Eugeniusz BOBULA

THE THREE-DIMENSIONAL DIFFUSION EQUATION IN THE SPACE OF DISTRIBUTIONS

[^0]
1. INTRODUCTION

The subject of this work is construction of the transport equation (5). The solutions of this equation satisfies the limit conditions (6), (7), (8). The proofs of the existence of the solutions of the equation are enclosed in [1], [2].

The results of this work are the generalization of the results enclosed in [1]. They have a mathematical and physical character.

The continuity equation (expressing the mass conservation law in physics) for the flux $\vec{\phi}=-\nabla p$ has the form

$$
\begin{align*}
& \forall v: \int_{V} \frac{\partial p}{\partial t} d V=\int_{\Sigma} \nabla p \cdot d \vec{\Sigma}, x \in \mathbb{R}^{3}, t \in \mathbb{R}^{+} \\
& p: R^{3} \times R^{+} \supset \Omega(x, t) \longrightarrow R^{+} \tag{1}
\end{align*}
$$

Σ is the surface of the volume V (V is the open domain), $d \vec{\Sigma}=\vec{n} d \Sigma, \vec{n}$ is the external normal ((1) is true for V dependent also on t).

If we assume that $p \in C^{2}$ with respect to x and $p \in C^{1} w i t h$ respect to t, then we have from the Gauss-Green theorem

$$
\begin{equation*}
\int_{V} \frac{\partial p}{\partial t} d V=\int_{V} \Delta p d V \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\Delta p \tag{3}
\end{equation*}
$$

The integrals in (1) have sense for p satisfying the Lipschitz condition with respect to x and t.
(The assumption can be weakened).
2. FUNDAMENTAL THEOREM ON THE DISTRIBUTION FORM OF THE EQUATION (1)

We shall prove that the distribution form of equation (1) is following:

$$
\begin{aligned}
& \frac{\partial p}{\partial t}-\Delta p=\sum_{j=1}^{n}\left(\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{+}(x)}-\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{-}(x)}\right) \chi_{\phi_{j}(t)-} \\
& -\sum_{j=1}^{n} \sum_{i=1}^{3}\left(\left.\frac{\partial p}{\partial x_{i}}\right|_{\psi_{j, i}^{+}(t)}-\left.\frac{\partial p}{\partial x_{i}}\right|_{\psi_{j, i}^{-}(t)}\right) \delta_{\psi_{j, i}}^{i}(t)
\end{aligned}
$$

Assumptions: Let p satisfy the Lipschitz condition with respect to x and t. We assume then that the set S of the points of discontinuity of the derivatives $\frac{\partial p}{\partial x_{i}}$ is a finite family of smoth manifolds $S=S_{j}, j=1, \ldots, r$, with with dimensions $3,2,1$ in the four-dimensional space $x \in R^{3}, t \in R^{+}$. (These mandfolds from the physical point of view are the results of moving points and l ines and surfaces in the three-dimensional space $x \in R^{3}, S_{j}$ may be well independent of t). Let p be the function generating the distribution p. Let's assume that V_{k} are the volumes which do not contain the elements which are the subsets of S. We choose these $V_{k}, k=1,2$, which are neighbouring with the common surface P to each other.
(The surface P is the common closure of the open domains V). Generally the surface P is the function of the time t, therefore the volume V_{k} is the function of the time too. There are the subsets $S_{j}, j=1, \ldots n$, belonging to S on their common surface $P, n \leqslant r$.

Proof. Let $W=V_{1} \cup V_{2} \cup P, \quad P \supset \bigcup_{j=1}^{n} S_{j}$
We write (2) as:

$$
\begin{aligned}
& \forall W: \sum_{k=1}^{2} \int_{V_{k}} \frac{\partial p}{\partial t} d V+\int_{W} \sum_{j=1}^{n}\left(\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{+}(x)}-\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{-}(x)}\right)_{\phi_{j}(x)} d V- \\
& -\int_{W} \sum_{j=1}^{n}\left(\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{+}(x)}-\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{-}(x)}\right) x_{\phi_{j}(x)^{-}} d V=\sum_{k=1}^{2} \int_{V_{k}} \Delta p d V+ \\
& +\int_{W} \sum_{j=1}^{n} \sum_{i=1}^{3}\left(\left.\frac{\partial p}{\partial x_{i}}\right|_{\psi_{j, i}^{+}}(t)\right. \\
& -\int_{W}-\left.\frac{\partial p}{\partial x_{i}}\right|_{\psi_{j, i}^{-}}(t) \delta_{\psi_{j, i}}^{i}(t)^{n} d V- \\
& -\sum_{W=1}^{n} \sum_{i=1}^{3}\left(\left.\frac{\partial p}{\partial x_{i}}\right|_{\psi_{j, i}^{+}}(t)\right.
\end{aligned}
$$

where δ^{i}, δ-distribution associate with x_{1},

$$
x_{\phi_{j}(x)}= \begin{cases}1, & (x, t) \in S_{j} \\ 0, & (x, t) \notin S_{j}\end{cases}
$$

$\phi_{j}(x)$ denotes this value of t for which $(x, t) \in S_{j}$ and $\psi_{j, i}(t)$ denotes this value of x_{1} for which $(x, t) \in S_{j}$, $j=1,2,3$.

The sums of the first end the second integrals of the left side as well as on the right side of (4) are suitable derivatives in the distribution sense. Therefore we may write the equation of diffusion

$$
\begin{aligned}
& \frac{\partial p}{\partial t}-\Delta p=\sum_{j=1}^{n}\left(\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{+}(x)}-\left.\frac{\partial p}{\partial t}\right|_{\phi_{j}^{-}(x)}\right) x_{\phi_{j}(x)} d V- \\
& \left.-\sum_{j=1}^{n} \sum_{i=1}^{3}\left(\left.\frac{\partial p}{\partial x_{i}}\right|_{\psi_{j, i}^{+}(t)}-\left.\frac{\partial p}{\partial x_{i}}\right|_{\psi_{j, i}^{-}}\right)(t)\right) \delta_{\psi_{j, i}}^{i}(t)
\end{aligned}
$$

We are looking the solution of (5) in the domain $\Omega(x, t)$ with the limit conditions:

$$
\begin{align*}
& p(x, 0)=\varphi(x), \varphi \text { satisfying the Lipschitz condition } \tag{6}\\
& p(x, t)=0, \quad(x, t) \in \partial \Omega \tag{7}\\
& \int p(x, t) d x=\text { const } \tag{8}\\
& \Omega(x, t) \cap\{t\}
\end{align*}
$$

The set S is given, $\Omega(x, t) \in R^{3} \times R^{+}$. (On the left side without misunderstanding we write p instead of p).

REFERENCES

[1] E. Bobula: Derivation of the diffusion equation in the space of distributions, Prace Mat., ZN Uniw. Jagiell., z. 22, 1981.
[2] E. Bobula: On Some Solution of Three-dimensional Diffusion Equation (to appear).
E. Bobula: Academy of Mining and Metallurgy, Department of Fluid Mechanics.

TRÓJYYMIAROUE RÓWNANIE DYFUZJI W PRZESTRZENI DYSTRYBUCJI

Streszczenie
W pracy rozważano rozwiazanie równania dyfuzji，które spezniają warun－ ki（6），（7），（8）．Dowody istnienia tych rozwiazań są zawarte w pracach［1］i ［2］．
Wyniki tej pracy stanowia uogolnienia rezultatów zawartych w［1］． Maja one matematyczny i fizyczny charakter．

ЧPEXEPHOE YPABHEHИF ДИФФУИИ В IPOCTPAHCTBE

В рабоге рассмотрим репения уравнения диффузии（5），которне удовлетворжот（6），（7），（8）．Доказательства су耳ествования этих репеиии помещены в работах［1］п．［2］．
Резудьтаты настояще甘 работы явднотся обобщенияи резудьтатов，пош мещенных в［1］．
Они пмедт математическй у физически出 характер．

[^0]: Summary. The solutions of the diffusion equation (5) that satisfy the conditions (6), (7), (8) have been considered in the paper. The evidence for these solutions existence are enclosed in the papers [1] \& [2].
 They are of mathematical and physical character.

