, g,£G,

will be called an equivariant transformation of abstract object
(2.6 ) into abstract object (2.7 ).

Whenever such a pair (2. 6 ) exists, the object (2. 6 ) is
equivariant with the object (2.7).

It is easy to verify (see [133, p. 18 and [93, [253 ) that 
the class of all abstract objects, as well as the class of all
Klein spaces with equivariant transformations as morphisms and
with superposition of pairs of transformations (2 .8 ) as 
composition form categories. These categories we will denote bv
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OA and PK, respectively. They will be called the category of 
abstract objects and the category of Klein spaces.

Now, let

(X,, G, F,> <2.10.'
<X2, G, F^) <2. 11)

be two abstract objects, and let

<Y, ida), y. X,-»X2 <2. 12)

be the equivariant transformation. The class of all abstract 
objects supported by the same group G, with equivariant 
transformations of the form (2. 12) as the composition, form the 
category as well. We will denote it by 0A<G) and call the 
category of abstract objects supported by the group G.

As the immediate corollary of the above definitions we may 
note that the categories 0A(G>. and PK are the subcategories of
OA.

In C 133 <cf. also [43, C 12) ) geometric object and Klein 
geometry are defined as follows:

Definltion 2. 4. Abstract object of category 0A<G), i.e. 
object (2.1) supported by the same group as Klein space

(M, G, f) <2. 131

will be called a geometric object of Klein space (2. !3>. The 
category OA<G) will be called Klein geometry of the group G or 
G-geometry.

In the following we will define the notions of invariants 
and comitants, very important for Klein geometries (cf. [133, p 
21, also [ 4) )).

Definition 2.5. The transformation y. X,—*X 2 of the fibre X,
of object (2.10) into the fibre X2 of object (2. II) will be
called invariant transformation (or simply an invariant') iff the
pair of transformations (2.2 1) is a morphism of the category
0A(G), i.e. the condition

A A F2 (y (x,), g) = ip (F, (x,, g) ) (2.14)
x,cX, g£G

If <p is surjection, the geometric object (2. 11 > will be called a 
comitant of the object (2. 10).
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The fundamental problems for each Klein geometry are to 
determine geometric objects and their invariants and comitants 
and to classify the objects, i.e. to determine classes of 
equivalent objects.

Since the classes of abstract objects, Klein spaces and 
geometric objects c*f a given Klein space form the categories, to 
define equivalence of objects we have to use the notion of 
isomorphism of respective categories (cf. [131, p. 21 and 1161).

Definition 2.6. Abstract objects (Klein spaces) are 
abstractively equivalent iff there exists a pair of 
transformations <2.8 ) being the isomorphism of the category OA 
(category PK).

B. Zaporowski proved in C253 the following theorem.

Theorem 2. 1. Morphism (2. 8 ) of the object (2. 6 ) into object
(2.7) is an isomorphism of the category OA iff y is a bijection 
and f is a group isomorphism.

As the immediate consequence of this theorem and definition 
2 . 6 we get:

Corollary 2. 1. Abstract objects (Klein spaces) (2.6) and
(2.7) are abstractively equivalent iff there exist a bijection 
y: X,—» X2 and isomorphism p: G,—*G2 such that the equivariance 
condition (2.9) holds.

Definition 2. 7. Objects (2. 10) and (2. 11) of category 0A(G> 
are geometrically equivalent iff there exists a pair of 
transformations (2. 1 2) being an isomorphism cf this category.

It is easily seen that the following corollary is true.

Corollary 2. 2. Objects (2.10) and (2.11) of category 0A(G) 
are geometrically equivalent iff there exists a bijection 
y: X, > X2, being an invariant transformation, i.e. such that the 
equi variance condition. '(2. ?4) holds true.

As a consequence of the properties of the category 
isomorphism we get the following corollary.

Corollary 2. 3. The relations of abstract and geometrical 
equivalence are equivalence relations, i.e. they are reflexive, 
symmetric and transitive.
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From the definitions 2.6 and 2.7 we infer that every two 
objects <2. 10) and <2. 11) supported by the same group that are 
geometrically equivalent are abstractively equivalent. The 
natural problem arises, whether the abstract equivalence implies 
the geometrical equivalence of objects. The answer is negative, 
as demonstrates the example presented in [163. In the same paper 
there are given some necessary and sufficient conditions for two 
abstractively equivalent objects of the category 0A(G) to be 
geometrically equivalent.

In the sequel we will call abstractively (geometrically) 
equivalent objects simply equivalent, unless it may cause any 
misunderstandings. In particular, the equivalence of two objects 
supported by the same group means geometrical equivalence

§3. Subobiects and partial objects
Let us consider an arbitrary abstract object

CX, G, F) <3. i)

and the subgroup 5=G. P denotes the restriction of operation F t--' 
the set X*S. It is easily seen that P is an operation of the 
group 5 on the set X. Therefore

(X, 2, F), f : = F |xx§ <3-2)

is an abstract object (cf. [133, p. 36 and [43).

Definition 3.1. Abstract object (3.2) will be called a
subobject of the object (3. 1) supported by the subgroup 5.

As the immediate consequence we get

Corollary 3. 1. Every subobject of Klein space is a Klein
space.

Such a method of defining subobjects can be generalized. Let 
5 be an arbitrary group and let

<p: 5 -*G (3. 3)

be a homomorphism. The operation

P: X*5-»X, P(x, g) :=F(x, q> Cg) )

is the operation of the group 5 on the set X (cf. [133, p. 37).
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(X, 3, P), P(x, g> := FOc, <p(g>> <3. 4>

Is an abstract object.

Definition 3.2. Abstract object (3.4) will be called induced 
or determined by the object (3. 1) and homomorphism <3.31.

In the particular case, if p is an isomorphism, the 
following corollary holds true.

Corollary 3. 2. Object (3.4) determined by the object (3. 1) 
and isomorphism <3. 3) is abstractively equivalent with the object 
<3.11. Moreover, (id,, <p) is an isomorphism (of the category OA) 
of object (3.4; onto object (3.1).

As a consequence of definition 3.1 of subobject and 
definition 3.2 of induced object we get the following corollary.

Corel ¿arv 3. 3. Object ''3. 4) induced by object (3. 1) and 
imbedding (3.3) of the subgroup C of the grouD G into G is a 
subobject l"i. 2) of the object <3. !), determined by the subgroup
S.

Now. we will prove another corollary.

Cor ol larv 3. 4. The object induced by a Klein space (2. 13) 
and a homomorphism <3.3' is a Klein space iff this homomorphism 
i s a aonomor phi sm.

Proof. On account of corollary 1. 1, the representation f of 
Klein space <2. 13) is a monomorphism It is easily seen that 
the representation ? of the object (M. 3, ?)

? (p. g) : = f (p, <p <g) ) 

induced by Klein space (2. 13) satisfies the equality 

? =

Since f is a monomorphism, ? is a monomorphism iff ? is a 
nonomorpM sm. Hence, by the corollary 1.1 we get the thesis. 0

To introduce the notion of partial object we will start from 
the definition of invariant subset (cf. 1131, p. 35, also C43).

Definition 3.3. A nonempty subset X„ of the fibre X of
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object (3.1) will be called invariant (or permissible) Iff

A A Fix. g)£X„ 
y.^ g«G

Definition 3. 4. A subset of the fibre of object (3. 1) 
defined by the formula:

:= {F(x„, g): geO]

will ba called a transitive fibre of this object, determined by 
x„£X.

Obviously, every transitive abstract object (3. 1) has only 
one transitive fibre equal to whole fibre X. Any invariant subset 
X0 of the fibre of object (3. 1) is either a transitive fibre cr a 
union of 3 family of transitive fibres of this object.

It is easy to check that for arbitrary invariant subset X. 
of the fibre of object (3. 1) the restriction F„ of the 
transformation formula F of this object is an operation of the
group C on the set X0. Thus, the triplet

CX«,, G. F.>, f=: = f !x^ G  <3'5)

is an abstract object.

Definition 3.5. Abstract object (3.5) will be called a 
partial object of the object (3.1) determined by invariant subset 
X..

The following simple corollary is a consequence of the above
definition and the effectivity condition (1.4).

Corollary 3. 5. If at least one partial object of object
(3.1) is effective, then (3. 1) is effective.

The method of construction of partial object can be 
generalized as well.

Def Inition 3. 6. The bijection

r. Y —* Xot X0cX (3.5)

of an arbitrary set Y onto subset X„ of the fibre X of object
(3.1) will be called Invariant iff X„ is an invariant subset of 
this object.
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It can be proved (cf. t 133, p. 37) that the transformation 

F,: Y*G —* Y, F, (y, g) : = (F(ip(y), g) )

is an operation of the group G on the set Y. Hence, the triplet

(Y. G, F,>, F, <y, g> : = (FCy (y), g) ) (3.7)

is an abstract object.

Def inition 3. 7. Object (3. 7> will be called determined (or
induced) by the object (3.1) and the invariant bijection (3.6).

Two following corollaries are immediate consequences of the 
def ini t ion.

Corollary 3. 6. Object (3. 7) induced by object (3. 1) and 
invariant bijection (3.6) is geometrically equivalent with 
partial object (3.5) of the object (3. 1) determined by the 
invariant subset X„. The pair (ip, id0> is an isomorphism of object 
(3. 7) onto object (3. 5).

Corollary 3. 7. Object (3.7) induced by j the object (3.1) 
and invariant bijection idx is a partial object of the object 
(3. 1) determined by invariant subset %.„■

It is always possible to define the object induced by the 
given object (3.1), group homomorphism (3.3) and invariant 
bijection (3.6 ). The simple example of such an object is the 
partial subobject

cx0. 5, F (Xo,g )

of the object (3.1) determined by the subgroup 5 of the group G 
and invariant subset X<, of the fibre of the object (3. 1).

§4. Objects of subsets of the fibre of object
Let

(X, G, F) (4.1)

be a given abstract object. 2 X will denote the family of all 
subsets of the fibre of this object. The transformation

F*: 2**0 —»2*
given by the formula
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F*(A, g) :=F<A,g) * fF<x,g>: x€A> (4.2)

is obviously an operation of the group 0  on.the set 2 “, whereas 
the triplet

(2*. G, F*> (4.3)

is an abstract object. For each invariant subset Ut of the fibre 
of this object we can define a partial object

Cm, G. F* |ifcxo>< mc2*. U. 4)

Definition 4.1. Objects (4.4) and (4.3) will be called 
object of subsets and the object of all subsets, respectively, of 
the fibre of the object (4.1).

Let us consider two objects:

(X,, G, F.) (4.5)

(X*. G, F2> (4.6)

and the objects of all subsets of the fibres of these objects

(2X\  G, Fi) (4.7)

C2*2, G, F*> (4.8)

In the sequel two following lemmas will prove useful.

Lemma 4. 1. If objects (4.5) and (4.6) are equivalent, then 
the objects (4.7) and (4.8) of all subsets of the fibres of the 
objects (4.5) and (4.6), respectively, are also equivalent.

Proof. The assumption and the corollary 2.2 implies the 
existence of a bijection y: X, —* X2 such that the equivariance 
condition (2.14)( holds true. It is easily seen that the 
transformation

2X’ -» 2X* ,

defined by the formula

Hi.(A) := y(A) = {y(x,>: x,«A}t 

is a bijection. The equality

F»(y.(A).g) = y0 (F»(A,g)) (4.9)

holds true for every AcX, and geG. Indeed, from (2.14) and the 
definitions of transformation formulas Ff, F* and the bijection
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v. we infer that for each subset A of the fibre X, of the object
(4.5) and each g«G

Ft (y. (A), g ) = F2 (y<A>, g) = F*({y (x,>: x,€A), g) =
= {FI(y(x,>,g): x,£A}= {y (F, (x,, g> ): x,£A} =
= y (F, (A, g) ) = y0 (FT<A,g>)

Thus, the objects (4.7) and (4.8) are equivalent. D

Lemma 4. 2. If the abstract object

<X0, G, F0) (4. 10)

is a partial object of the object (4. 1>, then the object

(2X°, G, Fp <4. 11)

of all subsets of the fibre of the object (4. 10) is a partial 
object of the object <4. 3).

Proof. The fibre 2X° of the object (4. 11) is obviously a 
subset of the fibre 2X of the object <4,3). We will show that it 
is an invariant subset. For each subset A of the fibre X0 of the 
object (4.10) and for each g£G we have

FJCA, g) = F„ (A, g) = F (A, g) = F* (A, g).

Thus

FJ(A, g) = F*(A,g) for Af2X°, g«G. (4.12)

Since FJ(A, g)e2X“, by (4.12) the set 2x° is an invariant subset 
of the fibre of object (4.3) and

f; = f*!2x0xG

what ends the proof. 0

The objects of geometric figures of a given Klein space

(M, G, f) (4. 13)

are the examples of the objects of subsets.

Defir.ition 4. 2. A subset A. of the fibre M of the Klein space
(4. 13) will be called a geo.netric figure of this space. Ar. object 
of subsets of the fibre of Klein sapce will be'called an object 
of geometric figures of this space.

Example 4. 1. As the object of geometric figures of
n-dimensionsl affine space (cf. example 2.3) over the field K we
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may mention the object of k-dimensional hyperplanes (l<k<n). In 
particular, the object of straight lines is such an object. The 
object of pencils of lines is an object of subsets of the fibre 
of the object of straight lines. The more sophisticated example 
of geometric object of affine space is tensor <cf. Section IV).
It can be shown that it is also an object of subsets of the fibre 
of some geometric objects of affine space.

Taking all this into account we may state that the objects 
of subsets of the fibre of object play a particularly important 
role in the theory of Klein spaces.

§5. Remarks
The definition of Klein space given in §2 is to general. 

Beside geometric Klein, spaces, i.e. the spaces being the subject 
of study of metageometry, it contains many other spaces, e.g. 
topological Klein space <cf. example 2.2). Thus, to the 
effectivity condition some other condition should be added, to 
assure that Klein space is geometric. Unfortunately, such 
conditions are not known, as yet. Since in all classical Klein 
spaces there exist m-repers (cf. definition III. 2. 3), the 
effectivity conditions could be replaced by a stronger one, 
postulating the existence of such repers. This condition does not 
solve the problem, though.

In the definition 2. 4 we do not assume any relations between 
the fibre of the space and that of the object, neither we do 
between the transformations laws. Whether the abstract object is 
a geometric object of a given Klein space depends solely of the 
abstract group. Z. Moszner suggested that abstract objects, which 
are not properly related to the Klein space should not be 
considered as geometric objects of that space. In geometric 
studies such objects are simply useless. Therefore, we should 
either prove that there are proper relations between the objects 
of the category OA<G> and Klein space <M, G, f>, or to accept as 
geometric only the objects of such subcategory that ensures the 
existence of such relations and, moreover, that contains all 
object traditionally viewed as geometric.
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There are some reservations about thsT definition of Klein 
space. It can be shown that beside given Klein space (M, G, f) 
there exist effective objects of the category 0A(G) which are not 
equivalent with it. As a result we have that the category OACG) 
itself is a geometry of non-equivalent Klein spaces. E. Siwek and 
E. Kasparek shown (unpublished result) that in the category OACG) 
there exist ever primitive and transitive Klein spaces, which are 
not equivalent. It seems that by a Klein geometry one should 
understand a pair consisting of a Klein space and a category of 
geometric objects.

Because of all the abovementioned reasons, in the sequel, by 
geometric objects of the space (M, G, f) we will understand the 
objects of some subcategory 0G(f> of the category 0A<G), and by a 
Klein geometry of this space - the pair

{(M, G, f), OG(f)).

By a Klein space we will still undarstand any effective abstract 
object.

In the papers on Klein spaces that have been published, the 
equivalence of two Klein geometries was not defined. It will be 
done in §4 of the Section II.



Section II 
THE NOTION OF KLEIN GEOMETRY

In this section we will define basic concepts of the theory 
of Klein geometries: geometric object, Klein geometry and the 
equivalence of two Klein geometries.

SI. The definition of geometric object
Let

(M, G, f> <1.1)

be a Klein space. We will start from the definition of the 
standard geometric object of rank k of the space <1. 1), and then 
the definition of any geometric object of this space.

Deflnition 1.1. Standard geometric object of rank k <k£N> 
of the Klein space <1. 1) is an abstract object

<Gtk,<M), G, ftk>), k«N (1.2)

defined as follows

(a) for k- 1  the object (1.2 ) is the object of all subsets of 
the fibre of Klein space (1.1), i.e.

Q‘' ’ (M) : = 2" and f‘>’: = f*j

(b) object (Q‘**,,(M), G, f1"-” ) is the object of all subsets
of the fibre of the object (Q^HM), G, f<m’>, i.e.

Q“ *,,(M) := and f«— '>: =

Definition 1.2. The abstract e eject

(X, G, F) (1.3)

equivalent with any partial object of a standard geometric object
(1.2 ) will be calleu a geometric object of the Klein space (1.1).

Hence, abstract object (1.3) is the geometric object of the
Klein space <1. 1) iff there exists a k^N and the invariant
subset G‘k’(M> of the fibre of the standard geometric object
(1.2 ) of rank k such that the partial object
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<1. 4)

is equivalent with the object (1.3). There exists then a 
bisection

r- x Q£k 5 (M) <1. 5).
such that the equivariance condition

A A fik>(y(x), g) = xy (F (X, g> ).A A 
x«X g€G

0 .6 )

It follows that between the fibre X of an arbitrary 
geometric object (1.3) of Klein space <1. 1) there exists a 
relation, determined by the invariant transformation <i. 5). 
Transformation formulas f and F of the Klein space and its 
geometric object (I.3) are closely related through the 
equivariance condition (1. 6).

Lemma 1.1, If an abstract object (1.3) is equivalent with a 
partial object (1.4) of the standard geometric object (1.2) of 
rank k of Klein space (1. 1), then it is equivalent with some 
partial object of every standard geometric object of rank m 
(m>k) of this space.

Proof. Let TO denote the family of all singletons of the 
fibre of the object (1.4), i.e.

It is easily seen that HI is an invariant subset of the fibre of 
standard geometric object of rank k+1. Thus, we can define a 
partial object

of this object. It can be proved, by direct calculation, that the 
bi jection

r- ilik'(M> -» TO, ?(A> : = (A) 

satisfies the equivariance condition

f 4k*’; iy (A), g ) = \r(f;k,(A, g)).

Hence, the objects (1.4) and (1.7) are equivalent. The assumption 
and the transitivity of equivalence relation imply that the 
object (1.3) is equivalent with the object (1.7). Thus, the 
thesis is true for m=k+l, One can easily prove by induction that

TO = { (A>: A£Qik,(K) }.

(1. 7)
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it is also true for every positive integer m >  k. Q

Definition 1. 3. A positive integer k will be called a rank 
of the geometric object (1.3) of the Klein space <1. t) iff this 
object is equivalent with some partial object <1.4) of the object 
<1.2 ) and is not equivalent with any partial object of the 
standard geometric object of rank m<  k of this space.

Let us note that each object <1.2) is a geometric object of 
Klein space <1. 1) in the sense of definition 1.2, and k is a rank 
of this object in the sense of definition 1.3. Each partial 
object (1.4) of object (1.2 ) is a geometric object of this space 
as well. The rank of this object is no greater that k.

The following two corollaries follows immediately from the 
def initions.

Corollary 1. 1. Each abstract object (1.3) equivalent with a 
geometric object of rank k of Klein space (1.1) is a geometric 
object of this space of the same rank.

Corollary 1.2. Each object of geometric figures of Klein 
space <1. 1) is a geometric object of this space of rank 1.

It is easily seen that the family 

irt = { <p): p£ M }

of singletons of the fibre of Klein space (1.1) is an invariant 
subset of the fibre of standard geometric object of rank 1 of 
this space, whereas the partial object

(TTt G f<1>> (■<'>•= f <> > I>. lit, u, ), . t ¡ I R x G

is equivalent with the given Klein space (1. 1). As the immediate 
consequence we have the following corollary.

Corollary 1.3. Each Klein space (1. 1) is a geometric object 
of rank 1 of this space.

Klein space considered as a geometric object of itself is 
usually called a point object.

From lemma 1. 1 and corollary 1.3 we infer that for every 
positive integer k, a standard geometric object <1.2) of Klein 
space (1. 1) has a partial object equivalent with this space. Such 
an object is effective, as equivalent with effective object, i.e.
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with the space (1.1). Thus, from corollary 1.3.5 we get the 
corollary.

Corollary 1, 4. Standard geometric object of any rank is an 
effective object.

Using objects (1.2) we can define further abstract objects.
Let

CM) := 0 Qct>(M)k-1

and let f'“5: Q'”’(M> —»Q'-’CM) be a transformation given by the 
f ormula

f‘->(A, g) := fLk> (A, g> for A€Q^>(M).

It is easy to verify that

(£)“■” (M), G, f'->) (1.8 )

is an effective abstract object. Hence, it is a Klein space. Let

(G<-.">(M), g , f‘“ n>), ncN (1.9)

denote the standard geometric object of rankn of this space. The 
above method of construction of abstract objects can be iterated 
to define successive Klein spaces of the form (1.8) and their 
standard geometric objects.

From the well known results of set theory follows that the 
power of the fibre of object (1.9) is greater than the power of 
the fibre of any of the objects (1.2 ), so the object (1.9) is not 
a geometric object of Klein space (1. 1) in the sense of 
definition 1.2. Further considerations presented in this paper 
let us assume that the objects (1.8 ) and (1.9) are excessive. 
Geometric interpretation of these objects in not known and they 
are not found in geometry. Therefore, we do not consider them 
geometric objects of the space (1. 1), although their fibres and 
transformation formulas are related with the fibre K and 
transformation formula f of Klein space <1.1).

§2. The category of geometric objects

The class of all geometric objects of a given Klein space

(M, G, f) (2.1)
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with equivariant transformations of the form

(.Vf, ida>, y: X,-»X2 

(X, and X2 are the fibres of geometric objects) as morphisms and 
the superposition of such transformations as a composition forms 
a- category. This category will be denoted as OG(f) and called 
a category of geometric objects of Klein space (2. 1).

It is not difficult to prove that OG<f) is indeed a 
category. One has only to verify the axioms of the category. It 
is equally simple to check that OG(f) is a subcategory of OA(G) 
of abstract objects supported by the same group G.

We will start from the following theorem.

Theorem 2. 1. Categories of geometric objects of two 
geometrically equivalent Klein spaces are identical.

Proof. Let the object

CM, G, f> (2.2)

be a Klein space geometrically equivalent with the space (2. 1) 
and let

(Qlk ’ CM), G, f<k>>, k£N <2.3)

<Qlk ’CM), G, ?'k>), k€N (2.4)

be standard geometric objects of rank k of the space (2. 1) and
(2.2 ), respectively. Using lemma 1.4.1 one can easily prove, by 
Induction, that these objects are equivalent. Hence, there exists 
a bijection

y: Q<k’(M) -»Q‘k,(M)

such that the equivariance condition

* ?‘k’(y<A).g) = y(f<k>CA,g)) (2.5)A£Q<k>(M) g£G
holds true.

Now, let

(X, G, F) (2.6)

be a geometric object of rank k of the space (2.1). According to 
definition 1.2 of geometric object, object (2.6) is equivalent 
with some partial object (1.4) of the object (2.3). It follows
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f rom the equivariance condition <2. 5) that the set 

C!£k' (M> : = f (Q^HM) )

is an invariant subset of the fibre of object (2.4) and that the 
partial object (1.4) of object (2.3) is equivalent with partial 
object

(G-'(M), G, f<k ’ |qc«c > (fry xG) <2.7

of the object (2.4). Since the equivalence relation is 
transitive, objects (2. 6 ) and (2. 7) are equivalent and, 
therefore, (2.6 ) is a geometric object of the space (2.2 ).

We have shown that every object of the category OG(f) is an 
object of the category of geometric objects 0G(?) of Klein space
(2.2). Similarly, we can prove the converse, i.e. that every 
object of the category OG(f) is an object of the category OGCf). 
Hence, classes of objects of these categories are equal. 
Therefore, considered categories are identical.0

The converse theorem is not true. To show it. let us 
consider again standard geometric obje,cts (2.3) oi Klein space
(2.1). These are effective objects (cf. corollary 1.4), and, 
therefore, they are Klein spaces. Since the fibres of any two of 
these spaces are the sets of different powers, these spaces 
cannot be equivalent. We will prove also the following lemma.

Lemma 2. 1, For any positive integer k the categories 
OGCf‘k>) of geometric objects of Klein space (2. 3) and OGCf) of 
geometric objects of Klein space (2.1) are identical.

Proof. It is enough to show that the classes of objects of 
category OG(ftk>) and GG(f) are equal. From definition 1.2 of 
geometric object it follows that each object of the category 
OGCf“1’) is an object of the category GG(f). Lemma 1. 1 implies 
that any object of the category OGCf) is an object of the 
category OG(f<k>), Hence, classes of objects of two considered 
categories are identical. 0

From the above considerations we infer that OGCf) is a 
category of geometric objects not only of Klein space (2. 1), but 
also of infinitely many spaces (2,3), which are not equivalent. 
Because of the reasons explained in §5 of Section 1 we will
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define Klein geometry of a given Klein space as follows.

Definition 2. 1. A pair

(CM, G, f>, OGCf) ), (2.8 )

of Klein space (2.1) and a category of geometric objects of this 
s'pace will be called Klein geometry of Klein space (2.1).

Now, let 5 be a subgroup of G, supporting Klein space (2. 1). 
According to corollary 1.3.1, the subobject

CM, 5, f), ? : = f | Mxg (2.9)

of the space <2.1) is also a Klein space. Let us consider the 
category 0G<?) of geometric objects of Klein space <2.9) and its 
geometry

(CM, 8 , f>, OG(f) ). (2.10)

Although 00(f) is not a subcategory of 0G(f), the following
definition is usually accepted.

Definition 2. 2. Klein geometry <2. 10);of Klein space (2.9), 
being a subobject of the space (2 .1) will be called a subgeometry
of Klein geometry (2.8) of the space <2. 1).

It appears that subobject ,of any geometric object of the 
space (2. 1) determined by the subgroup 8 of the group G is a 
geometric object of the space (2.9). This fact will be shown in 
the sequel.

§3. Some properties of geometric objects
Let us consider an arbitrary Klein space

(M, G, f) (3.1)

and its geometric object

(X, G, F). (3.2)

Theorem 3. 1. Each partial - object of geometric object (3.2) 
of Klein space (3. 1) is a geometric object of this space and its 
rank is not greater than the rank of the object (3.2).

Proof. Let (3.2) be a geometric object of rank k of the 
space (3.1). In virtue of definition of geometric object there 
exist a partial object (1.4) of the object (1.2 ) and a bijection
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(1.5) such that the condition (1.6) holds. Let us consider an 
arbitrary partial object

CXn, G, F,),. F,= F|XiXG (3.3)

of the object (3.2) and a subset GSk,(M) of the fibre of the 
object (1.4), defined by the formula

Q5*->(M) : = y(X,). (3.4)

Since X, is an invariant subset of the fibre of object (3.2), by
(1.6) the set (3.4) is an invariant subset of the fibre of object
(1.4). Hence, we may define a partial object

(Q{* ’ <M), G, f{*>), f {k'*= ftk> jfltk, (M)Xq (3.5)

of the object (1.2). Let y, := . By (1.6) we have, then

A A f(k>(y, (X/, g) = y, (F| (x, g) ). 
x£X, geG

Thus, objects (3.3) and (3.5) are equivalent and, therefore,
(3.3) is a geometric object of the space (3. 1). It is easily seen 
that, due to definition 1.3, rank of this object is no greater 
than k. D

From the above theorem and corollaries 1.3.6 and 1. 1 we get, 
as the immediate consequence, the following corollary.

Corollary 3. 1. Oblect induced by geometric object (3.2) of
Klein space (3. 3) and an invariant bijection is a geometric
object of this space.

Using lemmas I. 4. 1 and I. 4. 2 we can prove the following 
theorem.

Theorem 3. 2. Each object of subsets of the fibre of 
geometric object (3.2) of Klein space (3.1) is a geometric object 
of this space.

Proof. Let keN be a rank of geometric object (3. 2). As we 
know, it has to be equivalent with some partial object (1.4) of 
a standard geometric object (1.2) of rank k. By lemma 1.4.1 the
object

<2X, G, F*) (3.6)

of all subsets of the fibre of object (3.2) is equivalent with
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the object

,,>Qik>(M> „
C2 . Gt ii"’*) (3.7)

of all subsets of the fibre of object (1,4). It follows from 
lemma 1.4.2 that (3.7) is a partial object of object of all 
subsets of the fibre of object (1.2 ), i.e. standard geometric 
object of rank k+1. Thus, the object (3.6) is equivalent with the 
partial object (3. 7) of standard geometric object of rank k+1 
and, therefore, it is a geometric object of Klein space (3. 1). By 
theorem 3.1, any object of subsets of the fibre of object (3.2) 
is a geometric object, as a partial object of geometric object 
(3. 6 ). 0

The next theorem and its consequences will play an important 
role in further considerations. Beside Klein space (3.1) let us 
consider another space

(M, 2, f) (3.8)

and a homomorphism

6 -+G. (3. 9)

Let

(M, 3, ?), ? (p, g) : = f (p, <p (g> ) (3.10)

and

(X, G, F), F(x, g) : = F(x, <p<g> ) (3.11)

be the objects determined by Klein space (3. 1) and homomorphism
(3.9) and by geometric object (3.2) and homomorphism (3.9), 
respectively.

Theorem 3. 3. If the object (3. 10) induced by Klein space
(3.1) and homomorphism (3.9) is a geometric object of Klein space
(3.8), then the object (3.11) induced by geometric object (3.2)
of Klein space (3. 1) and homomorphism (3.9) is also a geometric 
object of Klein space (3.8).

Proof. Let

(Q<k,(M), 3, ?tk>>, k€N (3.12)

be a geometric object determined by the following conditions (cf. 
definition 1.1):
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(a) for k=l object <3. 12) is the object of all subsets of 
the fibre of geometric object <3.10) of the space <3.8);

(b) for k=m+l object <3.12) is the object of all subsets of 
the fibre of the object

<Q‘*><M), 5, ?“ >).

Using theorem 3.2 we can easily prove, by induction, that 
for each k£N object <3.12) is a geometric object of the space 
<3.8). Also by induction we can prove that the following relation

A A ?<k’(A, g) = f‘k’(A, <p<g) ). <3.13)
A£Qtk’<M) geS

Indeed, for every subset A£Q<,J<M) and gf5 we have

f ‘ 1 ’ <A, g) = ?<A,g) = f (A, <p (g) ) = f ‘ ’ (A, q> (g) ),

what means that <3. 13) holds true for k=l. Now, let us assume 
that (3.13) holds true for k=m. Then, for every set A£QC"*1><M) 
and every g£G we have

f‘«~* ><A,g) = ?**’ <A, g) = f‘"* (A, <p<g) ) = f‘->>(A,f<g>)

Thus, <3. 13) holds true for k=m+l as well.

We assumed that the object <3.2) is a geometric object of 
the space <3. 1). Therefore, there exist a partial object <1.4) ot
the object <1.2 ) and a bijection <1.5), such that the condition
<1.6 ) holds, implying that

A A f «* >(*<*), <><g)) = y(F<x, 9<g>>). <3.14)
X€X g€G

The set Qik>(M) is an invariant subset of the fibre of object
(1.2). From this fact and from the relation <3. 13) we infer that 
it is an invariant subset of the fibre of the object <3. 12), as
well. Hence, we can define a partial object

<Q4k’(M), 5, f">>, ?<*>= ?,k*JQ <.,>(M)xC (3.15)

of the object <3. 12), and by <3. 13) we have

*.«<■<«. gib "

and, therefore,

A„ \  (v<x), g ) = f4k>(¥ <Tt),<f<g) ). <3.16)X€X g€G
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Thus, by <3. 11) and (3. 14) we get

A A fik>(¥ <x),g) = <f(Fix,g) ), 
x£X g€G

which means that the objects <3. 11) and <3. 15) are equivalent.
Object <3. 15) as a partial object of geometric object <3. 12) is a
geometric object of the space <3.8). Therefore, <3.11) is also a
geometric object of this space. 0

As a particular case of the above theorem <cf. corollary 
I.'3. 4 and corollary 1.3) we get the following corollary.

Corollary 3. 2. If (3.2) is an object of category OG(f) of 
geometric objects of Klein space (3.1), then the object <3.11) 
determined by object <3. 2) and monomorphism <3. 9) is an object 
of category 0G<?> of geometric objects of Klein space <3.10) 
determined by Klein space (3.1) and monomorphism <3.9).

If 5 is a subgroup of G and monomorphism <3.9) an inclusion 
map of 5 into G (cf. corollary 1.3.3), corollary 3.2 may be 
formulated as follows.

Corollary 3. 3. If Klein space <3. 10) is a subobject of Klein 
space <3.1), then subobject <3.11) of an arbitrary geometric 
object <3.2) of Klein space <3. 1), determined by subgroup 5 of 
the group G is a geometric object of Klein space <3. 10).

§4. Equivalence of Klein geometries
The notion of equivalence of two Klein geometries

(<M, G, f), 0G(f) ) <4. 1)
and

(CM, <5, F>, 0G<?) ) <4.2)

and, respectively, two Klein spaces
(M, G, f) <4.3>

and

(M, 5, f) <4-4)
we will define using a covarianC functor of category OG<f> onto 
category OG(f). In the sequel the notion of the functor plays an 
important role, hence we will remind its definition.
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A function T'which to each object A of a category 6 assigns an(
a/object T(A> of a category G, and to each morphism o: A —»A, 

assigns a morphism T(o>): T(A) — »T(A,) will be called a covariant 
functor iff the following conditions hold:

FUN 1. For each object A of category G
T(idA) = idT<A>.

FUN 2. If o: A —»A, ana s>,: A,—» A2 are morphisms of category 
G, then

T<<a, ®<sa> = T(<i),) *T<m>.

If

<p: S -* G (4. 5)

is an isomorphism of a group § onto G, then T, will denote a 
function which:

1* to each object

<X, G, F) (4.6)

of the category OG(f) assigns an object induced by the object 
<4.6 ) and isomorphism (4.5), i.e.

T, (<X, G, F) ) : = (X, g,F>, where P (x, g) : = F (x, 41(g)). (4.7)

2'to each morphism (y, id0> of the object (4. 6 ) of category 
OG(f> into object

(X,, G, F,) (4.8)

of this category assigns a pair (y, ids'), i.e.

T* (<\p, ida) ):= <ip, idy). 4 .9 )

Let us note that, by corollary I. 3. 4, object

(M, 5, f), ftp, g> : = f (p, *<g) ) (4.10)

is a Klein space. We will prove the following lemma.

Lemma 4. 1. If Klein space <4. 4) is geometrically equivalent 
with Klein space <4. 10) induced by the space (4. 3) and 
isomorphism (4.5), then T„ defined by the formulas (4.7) and
(4.9) is a bijective functor of the category 0G(f) onto category 
0G(f).

Proof. Let (4.6) be an arbitrary object of category 0G(f).
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By corollary 3.2, object <4.7) is of the category 0G<?> of 
geometric objects of the space <4. 10) induced by the space <4. 3) 
and isomorphism (4.5). From the assumption and theorem 2. 1, the 
categories OG<?) and 0G(f) are identical. Thus, T, assigns 
objects of the category 0G(f) to the objects of the category 
0G(f>. Moreover, if (y, ida) is a morphism (of category 0G(f>) of 
the object (4.6) into the object (4.8), then

A  F, (y <x), g) = y (F<x, g) ). 
g«G

A F, (y(x>,<p(g)) = y(F(x,<p(g>)), 
g€G

A* Pi (y<x), g) = y(p<x, g) ). g€G

Thus, pair <nr, idgO is a morphism (of category 0G(f)) of the 
object (4.7) into the object T, ((X,, G, F,) ). Hence, T, assigns 
objects (morphisms) of category 0G(f) to objects (morphisms) of 
category 0G(f).

Since identity morphisms of the objects (4.6) and (4.7) are 
pairs (id,, ida> and (id*, id£), by (4.9) T, satisfies the condition 
FUN J.

Now, let (y, ida> be a morphism of the object (4.6) into 
object (4.8), and let (y,, ida> be a morphism of the object (4.8) 
into object <X2, G, F2). Then

T» ((y,, ida) • (y, ida> ) = T,((y,°y, ida) ) = (y,»y, ids')
and

T, ((y i, ida) )»T,((y, ida) ) = (y,, id*)» <y, idab = (y,»y, id£>.

Thus, Ta satisfies condition FUN 2 as well.

We have proved that T, is a covariant functor of category 
0G(f> into category 0G(f).

Klein spaces (4.4) and (4.10) are geometrically equivalent, 
by assumption. Hence, there exists a bijection y: M —» M 
satisfying equivariance condition

A. A f (y<p),y<g)5 = y(f(p,g)). 
pi M gtG

Thus,

A
xeX

A
x€X

and, therefore,

A
xeX
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This condition can be rewritten in the fora

A A f (y-' <p), <f> <g)) = f' (f <p, g> ) 
peM gtO

meaninig that the space <4.3) is geometrically equivalent with
the space induced by space <4. 4) and isomorphism <p̂ '. This and
the above considerations imply that we can define a covariant 
functor T^_, of category <X>(f) into category 00(f). It is easily 
seen that the functors T^ and T_'-t satisfiy the conditions

' W ,= ldOG(f) ’ T9 -''Tq>= ldOG<f) ‘

Thus, Ta is a bijective functor. D

Definition 4.1. A bijective functor T of category of 
geometric objects OG(f) of Klein space (4.3) onto category of
geometric objects OG(f) of Klein space (4.4) will be called
simple iff it satisfies the following conditions:

(a) there exists a group isomorphism <p: S — such that for 
each object (4.6) and each morphism (y, id6) of category OG(f) the 
following equalities:

T ((X, G, F) ) = Tt ((X, G,F)), T ((y, id6) ) = Tf(Cy, idQ>)

hold;

<b) Klein space (4.4) is geometrically equivalent with the 
space T ((M, G, f) ).

The following two lemmas state some properties of simple
functor. The first one is the immediate consequence of corollary
I. 3. 2.

Lemma 4. 2. If T is a simple functor of category OG(f) onto 
category OG(f), then each object (4.6) of category 00(f) is 
abstractly equivalent with the object T(<X, G, F) ).

Lemma 4. 3. Klein spaces (4.4) and (4.3) are equivalent 
(abstractively) iff there exists a simple functor of category 
0G(f) onto category OG(f).

Proof. First, let us assume that the spaces <4. 4) and (4. 3) 
are equivalent. There exists, then, a pair

(y, y), y: M —» M, <p: 5 —» G, 
where (p is a group isomorphism, such that the equivariance
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condition

-Ao A  f (Y<P5. <P<g>) = Y (f Cp, g> ) (4.11)geG

holds. By <4. 10) we have

A. A f(y(p),g) = y(?<p, g)). (4.12)
peM gcg

With the isomorphism y we can define a functor Tv. By (4. 12), 
Klein space (4.4) is geometrically equivalent with the space

(M, g, ?) = T,(<M, G, f>).

Thus, T, is a simple functor.

Now, if there exists a simple functor of category 0G(f) onto 
category 0G(f), then, by axiom (b) of definition 4.1j, there 
exists a bijection y: M —» M, such that condition (4.12) holds 
true. Thus, (4. 12) and (4. 10) imply that equivariance condition 
(4.11) holds true as well, what, proves the equivalence of Klein 
spaces (4.4) and (4.3).0

Stated above properties of simple functor motivate the 
following definition of equivalence of Klein geometries.

Definition 4. 2. Xlein geometry (4. 1) of Klein space (4. 3) 
will be called equivalent with Klein geometry (4.2) of Klein 
space (4.4) iff there exists a simple functor of category 0G(f) 
onto category 0G(f).

It is easily seen that the relation of equivalence of Klein 
geometries is an equivalence relation, i.e. it is reflexive, 
symmetric and transitive.

The following theorem is an immediate consequence of the 
above definition and lemma 4.3.

Theorem 4. 1. Klein geometries (4. 1) and (4. 2) of Klein 
spaces (4.3) and (4.4), respectively, are equivalent iff the 
spaces are equivalent.

It would seem to be more natural to define the equivalence 
of Klein geometries as follows: Klein geometries (4.1) and (4.2) 
will be called equivalent if there exists a bijective covariant 
functor T of category 0G(f) onto category 0G(?) satisfying the 
condition
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T (CM, 0, f> ) - CM, 5, f>.

Such a definition should also Imply theorem 4.1, though. For 'the 
present, proof of such theorem is not known in this case.

To study properties of Klein geometry (4. 1) of a given Klein 
space (4.3) we usually consider the simplest (canonical) space in 
the class of spaces equivalent with the given one. We will do it 
in Section IV, to present elementary Klein spaces.



Section 111 

PROPERTIES OF GEOMETRIC OBJECTS

We have shown, in §3 of the previous section, methods of 
construction of new geometric objects of a Klein space; partial 
objects and objects of subsets of the fibre of object. Mow, we 
will present further methods of construction of geometric objects 
and some of their consequences. We will discuss some properties 
of a scalar, G-product of objects, object of transformations, 
factor object and disjoint union of objects.

SI. Scalars

In category of geometric objects of Klein space

CM, G, f) <1.1)
the object called scalar plays an important role.

Definition 1.1. Abstract object

(S, Gjl), where I <s, g) : = s (1.2)
for all seS and g£G will be called a scalar.

The following two corollaries are the immediate consequences 
of the definition.

Corollary 1. 1. Two scalars: (1. 2) and
(S, G, I), I (s, g) : = § <1. 3>

are equivalent iff their fibres S and S are equinumerous.

Proof. Indeed, if objects Cl. 2) and <1.3) are equivalent, 
then there exists a pair (f, ida>, where f: S —>S is a Mjectiso, 
such that the equivariance equation

I (f (s>, g) = f (its, g) ) for all s*S and gi<G Cl. 43

holds. Tnus, S and S are equi numerous.

Conversely, if the fibres S and S are equiaumerssas, ffifeea 
there exists a bisection if: 5 —» S. Every such bijection satisfies:
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condition Cl.4) since both sides of the equation are equal to 
y(s). Hence, objects (1.2) and (1.3) are equivalent.D

Corollary 1. 2. Each object geometrically equivalent with a 
scalar is a scalar.

Proof. Let (X, G, F> be an object geometrically equivalent 
with a scalar (1.2). There exists then a bijection f: S —»X such 
that

A A F(f<s), g) * \f{I (s, g) ) = y (s). 
seS g«G

Taking x-fCs) we get

F(x, g) = x for all xCX and gtG.
Thus, object (X, G, F) is a scalar. 0

Let us note that not every scalar (1.2) is a geometric
object of the space (1.1). Indeed, if - for example - the fibre 
of the object (1.2 ) Is equinumerous with the fibre of
the object (11.1.9), then it is easily seen that the scalar (1.2 )
in not a geometric object of the space <1.1).

Definition 1,2. Scalar (1.2) being a geometric object of 
Klein space (1.1) will be called a geometric scalar of this 
space.

From theorem II. 3. 1 ana corollary 1. 1. we get another- 
corollary.

Corollary 1. 3. A scalar (supported by a group G) whose fibre 
is equinumerous with an arbitrary, nonempty subset of the fibre 
of a geometric scalar of Klein space (1.1) is a geometric scalar 
of this space.

Proof. Let (1.2) be a geometric scalar. Every nonempty 
subset S„ of its fibre is an invariant subset. Hence, we can 
define a partial object

<S0, G,

which is obviously a scalar. By the theorem II. 3. 1 it is a 
geometric scalar. By corollary 1. 1, it is equivalent with every 
scalar whose fibre is equinumerous with S0. Thus, it is a 
geometric object. 0
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The theorem below states that whether a scalar Is geometric 
depends solely of the power of its fibre. It also gives a method 
to determine geometric scalars.

Theorem 1. 1. Scalar (1.2) is a geometric object of Klein 
space <1.1) iff its fibre is equinumerous with some family of 
invariant subsets of some standard geometric object of this 
space.

Proof. If scalar <1. 2) is a geometric object of Klein space 
<1.1), then, by the definition of geometric object, it is 
equivalent with a partial object

(Qi“><M), G, fik’>, f4*> = f'-’lo^.fMjxG <1>5)

of a standard geometric object

{Q‘*’(M>, G, f'*»}. (1.6)

Therefore, there exists a bijection

r- s — * Qik ’ <M), <1. 7)

satisfying the equivariance condition. By corollary 1.2, object
(1.5) is a scalar. Hence

f<k ’ (A, g) = A for all A«Qak’ (M), geG. (1.8)

If k>  1, then the elements A of the fibre of the object (1.5) are 
the subsets of the fibre of standard geometric object of rank 
k-1. By (1.8) they are invariant subsets. Thus, by (1.7), the 
fibre S is equinumerous with the family Q2,“’<M) of invariant 
subsets of the fibre of standard geometric object of rank k-1. If 
k=l, then the elements A of the fibre of object (1.5) are 
invariant subsets of the fibre of the space (1.1), which is a
standard geometric object of rank 1 (cf. corollary II. 1.3). It
follows that there exists a family of invariant subsets

A =  { <p>: pt A }

of the fibre of standard geometric object of rank k=l, which is 
equinumerous with the fibre of the scalar <1.2 ).

Conversely, if the fibre S of scalar (1.2) is equinumerous 
with a family Tit of invariant subsets of the fibre of the object
(1.6 ), then it is easy to note that the partial object
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(lit, G, j (S. 9)

of a standard geometric object of rank k+3 is a geometric scalar 
of the space <1.1). Thus, by corollary 1.1, objects (1.2) and 
<1.3) are equivalent and, therefore, scalar (1.2) is a geometric 
object of the space (1.1). 0

Let us define the sets

Q ‘ 1 * (N), 1=0, 1, 2,- (1.10)

where N  is a set of all positive integers, by the formulas 

Q‘°>(N) : = N, Q‘’>(N) : = 2N
CWi (1.11)

We will prove the following lemma.

Lemma 1.1. If the fibre of Klein space (1. 1) is an infinite 
set, then the scalar (1.2 ) with the fibre equinumerous with one 
of the sets <1. 10) is a geometric scalar of this space.

Proof. In virtue of corollary 1.1 it is sufficient to show
that the scalars

(Q‘ 1 * (N), G, I«1*), l“ ’<x,g)=x, 1=0, 1,2,- (1.12)

are geometric objects of the space (1.1). We will do it by 
induction. Let M„ denote the family of all n-element subsets of 
the fibre of the space (1. I). It is esily seen that for every 
positive integer n, K„ is an invariant subset of the fibre of 
standard geometric object of rank 1 of the space <1. 1). The 
family lit of all such invariant subsets is countable. Thus, by 
theorem 1. 1, scalar (1.1 2) with 1=0 is a geometric object of the 
space (1. 1).

Now, let us assume that the object (1. 12) is a geometric 
scalar for 2=m, In virtue of theorem II. 3. 2, the object of 
subsets

(2Ql“,<N), G, I"*’*) 
is a geometric object of the space (1.1). It is easy to note that
it is the scalar (1. 12) for l=m+l. Hence, each one of the objects
(1. 12) is a geometric scalar. 0

Lemma 1. 2. If the fibre of Klein space (1. I) is a finite set
or is equinumerous with one of the stes (1. 10), then the scalar
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(M, G, I,), I, (p, g> = p <1. 13)

is a geometric object of this space.

Proof. If the fibre M of the space <1. 1) is a set
equinumerous with one of the sets <1. 1 0), this lemma is an
immediate consequence of the previous one.

Now, let us consider the case when the fibre M of the space 
(1. 1) is a finite set containing m elements. Similarly to the 
proof of lemma 1.1, M„ ( H n t  «) will denote the family of all 
n-element subsets of M. Each one of these families is an 
invariant subset of the fibre of standard geometric object of 
rank 1. This fact and theorem 1. 1 imply that the object <1. 13) is
a geometric scalar of the space (1.1), 0

Geometric scalars play a significant role. As we will see in 
§5, whether a non-transitive object of category OA(G) is an 
object of its subcategory OG(f) depends largely of these scalars. 
Geometricity of the scalar <1. 13) implies (cf. corollary 4.3 and 
the proof of lemma 3. 1) that transitive objects of category 0A(G) 
are simultaneously the objects of subcategory 0G(f). From lemma 
1. ! and corollary 1.3 it follows that the set of geometric
£ • ars of a given space is relatively large. However, we do not
know if the scalar <1. 13) is a geometric object for an arbitrary 
Klein space (1. 1).

Z. Moszner noted (unpublished result) that lemmas 1.1 and 
1. 2 can be generalized as follows:

Lemma 1. 3. If there exists a cardinal a such that:

(a) there exist at least a distinct and less or equal than a 
cardinals,

(b) a Z M,

(c) for some set Z of power a and some positive integer m 
the fibre of scalar

(Q, G, I> (1.14)

satisfies the condition

a Z Q $ Q‘->(Z),

then the object (1.14) is a geometric scalar of the space (1.1).
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We will present the sketch of the proof. As in the proof of 
lemma 1.1 we can show that the scalars with the fibre QCM>(Z) are 
geometric. For m=0 we replace the family M„ with family Mg of all 
subsets of power 0, for 0 belonging to the set of cardinals 
satisfying condition (a). Scalar (1.14) may be viewed as a 
partial object of the scalar with fibre Q'“’(Z>. Thus, in virtue 
of theorem II. 3. 1, (1. 14) is a geometric scalar of the space
(1. 1). D

Taking a = N and Q =  Ct“)(N> we obtain lemma 1. 1. If the set

M is finite, by taking a = M we obtain the first part of lemma
1.2. If the set M is equinumerous with one of the sets (1. 10),

then by taking a = N and Q = Q'm>(N) we get the second part of 
this lemma.

Lemma 1.3 is more general than lemmas 1. 1 and 1.2, since 
without assuming the continuum hypothesis we can obtain some 
results for cardinals between powers of the sets G“*!(Z).

Z. Moszner noted that the problem whether in an arbitrary 
Klein space (1.1) scalar (1.13) is a geometric object, together 
with lemma 1.3, suggest a problem, interesting from the point of 
wiev of set theory:

if for every cardinal 0 there exists such a cardinal a 
satisfying condition (a) from lemma 1.3) and such positive 
integer n, that

a i 0 ^ a(n), where a(l) = a, a(n+l) = 2*’<”' ?

A. Tyszka proved (unpublished result), that the property 
formulated in the question above is undecidable (independent) on 
the basis of ZFC axioms. Therefore the problem of geometricity of
the scalar (1.13) is either undecidable on the basis of this
axiomatic, or positively decidable.

§2. G-products of objects

Let us consider m abstract objects

(X„ G, F,), 1 = 1,2, -, m (2.1)

supported by the same group G, and the transformation



-  43 -

F: (X,xX2x_xX„>xG» X, *X2x_xX_,

defined by the formula

F{(x,, x2l _, X.), g) : = (FjCx,, g), F2<x2, g>,_. FOc., g> ). <2. 2>

F turns out to be an operation of the group G on cartesian
product X,xX2x„xX. of the fibres of objects <2. i). Hence, we can
define a new abstract object (cf. C143, p. 17, also C51

<X,xX2x_xX„, G, F>. (2.3)

Definition 2. 1. Abstract object (2.3) with transformation 
formula F defined by (2.2) will be called a G-product of objects 
(2. 1> or, simply, a product object.

Due to its applications, particularly important is a 
G-product of m examples of a point object. We will start from a 
lemma, and next we will prove a theorem concerning geometricity 
of a G-product of geometric objects of a given Klein space.

Now, let us consider a standard geometric object (1.6) of 
Klein space <1. i> and its two arbitrary partial objects

(Q,k> (M>, G, fi*'),
1= 1 , 2 (2.4)r < t > — fit«) i

1 iQik>xG

and the cartesian product

Q‘,k)(M)xQ'k>(M> (2.5)

of the fibres of these objects. We will prove:

Lemma 2. 1. Cariesian product (2.5) of the fibres of two 
arbitrary partial objects (2.4) of standard geometric object of 
rank k of Klein space (1. 1) is an invariant subset of the fibre 
of standard geometric object of rank k+2

(q<h-2) (jj), g, f“1*2’} (2.5 )

of this space. For any _A:<Q',k) (M), 1=1, 2 and g(G the condition

f‘k*2>((A,, A2),g) = (f<k' (A,, g), ftk> (A2, g) ) (2.7)

is fulfilled.

Proof. First, let us note that for arbitrary A1€s3ik:*<M),
1 = 1, 2, ordered pair

(A,, A2> = {{A,J, (A,, A2> }



-  44 -

belongs to the fib're of object (2.6). By the definition of 
transformation formulas of standard geometric objects we have

f‘k*a>((A„A*),g) = f «**> > ({ {A,l, (A„ A2) },g) =
= {f,kk”  ((A>), g ), f<k'*'1 (<AV, A*) i g ) } =
= {f“‘>(<A,),g),ftk’({A„A;,},g)} =
= {{f‘k«(A„g)>, (f‘k>(A,,g),f<kJ(A2,g)>} =
= (f‘k>(A„g),f‘k'’(A*,g)),

what proves the equation (2.7). Since G5k>(M), 1=1,2, are 
invariant, it follows from <2. 7) that the cartesian product (2.5) 
is invariant subset of the fibre of the object (2 .6 ), what ends 
the proof. 0

Theorem 2. 1. G-product (2,3) of geometric objects (2.1) of 
Klein space (1. 1) is a geometric object of this space.

Proof. We will prove the thesis by induction. First, let us 
consider two geometric objects

(Xt, G, F,), 1=1,2 (2.8)

of Klein space (1.1). Let k, and k2 be the ranks of these
objects, respectively, and let k : = max (k,,k2). By definition
II. 1.2 of geometric object and lemma II. 1. 1 there exist partial 
objects (2. 4) of standard geometric object of rank k and 
bijections

y,: X, —► Qik*(M), i=l,2 (2.9)

such that for every x,£Xt and g«G the conditions

fSk,(f.<x?).g) = T,(F,(xi,g)), 1 = 1,2 (2.10)

hold. In virtue of lemma 2. 1 the set

Q‘k*a)(M) := D{" * (M> =02“1 (M) (2. 11)

is an invariant subset of the fibre of the object (2.6 ) and the 
equation

fo“"*’ ((A,, A2), g ) = {f ik> (A,, g), f2k’ (A2, g)), (2.12)
where

fCk*2> . — fCk*2> I*• • * |Q<k*a>(M)*G '

holds true for every A,«QSk>(M) and g£G.
We will prove that the partial object
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(£}<-«> <M>, G, f‘- a>) (2.13)

of the object <2.6) is equivalent with G-product

(X,*X2, G, F>, F((x,,x2>„g) = (F, (x,, g), F2(x2, g) ) (2.14)

of objects (2.8). For, let us consider the transformation

y: X,«X2 —» Qi“" 21 CM),

defined by the formula

y{(X!,x2)): = (y, (x,), y2(x2) ), (2.15)

where y, and y2 are transformations (2. S). Transformation (2.15)
‘is obviously a bijectlon. Using relations (2.15), (2.12), (2.10)
and (2. 14) we get

fi‘*2> (y ((x,, x2) ), g) = f'kk2>((y,(x,),y2 (x2)),g) =
= (f ik> <y, (x,), g), f£k) (y2(x2>, g) ) =
= (y, (F, (x,, g) ), y2 (F2<x2, g))) =
= y (CF, <x„ g), F2(x21 g>) ) = y (F ((x,, x2), g )),

what proves the equivalence of objects (2. 13) and (2. 14). It 
follows that (2. 14) is a geometric object of Klein space (1.1).
So, we have proved the thesis of the theorem for m=2.

Now, let us assume that G-product of objects (2.1)
(1 = 1, 2,_, 1 ):

(X,xX2*_*Xl, G, F>,

where

F((x„ x2, -, *,), g) = (F, (x,, g), F2(x2, g), _, F, ex», g)) 

and object

(X,*,, G, F,+,)

are geometric objects of the space (1. 1). Due to the first part 
of the proof, G-product of these objects

((X,xX2*-xXl)xX,,„ G, F> (2.16)

where

F (< (x,, x2, _, x,), x,,,), g ) = (F((x,, x2, -, x,), g), F,„, (x,«,, g) ).

is a geometric object. We will show that it is equivalent with 
the object
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«.xX^-xX^X,.,, G. F>- (2.17)
where

F ((x,, X]«iJp g ) — (ft g), H| F(Xi+i, g) ).

Let

Y„: (X,x_xX1)*X,»1 -» X^^xXjxX,*,

be a bijection defined by the formula

y0 {(x,, xt), x,,,} := <x„-,x„ *,*;>.

Easy calculation shows that the pair (y„, ida) is an isomorphism 
(in category OG(f)> of the object (2.16) onto the object (2. 17). 
Thus, these objects are equivalent. Object (2. 17) is a geometric 
object of the space (1.1) as an object equivalent with geometric 
object (2. 16) of this space. In virtue of induction principle, 
for any positive integer m G-product (2. 3) of m geometric objects 
(2. 1) of the space (1.1) is a geometric object of this space. 0

We will prove one more important lemma. First, we will 
introduce the concepts of non-effectivity subgroup and reper of 
order m (cf. C14), pp. 24 and 49, also £81).

Def inltion 2. 2. Subgroup

{g€G: A F(y, g> = y}
y£Y

of the group G will be called a non-effectlvity group of a 
nonempty subset Y of abstract object (X, G, F).

Definition 2. 3. Every finite sequence of m distinct points 
Pi, Pn -1 p» belonging to the fibre of Klein space (1. 1) such 
that the non-ef fecti vity group of the set (p,, p2, p„) is trivial
will be called a reper of order m or simply m-reper in this 
space.

It appears that in some Klein spaces m-repers may not exist 
(cf. 1143, p. 49).

Lemma 2. 2. If there exist m-repers in Klein space (1.1), 
then the abstract object (cf. example 1.2.1)

(G, G, L), L (x, g) = g- x (2.18)

is a geometric object of this space.
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Proof. Let us define G-product of m^spaces <i. 1)

<M", G, f“>
/ , <2. 19)f“(<p,, p„>, g) = (f (p,, g>, f (p„, g) ).

By corollary II. 1. 3 and theorem 2, 1 it is a geometric object of 
this space. It can be, proved (cf. £ 141, p. 57, also [81) that the 
set M” of all m-repers is an invariant subset of the fibre of the 
object (2. 19). Thus, we can define partial object

(MS, G, f"jMSxG >. <2. 20)

Let Ut be an arbitrary transitive fibre of the object (2.20) (if 
the object is transitive itself, we define Ut = MS). In virtue of 
theorem II. 3. 1 partial object

(Tit, G, f - j ^ Q )  (2.21)

of the object (2.19) is a geometric object of the space (1.1). It 
can be shown (cf. £141, p. 58), that objects (2. 18) and (2.21)
are equivalent. Therefore, (2.18) is a geometric object. 0

§3. Objects of transformations 

Let

(X,, G, F,) (3.1)
and

(X2, G, F2) (3.2)
be two abstract objects supported by the same group G, and let 
^(X,, X2) be a set of all transformations y: X, —* X2 defined on the 
fibre of object (3. 1) with values in the fibre of object (3.2). 
Let us consider also representations and P2 of objects (3.1)
and (3.2), respectively, (cf. definition I. 2. 1), and the 
transformation

F: <HX„ X2)*G -»¥(X,, X2), 

defined by the formula

F<Y.S>:=F2g°-rFlg-.. <33>
where Fjg -,= M g ' 1), F-2g= £2<g>.

It is easily seen that transformation F is an operation of the
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group G on the eei of transformation i(X,,X2). Hence, we can 
define new abstract object

(ffCX^Xj), G, F). <3.4)

Definition 3. 1. Abstract object (3.4) with transformation 
formula F defined by <3. 3) and its every partial object will be 
called objects of transformations of the fibre of object (3.1) 
into the fibre of object (3.2) or simply transformation objects.

First, we wiil prove the theorem concerning geometricity of 
transformation object.

Theorem 3. 1. If abstract objects (3.1) and (3.2) are 
geometric objects of Klein space (1. 1), then each object of 
transformations of the fibre of object (3.1) into the fibre of 
object (3.2) is a geometric object of this space.

Proof. In virtue of theorem II. 3. 1 concerning geometricity 
of partial objects, it is enough to prove the thesis for the 
object (3. 4) of all transformations. Let us consider G-product of 
objects (3.1) and (3.2)

(X,*X2, G, P), f((x,, Xj), g) = (F, (x,, g>, F3 (x2, g) },

and then the object of all subsets of the fibre of this 
G-product:

(2X<xX*, G( p.)' F*(A, g) = P(A, g). (3.5)

It follows from assumption and theorems 2. 1 and II. 3. 2, that 
(3.5) is a geometric object of Klein space (1.1). Since each 
transformation y: X, —* X2 can be represented in the form

y = {(*,. y (x,) ): x,€X, },

9'(X,,X2) is a subset of the fibre of object (3.5). For any 
ye^iXuXj) and g«G we have

P*<Y. S> = ?(((x,, y ix,)): x,«X, }, g j =
= {F(<x,, y (x,)), g ): x,tX,} =
= {(Fi<x»iS>,'Fa<y(x,),g)): x,£X, }.

Denoting

y,:=F,(x,,g> (then x, = F 1(y,,g-'))

we get
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F*(y,g> = {(y,. F2 (Y<F,<y„ g->>>,g)): y^X, } 

and, therefore,

F*<y, g) = {(x,, Fgg-yFjg-, (x,) ): x,€X, } (3.8)

for each ytKX,, X2) and g«G. Hence ¥(X,,Xa) is an invariant 
subset of the fibre of geometric object (3. 5), By theorem II. 3. 1, 
partial object

(?(X,,X2), G, FJ), F; = F*|g-(X,,x2>*G <3' 7>

of the object (3.5) is a geometric object of the space (i. 1). 
Moreover, by (3. 6 ) we have

f;(7, g> = fr2g’y°Fig-n 
what means, by (3. 3), that transformation formulas Fi and F are
identical. Therefore, object of transformations (3. 4) and
geometric object (3.7) are identical. 0

Till today, objects of transformations were not considered 
in papers on theory of Klein spaces. Further parts of this paper
will convince us about their usefulness.

For an arbitrary abstract object

(X, G, F) <3.8)

we can define the object of all transformations

(9-<X,X), G, <&„), 'M'Y.g) = F g-yFg-, <3-9>

of the fibre of object (3.8) into itself. If y: X — >X is a

bijection,’ i.e. it belongs to the group $<X> of all
transformations of the set X, then, since Fg is also a bijection,

we have

A A F «y^F 9<X>.
Y«9(X)g€G § °

Thus, § (X) is an invariant subset of the fibre of object (3.9). 
Moreover,

x, £ g *“(Fx’S> = V Fx‘Fg-,= Fg-x-g-,£ P{G>'

and, therefore, image P(G) of the group G by representation of 
object (3 .8 ) is also an invariant'subset of the fibre of object
(3.9). Partial objects

(9<X), G, *»|9 (x)xG) <3' 10)
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and
(f<G>, G, ♦.{> <GixG) <3.11)

of object (3.9) are the examples of transformation objects of the
fibre of object (3.8) into itself. As the immediate consequence 
of theorem 3. 1 we have the following corollary.

Corollary 3. 1. For each geometric object (3. 8 ) of Klein 
space (1.1) transformation objects (3. 9)-(3. 11> are .geometric 
objects of this space. In particular, object

(fXG), G, «), 4Kfx,g) - <3.12)

is a geometric object of the space (1. 1).

It is easy to note that the triplet

(G, G, J>, J(x, g) := g-x-g- (3.13)

is an abstract object. Using the above corollary we will prove

Corollary 3.2. For an arbitrary Klein space (1.1) abstract 
object (3. 13) is a geometric object of this space.

Proof. It is easy to check that the pair (f, ida) is an 
equivariant transformation of the object (3. 13) into object 
(3. 12). Indeed, for all x, g£G we have

<&(? <X),g) = fg*fx*fg-,= fg-x.g-'^ f <g- x-g-’> = f (J <x, g) ). 

Moreover, the representation f: G —» f CG) of Klein space is’a 
bijection (cf. corollary 1.1.1). Hence, objects (3.13) and (3.12) 
are equivalent. Thus, in virtue of corollary 3. 1, (3. 13) is a 
geometric object. D

Let C(G> denote the centre of the group G. Then

A A J (x, g> = g' x-g-’ = x 
xeC(G) g«G

Hence, C(G) is an invariant subset of the fibre of object (3. 13). 
Thus, we get

Corollary 3. 3. Partial object
(C(G), G, (3.14)

of the object <3. 13) is a geometric scalar of the space (!. 1).

In the previous part of this section we have shown (lemma 
2. 2) that if in Klein space there exist m-repers, then (2. 18) is 
a geometric object of this space. The object <2. 18) can be also a
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geometric object in the case when m-repers do not exist in the 
space (1. 1), as will be shown by the following lemma.

Lemma 3. 1. If the fibre of Klein space (1. 1) is a finite or 
equinumerous with one of the sets

Q‘1 ‘ (N) for 1=0, 1, 2, -

then abstract object <2. 18) is a geometric object of the space 
( 1. 1 ).

Proof. By assumption and lemma 1.2, scalar (1.13) is a 
geometric object. Thus, in virtue of theorem 3. 1, object of 
transf ormations

(f(G), G, <i. «,<fx,g) = f g ' V i i g - ^  V fx <3' 15>
I

of the fibre of scalar (1.13) into the fibre of space (1. 1) is 
also a geometric object. It is easy to verify that the objects 
C2. 18) and (3. 15) are equivalent. Indeed, for all x, geG we have

i1- (i<x), g) = {"g'fj. = fg .x = f <g-x) = f (L(x, g) ),

where f: G — » f (G) is a bijection. Object (2. 18) is equivalent 
with geometric object (3. 15) and, therefore, it is a geometric 
object, as well. 0

§4. Factor objects

To define a factor object we will start from the notion of 
congruence (cf. C131, p. 39, also 141) in the fibre of abstract 
object

(X, G, F) (4.1)

Deflnition 4. 1. Every equivalence relation r defined on the 
fibre X and consistent with the object (4.1), i.e. satisfying the 
condition

À A x, r x2 =» F (x,, g) r F (x2, g) <4. 2)
x,, x2«XgeG

will be called a congruence in the fibre X  of object (4. I).

Let X/r denote factor set with respect to the congruence r, 
and let Cxi denote abstraction class determined by x«X. It is 
easy to check that the transformation

F1 : (X/r)*G-+X/r, F' (Cxi, g) : = [FCx, g>] (4.3)
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is an operation of the group G on the set X/r (see 1131, p. 40). 
Thus, the triplet

(X/r, G, F') <4.4)

is an abstract object supported.by the group G.

Definition 4.2., Abstract object <4. 4) with operation F r 
defined by formula (4.3) will be called a factor object of the 
object <4.1) with respect to congruence r.

The following two lemmas state certain important properties 
of factor objects. Their proofs are to be found in 1 131, pp. 45 
and 43.

Learoa 4. 1. Each comitant of geometric object (4.1) of Klein 
space (1.3) is equivalent with some factor object (4. 4) of the 
object (4.1) with respect to congruence r defined in the fibre X 
of object (4. 1).

Lemma 4. 2. Every transitive abstract object (4.1) is 
equivalent with factor object

(G/r, G, L O  (4.5)

of the object <2.18) with respect to some congruence defined in 
the fibre G of the object (2. 18).

It is a well known fact (see e.g. 121, pp. 68-69) that the 
fibre G/r of object (4.5) is a factor set G/H of the group G by 
some subgroup H. Hence, the elements of the set G/r are left 
cosets of the group G with respect to subgroup H.

liow, let us consider the object

(2X, G, F') (4.6)

of all subsets of the fibre of object (4.1). Let us note that the 
fibre of factor object (4.4) is an invariant subset of the fibre 
of object (4. 6 ;. Indeed, due to condition (4.2), for all CxltX/r 
and g(G we have

F* (t xl, g } * F((yCX: xry),g} =
= {F<y,g)cX: F(x,g) rF(y,g)}= [F (x, g) ]«X/r.

Also, it follows that the factor object (4.4) is identical with 
partial object
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(X/r, G, F* | (X//r) *G /

of object (4.6). Hence, factor objects of the object (4.1) are 
the objects of subsets of the fibre of object (4.1). Thus, as the 
immediate consequence of theorem II. 3. 2 we get

Theorem 4. 1. If abstract object (4. 1) is a geometric object 
of Klein space (1. I), then each factor object (4.4) of this 
object is also a geometric object of this space.

The above theorem and lemma 4. 1 imply the following

Corollary 4. 1. Each comitant of geometric object of Klein
space (1.1) is a geometric object of this space.

At last, in virtue of lemmas 2. 2, 3. 1, 4. 2 and theorem 4. 1 
we get the corollary.

Corollarv 4. 2. If there exist m-repers in Klein space (1. 1) 
or the fibre M of this space is finite or equinumerous with one 
of the sets

Q'1S(N) for 1=0, 1,2,- (4. 7)
(defined by the formulas (1. 1 1>), then every transitive abstract 
object (4. 1) is a geometric object of the space (1. i).

From geometrical point of view, assumptions of the above 
corollary are not too restricting <cf. Section I, §5), since they 
are satisfied by all Klein spaces discussed in geometry.
According to corollary 4.2, for a geometric Klein space (1,1) 
every transitive object of category 0A(G) is an object of 
category 0 0 (f).

Since abstract object (2.18) is transitive (cf. example
1.2. I), by theorem 4. 1 and lemma 4.2 we get the following simple
corollary.

Corollary 4.3. Kecessarv and sufficient condition for that 
every object of category 0A(G) is an object of category 0G(f) of 
geometric objects of Klein space <1, 1) j is that abstract 
object (2. 18) is a geometric object of this space.

Unfortunately, it is not known if there exist Klein spaces 
(1. 1) such that abstract object (2. !8 ) is not a geometric object.

Using corollary 4. 2 we will prove one more lemma.
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Lemma 4. 3. IT there exist m-repers in Klein space <1. 1) or 
the fibre M of this space is finite or equinumerous with one of 
the sets <4. 7), then for each epimorphism <p: G —»H of the group G 
onto the group H the triplet

(H, G, F,>, F, (h, g) : = <p(g)*h, <4.8)

where * denotes group operation in H, is a geometric object of
the space <1. 1)

Proof. First, we will show that F, is an operation of the 
group G on the set of elements of H. For all h«H and g,, g2£G we 
have

F, <h, gi'g,) = 4><g2'g,)*h = 9<g2)*9<g,)*h =
= <p <g2)*F, (h, g,) = F, (F, (h, g,>, g2).

Thus, F, satisfies the translation equation. Moreover, for h«H we 
have

F, <h, e) = <p (e)*h = eH*h = h,

where e and eM are the neutral elements of G and H, respectively. 
Hence, F, satisfies the identity condition as well and,
therefore, it is an operation of G on H, and the triplet <4. 8 ) is
an abstract object. It is easy to note that <4. 8 ) is a transitive 
object (since <p is a surjection). Thus, in virtue of corollary
4.2, abstract object (4.8) is a geometric object of Klein space 
<1.1).D

§5. Disjoint union of objects 

Let

(X., G, F.), seS <5. 1)

be a family of abstract objects and let

V X. : = U X.xts)««8 ««£
be a disjoint union of the family of all fibres of objects <5, 1). 
Let us also consider a transformation

P: ( V X„)*G -* V X.a«S a«8

defined by the formula

F((x.,s ), g) : = (F.Cx„,g),s) for x««X, and s«S. (5.3)
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It is easy to note that F is an operation of the group G on the
set (5.2). We will call it a disjoin union of operations F, and
denote

V F. : = F. (5. 4>
■ cs

Definition 5. 1. Abstract object

( V X«, G, V F. ) (5. 5)»*S «cs

with transformation formula (5.4) defined by (5.3) will be called 
a disjoint union of abstract objects (5. 1).

Expressively speaking, object (5.5) is constructed of 
objects (5.1) by "glueing" together their fibres X., preserving
operations F. of the group G on these fibres.

Let us also consider a scalar

(S, G, I), I (s, g) = s. (5. 6 )

We will start from the following theorem.

Theorem 5. 1. If abstract objects (5. 1) and (5.6) are 
geometric objects of Klein space (1. 1) and the set of ranks of 
all these object is bounded from above, then disjoint union (5.5) 
of objects (5. 1) is a geometric object of this space.

Proof. Let k, (s«S) denote the rank of the object (5. 1) and 
k, - the rank of the scalar (5.6). By assumption, there exists a 
positive integer k such that

A k,^ k and k«$ k.
s€ S

In virtue of assumption and lemma II.1.1 there exist Dartial 
objects

(Qi-(M), G, fi">). f<*> = f,k>|Q->(M)xG <5 rj

and
(q ;-(M), g , fik>), fi"> = f‘k,|Q<k>(M)*G <5-8>

of the standard geometric object of rank k of the space (1. 1), 
and bijections

y.: X. —» QJ- > (M), s€S, S —> QJk* (M)

such that for all x.«X., seS and g«G the following equalities

fi-’Ol-.ix.), g) = n ( F.(x.. S> ) (5- 9>
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and
fik> (y*(s), g) = y* (I is, g> ) = \jf» <s> <5. 10)

hold true. By <5.10), object (5.6) ia a scalar. Thus, by lemma 
III. 2, 1, for all s£S the set

Qik><M>*<¥,<s)}

Is an Invariant subset of the fibre of standard geometric object 
of rank k+2 and the equality

f‘k*2’(<A., f,< s)),g)= (flk ’ <A„, g), y, (s) ), (5.11)

where A«£Q^k><M), holds true. It follows that the set

Qjk**> CM) : = U Cik)<M)*{w,<s)> 
s£S

is also an invariant subset of the fibre of standard geometric 
object of rank k+2. Hence, we can define a partial object

(Qjk-2><M), G, fjk*2>) <5.12)
where

f  rfc-*2> — f<k.»2i i
|Q;k*2><M)*G

By <5. 11) we get

f;k*s,(<A.,y,is)),gt= (f;k> <A., g), y,<s) J <5.13)

for every A»£Q;ks<M> and s£S. It is easy to check that the 
transf ormation

f: V X, —* G£k*2' <M)

defined by the formula

¥ (<x. , s) ) : = (¥.<x.), ¥,<s) )

is a bijection. Thus, due to <5. 13), (5. 9) and <5. 3) we get
succesively

fik*2>(y(<x., s) ), g } = fik«>(<¥.<x,),y, <s)),g) =
= (f;k' <¥.<x.>, g), w* <s) ) = (¥, [F. (x„, g) ), y, <s> ) =
= ¥ (<r.(x„ g), s> } = w(F (<x,, s), g j ),

what proves the equivalence of objects (5.5) and (5. 12). Thus, 
disjoint union (5.5) of objects (5.1) is a geometric object of 
Klein space <1. D.Q
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flow, let

<X, G, FJ (5. 14)

be an arbitrary, non-transitive abstract object supported by the 
group G and let iX.) ,«s be the family of all transitive fibres of 
this object; Then the triplets

(X., G, F.), f * : = f |x,*G * stS <5.15)
are transitive partial objects of the object <5. 14). This, with 
the definition 5.1, imply the following corollary.

Corollary 5. 1. Each non-transitive abstract object <5. 14) is 
equivalent with the disjoint union <5.5) of all its transitive 
partial objects <5. 15).

Now, we will formulate necessary and sufficient conditions 
for a ncn-transitive abstract object (5.14) to be a geometric 
object of the space <1.1).

Theoi em 5. 2. It is necessary and sufficient for a 
non-transitive abstract object <5. 14) to be a geometric object of 
Klein space (i. 1), to satisfy the follobring three conditions:

ta) each transitive partial object <5.15) of the object 
(5. 34) is a geometric object of the space <1. 1);

(b> the set of ranks of all transitive partial objects 
(5. 15) of the object <5. 14) is bounded from above;

(c) there exists a geometric scalar of Klein space <1. 1) 
with the fibre equinumerous with the set of all transitive fibres 
of object <5. 14).

Proof. Let us assume that the abstract object <5. 14) is a 
geometric object of rank k of the space (1. 1). In virtue of 
theorem II. 3.1, every transitive partial object (5.15) of object 
<5. 14) is a geometric object of this space, and its rank k, is no 
geater than the rank k of object <5. 14). Thus, conditions <a> and 
<b> are satisfied. By de.inition of geometric object, the object 
<.5 . 14) is equivalent with some partial object

(Oi‘*<M). G, <5' i6>
©

of a standard geometric object of rank k of the space <1. 1). Let 
Tit denote the set of all transitive fibres of partial object



-  58 -

(5. 16). It is easily seen that lit is an invariant subset of the 
fibre of standard geometric object of rank k + 1, and the partial 
object

(nt, g , f;**’'). fi“-”  = f'“,*,>|1RxG (5,i7)

is a geometric scalar of the space (i.1). Due to equivalence of 
objects (5. 14) and <5. 16), there exists a bijection

y: X —>Q;k’iM),
satisfying the equivariance condition. It is a well known fact 
‘<cf. 1251, 1233) that such bijections transforms transitive 
fibres of object <5. ¡4) into transitive fibres of object <5. 16). 
Thus, the set of all transitive fibres of object (5,14) is 
equinumerous with the fibre 1Tc of geometric scalar (5. 17), what 
ends the proof of condition (c).

Conversely, let us assume that a non transitive abstract 
object <5. 14) satisfies conditions (a), <b) and (c). By corollary
5. 1, object (5. 14) is equivalent with the disjoint union <5. 15) 
of all its transitive partial objects and, due to condition (c) 
and corollary 1.1, scalar (5.6) is a geometric object of the 
space (1. 1). Hence, by conditions (a) and (b), all assumptions of 
theorem 5.1 are satisfied and, therefore, a disjoint union (5,5) 
is a geometric object of Klein space (1.1). Since the object 
(5. 14) is equivalent with this disjoint union, it is a geometric 
object, what ends the proof of the theorem. 0

We know, from considerations conducted in §4  ̂ that in Klein 
space satisfying the assumptions of corollary 4.2 every 
transitive abstract object supported by the group G is a 
geometric object of this space. Hence, in virtue of above 
theorem, the following corollary is true.

Corollary 5. 2. Let us assume that there exist m-repers in 
Klein space (1. 1) or that tne fibre M of this space is finite or 
equinumerous with one of the sets (4.7). Then & non-transitive 
abstract object (5. 14) is a geometric object of this space iff 
conditions (b) and (c) are satisfied.



Section IV 
ELEMENTARY KLEIN SPACES

General properties of Klein spaces arid its geometric object 
will be now illustrated by examples of elementary Klein spaces, 
such as vector space, unitary space, affine space and Euclidean 
space.

§ 1. Abstract linear objects

First, we will define a linear object and linear Klein space 
(cf. t 131, p. 47 and 1231).

Definition 1. 1. Abstract object

(V, G, F) (1. 1)

will be called linear over the field K iff its fibre V is a 
linear space over K and transformation formula F satisfies the 
condit ion

F (A, v,tX2v2, g> = X,F(v,,g) + \2F(v2, g).

Linear object over K (1. 1) will be called n-dioensional iff 
dim*V = n. Effective linear objects over K will be called linear 
Klein spaces over the field K.

Let Uk and W” be a k-dimensional and m-dimensional, 
respectively, linear spaces over the same field K. Let us 
consider two linear object over K

(Uk, G, F,> (1.2)
and

(W, G, F„> (1.3)

supported by the same group G, and the object

(7(U\ W), G. F), ?(y,g) = Fos'^lg-' 1 a,4>

of all transformations of the fibre of object (1.2 ) into the 
fibre of object (1.3). Let £(Uk, W“) denote the set of all linear 
transformations of the space Dk into the space W". According to 
definition 1 .1 of linear object, bijections Fjg and F^g are the
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linear transformations. Hence, the implication

Y<:£(Uk, W») => F0goy»Flg-,££(Uk, W”>

holds true for all g£G. Thus, £<Uk, W“> is an invariant subset of 
the fibre of object (1.4). Therefore, we can define a partial 
object

(£(Uk,W»>, G, F), F(y,g> = F0g°y°Flg., (1.5)

of object (1.4). It is a well known fact (cf. 1191), that the
fibre of object (1.5) with operations defined as follows:

(ft + Y2>(u) := Y i + Yziu), (Xy><u> : = Xy(u) 

is (k-m)-dimensional linear space over K. We can check by simple 
calculation that for all X,, X2«K, yu y2«£(Uk, W“> and g«G we have

F(X,y,+X2y2, g) = X,F<y,, g) + X2F (y2, g). (1.6)

It follows that (1.5) is a linear object over K. Thus, we get the
following corollary.

Corollary 1. i. If (1.2) and (1.3) are two linear objects 
over K and their dimension is k and m, respectively, then the 
object (1.5) of all linear transformations of the fibre of object
(1.2) into the fibre of object (1.3) is a (k• m)-dimensional 
linear object over the field K.

By theorem III. 3. 1 we get another corollary.

Corollary 1. 2. If linear objects (1.2) and (1.3) are 
geometric objects of n-dimensional linear Klein space over the 
field K

(V", G, f), (1.7)

then linear object (1.5) is also a geometric object of this 
space.

We can generalize the above considerations. Let us examine 
(instead one object (1.2 )) k linear objects over K

(V?‘, G, F,), n, = dimKV?,‘ 1=1,2,-, k (1.8)

and G-product of these objects

(V?’x-.*V?k, G, F). (1.9)
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Let

í>y<V?'*_><V¡?\ Vra), G, F) <1.10)

be the object of all transformations of the fibre of G-product
(1.9) into the fibre of object (1.3). It is easily seen that the 
set

£(V?\ VIS Wm>
of all k-linear transformations (i.e. linear with respect to each 
variable separately, with remaining variables fixed)

y: ->V®
is an invariant subset of the fibre of object <1. 10). Let us 
consider a partial object

( £ < V ? \ V ? k; W*“), G, F> (1.11)

of this object. We know (cf. £ 133 >, that the fibre of object
(1. 1 1), with operations defined as usual, is an
(n, -~ ■nv■m)-dimensional linear spare over K. It is easy to check
by direct calculation that for all X,, Xj£K, gtG and every
Vh V2££(V"’, -, Vi1“; W®1) the equality (1.6) remains true. Therefore,
(1. 11) is a linear object over the field K. Thus, we get another
corollary, being a generalization of corollary 1. 1.

Corollary 1. 3. If (1.8) and (1.3) are the linear objects 
over K, then the cfoject (1.11) of all k-linear transformations of the 
fibre of object (1.9) into the fibre of object (1.3) is an
(n, • -■ nk • m>-dimensional linear object over the field K.

Subsequent corollary follows immediately from theorems 
III. 2. 1 and III. 3. I.

Corollary 1. 4. If linear objects (1.8) and (1.3) are 
geometric objects of linear Klein space (1.7), then linear object 
(1.1 1 ) is also a geometric object of this space.

To study the properties of Klein geometry of a given Klein 
space, it is convenient to choose the simplest (canonical) space 
of the class of equivalent spaces and conduct studies in it We 
will do it in the following parts of this section.

Let GLCn, K) denote the multiplicative group of all 
non-singular square matrixes of n-th order with elements



-  62

belonging to the f^eld K, and GL(n, K> - an arbitrary subgroup of 
GL(n,K). Abstract object (cf. 1133, p. 23, [53, C 233 )

(K", GLCn.K), f ), f {Cx‘>, [Ai] ) : = (Aj x‘) <1. ,12>

(we use the Einstein's sumation convention) and each its 
subobject

(Kn, GL(n,K), ?), ? = f |j(nXQL(n, K) <1.13)

are the examples of n-dimensional linear Klein space over the 
field K. In the sequel they will be called canonical linear Klein 
spaces. It follows from considerations presented in 1233 that 
every n-dimensional linear Klein space over K is equivalent with 
one of the spaces (1. 12), <1. 13). Object (1. 13) is also called an
n-dimensional canonical vector Klein space. Due to accepted
definition, vector Klein space is a linear Klein space, but the 
converse generally is not true. In the sequel we will discuss the 
most important geometric objects of vector Klein space.

§2. Covariant and contravariant vectors

Let us consider an n-dimensional (canonical) vector Klein 
space over the field K

(K", GL (n, K), f), f (<x‘), [Aj] ) = (Ai x’). (2.1)

Due to corollary II. 1. 3, space (2.1) is its own geometric object 
called, in general case, a point object. For a vector Klein 
space, though, we will bring the following definition (cf. [133, 
p. 23).

Definitlon 2. 1. Point object of a vector Klein space <2. 1) 
will be called a contravariant vector.

As we know, the centre of a general linear group GL (n, K) is 
a group of scalar matrixes. We will denote this group by S(n, K). 
By corollary III. 3. 3, the object

(S (n, K), GL (n, K), I), I (X, A) = X for XeS(n,D, A«GL (n, K)

is a geometrid scalar of Klein space (2.1). Since the set of all 
scalar matrixes is equinumerous with the field K, by corollaries
III. 1. 1 and II. 1. 1 we get the following corollary.
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Corollary 2. 1. Abstract object

(K, GL (n, I), I), I <X, A) : = X (2.2)

Is a geometric scalar of n-dimensional canonical vector Klein 
space over the field K.

It is easily seen that the following corollary Is also true.

Corollary 2.2. Geometric scalar (2.2) of the space (2.1) is 
a one-dimensional linear object over the field K.

The next corollary follows easily from the previous one and 
corollaries 1 .1 and 1.2.

Corollary 2.3. Object

(£(K", K), GL(n, K), F)
(2. 3)

F(a, A) = = a»f^_,

of all linear mappings a: K" —» K of the fibre of contravariant 
vector into the fibre of scalar (2.2 ) is a geometric, 
n-dimensional linear object of Klein space (2.1).

Definition 2. 2. Geometric object (2.3) will be called a 
covector or a covariant vector of vector space (2 . 1).

Now, let us consider abstract linear object over K (cf.
£ 131, p. 23, also £231 )

(K", GL(n, K), f), f ((x,>, [Aj] ) : = (A{ x.), (2.4)

where A| are the elements of matrix A'1, inverse of the matrix 
A =  [A<], and the mapping of the fibre of object (2.3) into the 
fibre of object (2.4)

y: £ (K°, K) -» K", y (a) : = (a,), (2.5)

where a,:=a(e,), and e, = (5|>, i, j = l, 2, _, n is a base of the 
fibre Kn of contravariant vector (2.1) (5{ denotes the 
Kronecker's symbol). It is proven (see e.g. £191) that such 
defined mapping is a linear isomorphism. We will show that the 
pair <y, idSL(„.K)> is an isomorphism (of category OG(f> ) of object
(2.3) onto object (2.4). Due to definition of mapping (2.5) and 
the transformation formula F of object (2.3), for each a* t (K', K> 
and AtGL(n, K) we have

y (F (a, A) ) = y ( a » f > = (a»f (e,)) = (a(f (e,, A"') }).
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Let

f (e,, A-' ) = v, = (vj) c K".

Then f (v„ A) = e, and

f(v„A> = f((vj), [a;]} = (A? v{) = e4 = (6i).

Thus,

A“ v} = 6*.

Therefore, [vi] is an inverse matrix of A, i. e.

vj = Aj.

Hence,

y (F(©, A) J = (©tv,; ) = (©(.vj e,) ) = (©(Aj e,) ) =
= (Aj©le,) ) = f (»<©), [Aj] ),

and, therefore,

f (f <©), A) = y (Ft©. A) ).

Since y is a bijection, pair (y, idaL<n,K!> is an isomorphism of 
category OG(f). The results obtained above we will formulate as a 
lemma.

Lemma 2.1. Transformation (2.5) is a linear isomorphism, and 
pair (y, idau<n. « ) 5 " an isomorphism of object (2.3) onto object 
(2. 4).

As the immediate consequence of this lemma we get:

Corollary 2. 4. Object (2. 4) is a geometric object of a 
vector Klein space (2.1), equivalent with covariant vector (2.3).

Deflnition 2. 3. Geometric object <2. 4) will be ceiled a 
canonical covariant vector of vector Klein space (2. 1).

It appears (cf. £163, 1233 ) that objects (2.1) and (2.4) are 
abstractively equivalent, but not geometrically equivalent. In 
geometric interpretation it means that these objects, considered 
as Klein spaces are equivalent, but treated as geometric objects 
of vector Klein space are not. It can be shown that the covector 
of covariant vector (2. 4) is an object equivalent with 
contravariant vector.
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§3. Tensors

Let us consider a contravariant vector and a covariant 
vector <2. 4) of vector Klein space (2.1). Define the cartesiaxi 
product

E<p.«> := Knx_xK"xK"x«.xK", (3. 1)

q p
where the first o factors are the fibres of object <2.1), and the
next p - the fibres of object (2.4). One of the numbers p, q can
be equal to zero. Let

(E“^ ’, GL(n, K), F),
- (3-2)F ((v,, _, uB), A) = (f (v,, A), ~, f (up, A) }

be a product object defined of objects (2. 1) and (2.4). Since 
covariant and contravariant tensors are geometric, n-dimensional 
linear objects over K, in virtue of corollaries 1.3 and 1.4 we 
have

Corollary 3. 1. Abstract object

(£(£'•>•«>, K), GL(n, K), F)
(3.3)

F (ct, A) = IA»a‘>FA- 1 = o»FA_, 

of all (p+q)-linear mappings a: E 10-*1' —» K of the fibre of object 
(3.2 ) into the fibre of scalar (2.2 ) is an n»*a-dimensional, 
linear over K, geometric object of the space (2.1).

Definition 3. 1, Geometric object (3.3) of vector Klein space 
(2.1) will be called a tensor of valence (p, q) or tensor 
contravariant of degree p and covariant of degree q.

Now, let us consider the cartesian product Kn>> q of the 
1 leld K. Any element of this product we will denote by the symbol

(aj’”^0 ), where i,, ip, jt, j„ * 1, 2, ~, n.J 1**Jq
Let us define an abstract linear object over K (cf. 1131, p. 25
and 153)

(KnP^, GL(n,K>, f) <3.4)

with the transformation formula defined as follows:

i 1 ***ip . 1 ^ * 1 i »"ip , J
? ) != W , - A ip A l,' 1, “j . - j j ’

where A3 are the elements of a matrix A"’, inverse for A-[A4].
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Finally, let

y: £ (E"’- <l’! K) -»• KnP*Q <3, 6 )

be 3 transformation of the fibre of object (3.3) into the fibre
(3.4), defined by the formula

y(o) := (o(e, ,.,a, , eK\ eKp>), (3.7)1 y i- q

where

e1 = (oj), 1*1, 2, _, n (3. 8 )

ancs

ek = (8i)i k=i, 2, n (3. 9 >

are the bases of contravariant vector (2 .1) and covariant vector
(2.4), respectively, and Si denotes Kronecker's symbol.

We will prove the following lemma.

Lemma 3. i. Transformation (3.6) defined by the formula (3.7) 
is a linear isomorphism, and the pair (y, id01_<„. K,) is an 
isomorphism of the object (3. 3) onto object (3. 4).

Proof. Let us note that transformat 1 on (3.6) is a linear
isomorphism (see e.g. C193). In the previous part of this section
we have shown (see the proof of lemma 2 , 1) that the implication

f <e,,.A~') = v, = (v{> =* vj = Aj. (3. 10)

Similarly, we can show that

f"(ek, A*’) = u* = (u‘> =* u? = A*. (3. 11)

For the sake of simplicity, we will carry the proof of second 
part of the lemma in the case p = q = 1. Using the above 
implications and relations (3.3), (3.7) and (3.2), for each
a££ (E'*’’ K j and A£GL(n, K) we have

if (F (a, A)) - y (a*FA_,) = (a“FA_, (es, e“) ) =

= (a (f (e,, A '), ? (ek, A“’> 5 } = {o(v1,uk)) =

= {o(vi e>, u‘, e1) ) = (a (At e ,, AV e’> ) -

= (Â  A| a t e , ,  e ‘ ) ) = P  (y ( a ) ,  A ).

Thus, the pair (y, idat,„,K>) is an isomorphism of the object (3.3) 
onto object (3.4). For arbitrary p and q the proof is similar. 0
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As an immediate consequence of the above lemma we get the 
following corollary.

Corollary 3.2. Abstract object (3. 4) is a geometric object 
of vector Klein space (2.1), equivalent with tensor (3.3).

Definition 3.2. Geometric object (3.4) of Klein space (2.1) 
will be called a canonical tensor of valence (p, q>.

Using denotations:

A -  [A}'], A - - [ a |.]

and

i'-i- i,_ip
{ a ’ e ) = F((a ). [A-] )
J •" j J 1 *** j cj1 «4

we can express the transformation formula of the object <3.4) in 
in the form well known in tensor calculus:

ar,~£  i) i" V .  js aj.~j«

Contravariant and covariantj vectors are obviously tensors of 
valences (1,0) and (0,1), respectively. Some of the properties of 
tensors over the field of real numbers are discussed in C131.
They can be easily transferred to the tensors over arbitrary 
field K.

§4. Beng;!.tjeg.
Let be given an n-dimensional vector Klein space over the 

field of real numbers R

(R", GL in, R), f), f ((x1), [Ai] ) = (A,J x‘), <4.1)

and a homomorphism ¡p0: R„ —» R„ of a multiplicative group
R0 = R \ (0) .of reals into itself.

In the space (4.1) there exist h-repers. These are (cf.
C141, p. 52) all bases of the fibre R". Moreover, the mapping 
:= o„»det is an epimorphism of the group GL(n, R) onto the group 
if0 (R0). It follows (cf. lemma III. 4. 3) that the triplet

(<p0 (R0>, GL(n, R), F„), F„(x, A) : = »0(det A) • x (4.2)

is a geometric object of the space (4. 1). Object (4.2) will be
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called a generalized density. It appears (cf. til) that the only 
measurable homomorphisms : R„ —* R= are the functions of the . 
f orm

<p.<t> = ftl* <*. 3)
and

= (sgnt)ftf“ (4.4)

where a is an arbitrary real number. Hence, we can define (cf.
1133, p. 25, also £51) abstract objects

(R, GL(n, R), F,), F, <x, A) : = I det At *• x <4.5)
and

(R, GLCn, R), F2), F, (x, A) : * sgn <det A) • I det Al *• x. (4.6)

Definition 4. 1. Abstract object (4.5) and (4.6) will be
called a W~density (or Weyl density) of weight (-a) and G-density
(or ordinary density) of weight (-a).

It is easily seen that the following corollary holds true.

I Corollary 4. 1, W-densities and G-densities of an arbitrary 
weight are linear object over the field R.

Let us note that W-density of weight 0 is a scalar (with 
K=R), and G-density of weight 0 is an abstract object of the 
f orm

(R, GL(n, R), F3), Fs (x , A) = sgn(det A)'X (4.7)

called a blscalar.

First, we will prove the following theorem.

Theorem 4. 1. W-density of weight (-a) is a geometric object 
of vector Klein space (4.1).

Proof. If a= 0, then the object (4.5) is a scalar and, 
therefore, a geometric object (cf. corollary 2.3). Hence, we can 
assume that a^O. Let us note that the mapping

q>: GL (n, R> —* R*. = (0,+«>), <p : = ¡(¡„«det,

where (p„ is defined by the formula (4.3), is an epimorphism of 
the group .gL (n, R) onto multiplicative group R„. Thus, due to 
lemma III. 4. 3, abstract object

(R*, GL(n, R), F4), F4 (x, A) : = I det Al*-x, a*0 (4.8)
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is a geometric object of the space <4. 1). Moreover, the object

(R-, GL(n, R), Fs), Fs(x, A) := I det Ala-x, 0, (4.9)

wnere R_ : = {-<»,0), is equivalent with the object (4.6). Indeed.

y: R- —> R_, y(x> : = -x 

is a bijective function, and since

Fs(y(x>,A) = i det AI "• y (x) = -! det Ai - • x = y < I det A1 *• x) = y (F4 <x, A) )

the pair (y, ida!_<„.R >) is a morphism of object (4.8) onto object
(4.9). It follows that (4.3) is a geometric object of the space 
<4. 1). Since the scalar (2.2) (K=R) is geometric, in virtue of 
corollary III. 1. 3, each scalar with a finite fibre is geometric.
In particular, the scalar with one-element fibre

(<0), GL<n, R), I0). Io<0, A) = 0 tR u. 10)

is geometric. Geometric objects (4.8)-(4. 10) forms a family of
all transitive partial objects of the object (4.5) for c<*0. It
fellows then, by theorem III. 5. 2, that W-density. of weight <-o) 
(a*0) is a geometric object of Klein space (4. 1), what ends the 
proof. D

Lemma 4. 1. Biscalar (4. 7) is a geometric object of vector 
Klein space (4. 1).

Proof. Mapping

9: GKn, R) —* <— 1, 1>, 9 (A) : = sgnCdet A)

is an epimorphism of the group GL(n, R> onto multiplicative group 
<-1, 1}. Due to lemma III. 4. 3, the object

(i-l,i), GL(n, R), F«), Ft(x, A) = sgn(det A) • x (4.11)

is a geometric object. It is easy to note that, tor an
arbitrarily fixed acR,, it is equivalent with the object

({-a, a), GL (n, R), F7), F7 (x, A) = sgn (det A) • x. (4.12)

Therefore, (4.12) is a geometric object. Objects <4-. 10>-(4. 12)
forms the family of all transitive partial objects of biscalar 
(4.7). Geometricity of biscalar (4.7) follows immediately from 
this fact and theorem III. 5. 2.0

Theorem 4. 2. G-density of weight (-a) is a geometric object 

of vector Klein space (4.1).
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Proof. It follows from lemma 4. 1 that the theorem is true 
for a=0. Let us assume then, that or*0. Mapping

<p: GL<n, R> —» R„, <p : = <p„»det,

where <pp denote the function <4. 4), is a group epimorphism. Thus, 
by lemma III. 4. 3, the object

(R0, GL<n,R), F.), F8 <x, A) = cp <A> • x <4.13)

is geometric. G-density of weight (-a) <a*Q) has only two
transitive partial objects, i.e. <4.13) and <4.10). In virtue of
theorem III. 5. 2, it is a geometric object of the space <4. D.O

§5. Tensor densities

Let us consider again the n-dimensional vector Klein space 
<4. 1) over the field R of real numbers, and the object

(R, GL<n, R), 4), 4><x, A) : = ?CA) • x, <5.1)

where ®: GLCn, R) — * R is a transformation defined by the formula

®<A> = I det A! *, a«R, <5. 2)

or the formula

sp<A> = sgnidet A) I det A!“, atR <5.3)

Depending on whether <p is defined by (5.2) or <5.3), geometric 
object <5.1) is either W-density or G-density, respectively, of 
weight <-a). Let us also consider product object <3. 2> <K=R)

GL<n, R), F)
(5. 4 >

F (<v„ Up), A } = (f <v,a,-, f <UpAÎ)

and object

(£<Etp'*'>, R), GL<n, R), F },_ (5, 5 )
F to, A) = ®Aca“^A"’

of all <p+q)-linear mappings cr: —*R of the fibre of object
<5.4) into the fibre of object <5. I).

Corolldries 1.3 and 1.4 imply the following:

Corollary 5. 1. Object <5.1) is a linear over R geometric 
object of vector Klein space <4,1),

Definition 5. 1. Geometric ob-iect <5.5) of vector Klein space
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(4. 1) will be called a tensor density of valence (p, q> and weight 
(-a) (or, more precisely, tensor V-density or G-density of 
valence (p, q) and weight (~a>, depending of whether <j> is defined 
by formula (5.2) or (5.3)).

Let us consider a linear object over R <cf. C 131, p. 25, 
also [5))

(RnP a, GL(n, R), F), (5.6)

with the transformation formula P defined as follows

F  ( < a i ' " i p ) ,  A )  : =  (tp CA) / ^ ’ . . A ^  a ^ ’ “ } »  ),  ( 5 . 7 )J l*"Jq *1 ̂  p * 1 J q

where ® is defined by (5.2) or (5.3) and

A = [Ai], A- = [Aj].
Let (3.8) and (3.9) be the bases of, respectively, fibres of 
contravariant and covariant vectors over R, and let

y: £<£‘P P ',R) -> Rn (.5.8)

be a mapping of the fibre of object (5.5) into the fibre of 
object (5.6), defined by the formula (3.7).

Leag.o 5. 1. Pair (y, where y denotes the
transformation (5.8) defined by (3.7), is an isomorphism of 
object (5. 5) onto the object (5.6).

Proof. As in §3, we will carry the proof only for the 
particular case p=q=l- For all other p and q the proof is quite 
similar. Using (5.5), (3.7), (5.4), (3.10), (3.11) and (5.1) we
get, for each crc£(E'p-a\ R) and A£GL(n, R),

y (F (c, A) ) = y («¡A«a»FA-, ) = (4>A°o°FA_, (e,, e*) ) =

= (4*a (a(f (e,. A-’), f <e“. A"')) )) = (4>A (a<v„ uk >)) =

= (^(aivi e,, u{ e1) )) = (®(A) Ai Ai o(ej, e‘) ) 

and, therefore,

y (F (c, A) ) = P (y(a), A).

Since y is a linear isomorphism (cf. lemma 3. 1), it is a 
bijection. Kence, pair (y, idaL(„„j) is an isomorphism of 
category 0G(f).0

Corollary 5.2. Abstract object (5. 6 ) is a geometric object
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of Klein space (4,'i), equivalent with tensor density (5.5).

Definition 5.2. Geometric object <5.6 ) of vector Klein space 
(4.1; will ba called a canonical tensor density of valence (p, q) 
and weight (-a).

Tensor densities and their properties are presented in 113).

8 6. Geometric cfojects of..cQ.ementary %lci.n .spaces 

Let us consider an n-dlmehsionai vector Klein space over the 
field K

(K", GL(n, K>, f>, f (<x‘), [Ajj ) = (AS x‘; (6. 1>

and an n-dlmensional affine Klein space over the same field (cf. 
example I. 2. 3)

(K", GA(n, K), f), f ( (x‘), ((s'), [A{] ) ) = (aJ + Aj x‘>. (6.2)

Let H(n,K) denote an arbitrary subgroup of linear group
GL(n, K). An important example of such a group is orthogonal group 
over K, defined by the formula

0(n, K> : = (AcGLcn, K): A-AT = AT-A = E),

where E denotes unit matrix and AT - transposed matrix of A. To a
subgroup H(n, K) corresponds a subgroup (cf. 1131, p. 29 £53,
123))

GH(n, K) : = ((a, A): atK" * AtH(n, K>)

of the affine group GAvn, K). Subgroup

E(n, K) : - ( (a, A): aeK"» AeOin, £))

of the affine group, corresponding to the orthogonal group 
0(n, K), will be called Euclidean group of degree n over A'.

Let us consider subobjects

<K". H(n,K), f„>, ■■ = 1 jK-vH (n, K) <6-3)

and

iK", GH(n, K), ?„), : f lK"«GH(n K) <6‘4)

ol spaces (6.1) and (6.2), determined by subgroups H(n, K> and 
GH(n,K), respectively. Due to corollaries 1.3. 1, they are also 
Klein spaces. As we know, the space (6.3) is called an
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n-dimensional linear Klein space over K.

Definltion 6. 1. Abstract object (6. 4) will be called an 
n-dlmenslanal subaffine Klein space over K.

Space <6, 3) supported by the orthogonal group 0(n, K) is an 
important example of Klein space. It is called an n-dimensional 
unitary Klein space over K. Subaffine space (6.4) supported by 
the group E(n,K) is called an n-dimensional Euclidean Klein space 
over K More examples of subaffine spaces over S can be found in 
C 133.

Definition 6. 2. Klein space (M, G, f) equivalent with one of 
the spaces (6 . l)-(6 . 4) will be called an n-dimensional elementary 
Klein space over K.

To study the properties of elementary Klein.spaces we 
usually consider canonical elementary spaces (6. 1 > — <6. 4). The 
following lemma is a base for further considerations.

Lemma 6 . 1. Abstract object

<K", GA(n, K), F), F((v‘), ((a1), [Af] )) := (Ai v‘> (6.5)

is a geometric object of affine Klein space (6.2).

Proof. Let us consider product object of the space (6. 2)

(iPxK,n GA (n, K), f2>, (6.6 )

where

f2 (((x‘), (y‘>), ((aJ), [Aj] )) = ((a' + Ai x1), (a1 + Ai y‘) ),

and the transformation

y: K^xK" —» K", y (((x1), (y1)) ) : = (y‘ - x‘>

of the fibre of object (5.6) into the fibre of object (6.5). Dur 
to theorem III. 2. 1, object (6 . 6 ) is a geometric object of the 
affine space (6.2), whereas y, as is easily seen (cf, 1133, p. 32, 
[53 >, is an invariant and surjective transformation. Thus, 
object (6.5) is a comitant of geometric object (6 .6 ). Hence, by 
corollary III. 4. 1, (6.5) is a geometric object of Klein space
( 6 . 2 ) .  0

Definition 6.3, Geometric' object (6.5) of affine Klein space 
(5. 2 ) will be called a contravariant vector of this space.
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It is easy tq note that the transformation

<p: GA(n, K> -* GL(n, K), ®(<a, A)) : = A (6.7)

is a homomorphism of affine group into general linear group (cf.
C133, p. 28). Moreover, object (6. 5) is induced by vector Klein 
space (6.1) and homomorphism (6.7). Hence, by lemma 6.1 and 
theorem II. 3. 3, the following important corollary is true.

Corollary 6 .1. Each object induced by a geometric object of 
vector Klein space (6. 1) and homomorphism (6.7) is a geometric 
object of affine Klein space (6.2).

For example, the object

(Kn, GA(n, K), F,), F, ((u,), ((aJ), [Af]) ) = (A‘ u,)

induced by covariant vector (2.4) of vector Klein space (6. !) and 
homomorphism (6.7), is a geometric object of affine space (6.2 ). 
We will call it a covariant vector of affine Klein space (6.2).

Now, we will introduce the following general definition.

Definition 6.4. Object Induced by tensor (3.5) (by W-density
(4.5), G-density (4.6), tensor density (5.6) for K=R) and 
homomorphism (6. 7) will be called a tensor of valence <p, q) 
(V-density, G-density, tensor density) Of affine Klein space 
(6. 2) .

Tensors (and also densities and tensor densities for K=R) 
can be defined for an arbitrary linear Klein space (6.3) and 
arbitrary subaffine Klein space (6.4), using the following 
corollary, being an immediate consequence of corollary II. 3. 3.

Corollary 6. 2. Subobject of an arbitrary geometric object of 
vector Klein space (6,1) (affine Klein space (6.2)), determined 
by subgroup H(n, K) of the group GL(n, K> (subgroup GH(n, K) of the 
group GA(n, K>) is a geometric object of linear Klein space (6.3) 
(subaffine Klein space (6.4)).

It follows that for an arbitrary elementary Klein space, 
beside the objects of geometric figures (cf. definition 1.4.2 and 
corollary II. 1.2) there are other geometric objects: tensors, 
and, in the case K-R, also densities and tensor densities. These 
are all geometric objects of elementary Klein spaces with 
practical applications. So, indroducing the definition II. 1. 2 of 
geometric object is fullv reasonable.



CONCLUSIONS

We noted, in §5, Section I, that one should expect certain 
correlations between the fibres and transformation formulas of a 
given Klein space and its geometric object. These correlations 
exist for all objects of category OG(f) (cf. §1, Section II). 
Hence, in virtue of corollary III.4.2, the existence of repers 
of finite order in Klein space guarantees such correlations for 
every transitive object of category OA(G). So, if we replaced 
the effectivity condition in definition of Klein space by the 
stronger axiom of existence of m-repers (cf. §5, Section I), 
then the category OA(G) could be called a category of geometric 
objects and a pair

((M,G,f), OA(G))

a Klein geometry of this space. The notion of equivalence of 
geometries can be introduced with the use of simple functor (cf. 
§4, Section II) for such defined Klein geometries. It seems, 
though, that even in this case, definition II.1.2, accepted in 
this paper, is more properly designed, as prove the properties of 
geometric objects of elementary Klein spaces, discussed ia 
Section IV.

This paper, although it forms a certain whole, does not 
exhaust the subject. Beside, undoubtedly important, elementary 
spaces, in geometry there are also discussed classical Klein 
spaces, such as projective, elliptic, hyperbolic, Grassmaa and 
Stiefel space (cf. 043, §7, Section I). Presenting the 
properties of these spaces and their geometric objects exceeds 
the limits of this paper, though.
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PODSTAWOWE POJĘCIA GEOMETRII KLEINA

S t r e s z c z e n i e

Chociaż od sławnego Programu z Erlangen Feliksa Kleina upłynę­
ło już ponad sto lat, nie jest on do tej pory w pełni wykorzysta­
ny. Główna przyczyna tego tkwi między innymi w tym, że nie został 
on dostatecznie precyzyjnie przedstawiony. Oryginalną definicję 
geometrii, podaną przez F. Kleina (p. [ó]), można przedstawić na­
stępująco: Geometrią zbioru M, względem grupy przekształceń G(M) 
tego zbioru, lub krótko G(M)-geometrią, nazywamy zbiór wszystkich 
własności figur geometrycznych, które nie ulegają zmianie przy 
przekształceniach grupy G(M). Własności takie nazywamy niezmienni­
kami lub własnościami geometrycznymi. Po pojawieniu się konieczno­
ści uprawiania geometrii opartych na zbiorach przekształceń, nie 
koniecznie tworzących grupy, przestrzenie z grupą przekształceń 
zaczęto nazywać przestrzeniami Kleina.

R. Sulanke przez przestrzeń Kleina rozumie (p. [ż1j , [22]) tran- 
zytywną, lewostronną grupę Liego przekształceń, tzn. trójkę (M,G,f), 
gdzie M jest rozmaitością, G - grupą Liego, zaś f - tranzytywnym, 
lewostronnym działaniem grupy G na M. G-geometrią natomiast nazywa 
pewną kategorię związaną z grupą Liego G. Wydaje się, że określenie 
geometrii jako pewnej kategorii jest zgodne z oryginalną definicją 
Kleina. Niezmienniki, o których mówi definicja Kleina, są po prostu 
morfizmami odpowiedniej kategorii.

E.J. Jasińska i M. Kucharzewski w pracy [4] G-geometrią nazwali 
efektywny obiekt abstrakcyjny (M,G,f). W dalszych swych publikacjach 
M. Kucharzewski (p. [12], [13] ), opierając się na pewnych ideach,
zawartych w pracach R. Sulanke (p. [21]. [22] ), pojęcia przestrzeni 
Kleina, obiektu geometrycznego i geometrii określił tak, jak to 
przedstawiono w §2 rozdziału I niniejszej pracy. Definicje tych po­
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jąć budzą jednak pewne zastrzeżenia (por. §5, rozdz. I). Podstawo-“ 
wym mankamentem w definicji obiektu geometrycznego jest brak związ­
ku między włóknem obiektu a włóknem przestrzeni oraz brak zależno­
ści między prawami transofrmacji obiektu i przestrzeni. Ponadto 
określenie geometrii jako kategorii obiektów geometrycznych prowa­
dzi do tego, że niektóre nierównoważne przestrzenie Kleina posia­
dają tę samą geometrię.

Celem tej pracy jest uściślenie niektórych pojęć teorii prze­
strzeni Kleina i podanie pewnych ich własności. Rozdział I ma cha­
rakter wstępny. Omówiono w nim podstawowe pojęcia, niezbędne do 
zrozumienia dalszej części pracy.

W rozdziale II podano nowe definicje obiektu geometrycznego 
i geometrii Kleina. Wprowadzono w nim również niezdefiniowane do­
tychczas pojęcie równoważności dwóch geometrii Kleina oraz wyka­
zano warunek konieczny i dostateczny na to, aby dwie geometrie były 
równoważne.

Rozdział III poświęcony jest metodom konstrukcji obiektów geo­
metrycznych. Określono w nim dwa nowe obiekty, a mianowicie obiekt 
odwzorowań oraz sumę rozłączną obiektów. Wykazano również, że 
obiekty odwzorowań, obiekty ilorazowe, a także G-produkty i sumy 
rozłączne obiektów geometrycznych danej prz-strzeni Kleina są 
obiektami geometrycznymi tej przestrzeni. Podano także pewne warun­
ki konieczne i dostateczne na to, aby obiekty kategorii obiektów 
abstrakcyjnych, opartych na tej samej grupie, były obiektami geome­
trycznymi odpowiedniej przestrzeni Kleina.

Uzyskane rezultaty zilustrowano w rozdziale IV na przykładach 
elementarnych przestrzeni Kleina, takich jak przestrzeń wektorowa, 
unitarna, afiniczna i euklidesowa. Wykorzystując pojęcie obiektu 
odwzorowań podano definicje tensorów i gęstości tensorowych w no­
wym ujęciu.



OCHOBHHE nOHHTHH TECMETPiffl KJIEËHA

P e 3 K> M e

X o x h  3HaM6HHTaa "BpsanreHCKaH nporpaMMa" 6Hjxa K3xo- 
KSHa KaegHOM yate c t o  xtex xoMy nasa#» ,ąo 3Th x  nop OHa He 
HcnojibSOBaHa, noaxoMy h i o  OHa He ¿¡.ocxaxo h h o  xoHEaa.

OparHHasLHoe onpeflejieHne reonexpHH H3jiosceHO KxegHOM 
(cm. [6]) mohho npeflCTasHTb cjie^yBmHM o6pa30M; PeoMexpas 
MH oste ci Ba M cxHocnxejiBHo rpynnH npeo6pa30BaHzg g(m) sxoro 
MKOXeCTBa, HJIH KOpOTKO G(M)-reOMetrpHH, 3X0 MHOateCTBO 
Bcex cboëctb reoMexpHHecKHX (Jaryp, Koxopne ne H3MeHHBTCH 
npn npeo5pa3 0BaHHHX rpynnn g(m) . 3xh cBoñcTBa Ha3HBaeM 
HHBapHâHTaMH HXH VQOMelpHHeCKHMH CBOMCXBaHH.

Korfla BosHHKJia He oöxoähmoct b pa c c Max pas anii h reoMexpKâ 
OHHpaïoiiiHxaH na MHOxecisax upe0 6pasOBâHHÜ He oÔasaTejiBHO 
rpynn, npocTpaHciBa c rpynnofi npeo6pa30BaHHâ Hanaxo Ha 3 ¡¿- 
Baïb npocTpaHCïBaMH KxeËHa.

CyjiHHKe P. npooxpaHCTBOM Kxeäsa sasHBaex (cm. [2 1 ] , 
{2 2J) xpaH3HTHBHyK), jxesocxopoHHyio rpynny JIh npeoßpasoBa- 
hhë, x.e. xpofiKy (m,g,f) r^e M-MHoroo6pa3He? G - rpyn- 
na JIh, f - xpaHSHTHBHoe, neBocxopoEHee ÆenCXBHe rpynnH 
G Ha M. G -reoMexpHH b cboio onepe^B oxo EeKciopaa Kaxero- 
OHH CBH3aHa c rpynnoâ JLa. OnpesexeHHe reoMexpim KaK ae- 
KoxopoK KaxeropHH cxoflHo e opnrHHaJiBHHM onpeflexeHHeM 
KaeäHa, noxoMy nxo HHBapnaHTh 3 x 0 mop$h3mh cooxsexciBy- 
Kiníeñ KaxeropHH.

flCHHCKaa E . , KyxaxeBCKEË M. b  paôoxe [j4J G— r e oMexpaeS 
HaSHBaKJX 3(Jx|>eKXHBHHË, aÔCXpaKXHHË OÔBeKX (M,G,f) . 3 flpy-
rnx paôoxax KyxaseBCKHË M. (cm. [1 2 ] , [l3]) Hcnojibsya ne- 
Koxopne HfleH CyasHKe P. (cm. [2 1] , [2 2 ]), hohhxhh npocxpaE- 
cTBa Kaeffasa, reoMexpHaecKoro ofineKTa h reoMexpHH onpeflejiHÆ
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s a x ,  KaK npeflcxaBJxeso b §2 rx a s u  ï  a ïo â  paÔoTu. 3th 
onpe^ejieHHH B036yx,ii;aK)2 o^aaKO HeKOïopue c o ra e s E a  ( cm,
§5 r s ,  I Ï .  Ochobhhm HeflocsaiKaM onpenexeHHH re o w e tp a -  
necK oro  oßteK Ta 3 io  otcyxcTBHe cbx3h Mexny paccxoeHHeM 
oßneKTa h paccjioeHHeM npocT paH ciB a, a  s o s e  otcyrcTBH e 
3aBHCHM0CTH UeSifiJ 3âKOHEMH TpaHG$OpMapHH OÖBeKTa H 
n p o cT p a H c iB a ,.KpoMe x o ro  onpenexenne reoMeipHH KaK 
KaTeropnH reoMeTpHHecKHx oS bck tob  npHBo äh t k TOMy, h to  
HeKOTopae HeaKBHBaxeHTHHe npocxpaHCTsa K x e taa  HMerai 
o^HHaKOByK) reoMeTpHia.

IiexBm btoS paôoTH sBJiaeTCH y io ^ n e m e  He kot opHx hohh-  
thä  TeopHH npocipaHCTB KxeäHa h n o n aaa  HeKOTopnx hx 
CBOËCTB»

B rx a s e  I H3JiosceHH ocHOBHHe hohhthh neoôxonHMHe nxx 
hohhthh flajiBHeämefi n a c r a  paßoTH.

PjiaBa I I  coflepscHT HOBue onpenexeHHs reoneTpHHecKoro 
oöBeKTa h reoMeTpHH K xeäna . IIpeflCTaBxeHO Mosce b Heß 
Heonpe^ejieHO no chx  nop noHHTne SKBHBaxeHTHOcSH reoM e- 
Tpirn KxeËHa, a  la x x e  noKa3aHO neoöxonHMoe h nocTaTOHHoe 
ycHOBHe sKBHBajieHTHOcTH fiByx reoM eTpnft.

B rxaB e I I I  paccMOTpeHH MeioflH nocTpoeHHH re o M e îp a - 
necKHx oôBeKTOB. OnpenexeHo b HeË n s a  HOBHe oßBeKXH 
T .e .  oôBeKT DTo6paæ;eHHË h npsMyio cyMMy ooneKTOB. Äo~ 
KasaHO T o se , h to  oßteKTH oTo6paxeHHñ, (JaKTop-oßBeKTH, 
G-npoH3BeneHHH h npxMne cyuuu reoM eipHHecKnx oßneKTOB 
npocT paH ciB a KxeäHa o to  reoMeïpHHecKHe oßneKTH oToro 
npocTpaHCTBa. IlpencTaBjieHo l o s e  HeoßxoflHMHe h n o c T a - 
TOHHHe yCJIOBHH TOrO, HT 0 OÖBeKTH KaTerOpHH aÖCTpaKTHHX 
06b e KT OB HBXHKTCÄ reOMeTpHHeCKHMH OÖ̂ eKTaMZ COOTBeT- 
c.TByx)ąero npocTpaHCTBa KxeäHa.

ïïoxyneHN pe3yxB TaiH  npoHxxiocTpHpoBaHo b. rxaB e IV 
upHMepaMH sxeMeHTapHHX npocipaHCTB K xeäna thkhx KaK 
BeKTopHoe, yHKTapHoe, a$$HHHoes eBKxanoro' npocTpancTB a. 
HcnoxB3yn. hohhth6 oÖteKTa oToßpaxeHHä npeflCTaBxéHO ho-  
BH6 onpenexeHHa ieH 3 opoB h TeH 3opanx hxothocth.


