Seria: MATEMATYKA-FIZYKA Z. 67

Nr kol. 1115

Hanna MATUSZCZYK

EXTERIOR FORMS IN n-DIMENSIONAL PREMANIFOLDS

Summary. The concept of an exterior differential form in n-dimensional premanifold has been introduced in the paper. The equivalence of a point - wise definition of an exterior differential form with a global one has been proved. The formula $d \circ d = 0$ which is fundamential for de Rham cohomology theory has been obtained as well.

O. PRELIMINARIES

We will consider a real or a complex (see [4], [5]) premanifold M such that its topology topM will be T_o topology (see [4], [5], [2]). The domain of any function f will be denoted by D_f. For any functions f and g with values in a vector space V the function f+g will be always meant as the one having the domain D_f \cap D_g such that (f+g)(p) = f(p) + g(p) for $p \in D_f \cap D_g$. It may happen then D_{f+g} = ϕ . If f is a real (complex) function, g is a function such that g(p) is a point of real (complex) vector space V_p for $p \in D_g$, then we have the function f·g with the domain D_f \cap D_g and defined by usual formula (f·g)(p) = f(p)·g(p) for $p \in D_f \cap D_g$. We will assume in the paper that M is n-dimensional (see [2]), i.e. every point p of M has a neighbourhood U \in topM and a system (e₁,...,e_n) of smooth vector fields in M defined on U such that: 1) (e₁(p),...,e_n(p)) is a base for the tangent space T_p M to M at the point p; 2) for any smooth vector field X defined in a neighbourhood D_v of p there exist $\alpha^1, \ldots, \alpha^n \in M$ such that

$$X(q) = \alpha^{i}(q)e_{i}(q) \quad \text{for} \quad q \in U \cap D_{X} . \quad (0.0)$$

Such a system (e_1, \ldots, e_n) is said to be a local base for M on U. We remark that the set of all local vector fields together with the addition is not a group.

1. EXTERIOR FORMS

For any point p of M and any natural number k we have k-th exterior power $\Lambda^{k}(T_{p}M)^{*}$ of the dual space $(T_{p}M)^{*}$ to $T_{p}M$. The function ω with the domain $D_{\omega} \in \text{topM}$ such that $\omega(p)$ is an element of $\Lambda^{k}(T_{p}M)^{*}$ is said to be an exterior k-form in M. Assume that M is n-dimensional and $0 \le k \le n$. Then we have the duality $\langle \cdot | \cdot \rangle$ between $\Lambda^{k}T_{p}M$ and $\Lambda^{k}(T_{p}M)^{*}$ given by the formula $\langle v_{1} \land \ldots \land v_{k}|w_{1} \land \ldots \land w_{k} \rangle = \det[w_{1}(v_{j}); i, j \le k]$ for v_{1}, \ldots, v_{k} in $T_{p}M$ and w_{1}, \ldots, w_{k} in $(T_{p}M)^{*}$. For any local vector fields X_{1}, \ldots, X_{k} and any point $p \in D_{\omega} \cap D_{X_{1}} \cap \ldots \cap D_{X_{k}}$ we set

$$\omega'(X_1,...,X_k)(p) = \langle X_1(p) \wedge ... \wedge X_k(p) | \omega(p) \rangle.$$
(1.1)

We have thus the function $\omega'(X_1, \ldots, X_k)$ with

$$D_{\omega}, (X_1, \dots, X_k) = D_{\omega} \cap D_{X_1} \cap \dots \cap D_{X_k}$$
(1.2)

We will say that ω is smooth iff for any local smooth vector fields X_1, \ldots, X_k the function $\omega'(X_1, \ldots, X_k)$ belongs to M.

The set of all smooth exterior k-forms in M will be denoted by $A^{k}(M)$.

Consider the set A'^k(M) of all functions η satisfying the following conditions:

- (i) D_{η} is the set of all k-tuples (X_1, \ldots, X_k) of smooth local vector fields in M and $\eta(X_1, \ldots, X_k) \in M$ for $(X_1, \ldots, X_k) \in D_n$;
- (ii) for any smooth local vector fields X_1,\ldots,X_k,X in M and any $\alpha\in M$ we have

$$\eta(X_1,\ldots,X_k + \alpha X,\ldots,X_k) = \eta(X_1,\ldots,X_k) +$$

+
$$\alpha \cdot \eta(X_1, ..., X_{i-1}, X, X_{i+1}, ..., X_k);$$

(iii) for any smooth local vector fields $X_1, \ldots, X_k, Y_1, \ldots, Y_k$ in M such that $D_{X_1} = D_{Y_1}, \ldots, D_{X_k} = D_{Y_k}$ we have $D_n(X_1, \ldots, X_k) = D_n(Y_1, \ldots, Y_k);$

(iv) η is skew-symmetric.

Exterior forms in...

1.1. For any $\eta \in A^{,\,k}(M)$ and any smooth local vector fields $X_{1}^{},\ldots,X_{k}^{}$ we have

$$D_{\eta}(X_{1},...,X_{k}) = D_{X_{1}} \cap D_{X_{k}} \cap D_{\eta}(0,...,0), \qquad (1.3)$$

where 0 is zero vector field on the set of all points of M. If U c $D_{\eta}(X_{1}, \ldots, X_{L})$ then

$$\eta(X_1|U,...,X_k|U) = \eta(X_1,...,X_k)|U.$$
(1.4)

Proof. Let 0_1 be the zero vector field on D_{X_1} , i = 1, ..., k. From (iii) it follows that $D_{\eta}(X_1, ..., X_k) = D_{\eta}(0_1, ..., 0_k)$. On the other hand, we have $0_1 = \alpha_1 \cdot 0$ where $D_{\alpha_1} = D_{X_1}$ and $\alpha_1(p) = 1$ for $p \in D_{\alpha_1}$. Hence, by (ii), it follows that $\eta(0_1, ..., 0_k) = \alpha_1 \dots \alpha_k \eta (0, ..., 0)$. Thus, $D_{\eta}(0_1, ..., 0_k) =$ $= D_{\alpha_1} \cap \dots \cap D_{\alpha_k} \cap D_{\eta}(0, ..., 0) = D_{X_1} \cap \dots \cap D_{X_k} \cap D_{\eta}(0, ..., 0)$. Similarly, (ii) yields $\eta(X_1 | U, ..., X_k | U) = \eta(\alpha \cdot X_1, ..., \alpha \cdot X_k) =$ $= \alpha \cdot \eta(X_1, ..., X_k) = \eta(X_1, ..., X_k) | U$, where $D_{\alpha} = U$ and $\alpha(p) = 1$ for $p \in U$. Q.E.D.

The set $\eta(0,...,0)$ will be called the natural domain of η .

1.2. If M⁻ is ans n-dimensional premanifold, $\eta \in A^{k}(M), X_{1}, \ldots, X_{k}$ are smooth local vector fields in M, $p \in D_{\eta}(X_{1}, \ldots, X_{k})$ and $X_{h}(p) = 0$ for some h, then $\eta(X_{1}, \ldots, X_{k})(p) = 0$.

Proof. Let (e_1, \ldots, e_k) be a local base for M on U, where U is a neighbourhood of the point p. We may assume that $U \in D_{\eta}(X_1, \ldots, X_k)$.

According to 1.1 we have $U \subset D_{X_1} \cap \ldots \cap D_{X_k}$ and $X_h | U = \alpha^i e_i$ for some $\alpha^1, \ldots, \alpha^n \in M$. Hence it follows that $\eta(X_1, \ldots, X_k) | U =$

$$= \eta(X_{1}|U, ..., X_{h-1}|U, \alpha^{i}e_{i}, X_{h+1}|U, ..., X_{k}|U) =$$

$$= \alpha^{i}\eta(X_{1}, ..., X_{h-1}, e_{i}, X_{h+1}, ..., X_{k})|U \text{ and } 0 = X_{h}(p) = \alpha^{i}(p)e_{i}(p).$$
Therefore $\alpha^{i}(p) = 0$, $i = 1, ..., k = 0$ F. D

Let M be an n-dimensional premanifold and $\eta \in A^{\prime k}(M)$. Proposition 1.2 allowe us to accept the following definition of the k-form η^{o} :

$$\langle v_1 \wedge \dots \wedge v_k | \eta^{\circ}(p) \rangle = \eta(X_1, \dots, X_k)(p),$$
 (1.5)

when $v_j = X_j(p)$, X_j is a smooth local vector field in M, $p \in D_{\eta}(X_1, \dots, X_k)$. Indeed, if Y_1, \dots, Y_k are also smooth vector fields with $p \in D_{\eta}(Y_1, \dots, Y_k)$ and $v_j = Y_j(p)$, then according to 1.2 we get $(\eta(X_1, \dots, X_k) - \eta (Y_1, X_2, \dots, X_k))(p) = \eta (X_1 - Y_1, X_2, \dots, X_k)(p) = 0$ and subsequently $\eta(X_1, \dots, X_k)(p) = \eta (Y_1, Y_2, X_3, \dots, X_k)(p) = \dots =$

=
$$\eta (Y_1, ..., Y_k)(p)$$
.

From (iv) it follows that there exists the only element $\eta^{o}(p)$ in $\Lambda^{k}(T_{p}M)^{*}$ such that (1.5) holds.

1.3. For any n-dimensional premanifold $\,M\,$ we have a one-one correspondence

 $\omega \hspace{0.2em}\longmapsto \hspace{-0.2em} \omega' \hspace{0.2em} : \hspace{0.2em} A^{k}(M) \hspace{0.2em} \longrightarrow \hspace{-0.2em} A^{\prime }{}^{k}(M) \, .$

Moreover, $(\alpha \cdot \omega)' = \alpha \cdot \omega'$ and $(\omega_1 + \omega_2)' = \omega_1' + \omega_2'$ for $\omega, \omega_1, \omega_2 \in A^k(M)$ and $\alpha \in M$. Proof. Let us take any $\eta \in A^{*k}(M)$. Then for any smooth local vector fields X_1, \ldots, X_k , according to (1.5) and (1.1), we have $\eta^{O^*}(X_1, \ldots, X_k) =$ $= \eta(X_1, \ldots, X_k)$. Thus, $\eta^{O^*} = \eta$. Now, assume that $\omega, \omega_1 \in A^k(M)$ and $\omega' = \omega_1'$. According to (1.2) we have $D_{\omega} = D_{\omega'}(0, ..., 0)$ and, similarly, $D_{\omega_1} = D_{\omega_1'}(0, ..., 0)$. Hence it follows that $D_{\omega} = D_{\omega_1}$ and, by (1.1), $\langle e_{i_1}(p) \land ... \land e_{i_k}(p) | \omega(p) \rangle = \langle e_{i_1}(p) \land ... \land e_{i_k}(p) | \omega_1(p) \rangle$ for $p \in D_{\omega}$, $1 \leq i_1 < ... < i_k \leq n$, where $(e_1, ..., e_n)$ is a local base for M on a neighbourhood of the point p. This yields $\omega = \omega_1$. Q.E.D.

Proposition 1.3 allows us not distinguish ω and ω' . We will often write in the sequel $\omega(X_1, \ldots, X_k)$ instead of $\omega'(X_1, \ldots, X_k)$.

2. LIE BRACKETS OF VECTOR FIELDS

Let X and Y be smooth local vector fields in a premanifold M. For any $p \in D_v \cap D_v$ and any $\alpha \in M$ such that $p \in D_{\alpha}$ we set

$$[X, Y](p)(\alpha) = X(p)(\partial_{v}\alpha) - Y(p)(\partial_{v}\alpha), \qquad (2.1)$$

where for any $\alpha \in M$ and $q \in D_{\alpha} \cap D_{\chi}$ we write

$$(\partial_{y}\alpha)(q) = X(q)(\alpha). \tag{2.2}$$

We have thus define the smooth local vector field [X,Y], called Lie brackets of X and Y, in M with the domain $D_{y} \cap D_{y}$.

From (2.1) and (2.2) it follows that for any smooth local vector fields X,Y,Z and any c in \mathbb{R} when M is a real premanifold (in \mathbb{C} when M is a complex one) we have

[X + cY, Z] = [X, Z] + c [Y, Z],

[X, Y] + [Y, X] = 0,

[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0.

The above properties of Lie brackets allows us to consider the exterior diffferential for all elements of $A'^{k}(M)$, and next, under the hypothesis that M is an n-dimensional premanifold for all ω belonging to $A^{k}(M)$.

3. EXTERIOR DIFFERENTIAL

For any $\eta \in A^{K}(M)$ and any smooth local vector fields $X_{\alpha}, \ldots, X_{\nu}$ we set

$$d\eta(X_{0},...,X_{k}) = \sum_{i=0}^{k} (-1)^{i} \partial_{X_{i}} \omega(X_{1},...,X_{i-1},X_{i+1},...,X_{k}) +$$

$$+ \sum_{0 \le i < j \le k} (-1)^{i+j} \omega(\{X_{i},X_{j}\},X_{0},...,X_{i-1},X_{i+1},...,X_{j-1},X_{j+1},...,X_{k}).$$
(3.1)

3.1. For any $\eta \in A'^k(M)$ we have $d\eta \in A'^{k+1}(M)$, the natural domain of $d\eta$ coincides with the natural domain of η and

$$d \circ d = 0, \tag{3.2}$$

i.e. for any smooth local vector fields X_0, \ldots, X_{k+1} we have

$$dd\eta(X_{0},...,X_{k+1})(q) = 0$$
(3.3)

for q in the natural domain of η .

Proof. By an easy verification we state that $d\eta \in A^{k+1}$ and $D_{d\eta(0,...,0)} = D_{\eta(0,...,0)}$. To prove (3.2) we take arbitrary smooth local vector fields X_0, \dots, X_{k+1} and set

$$U = D_{X_0} \land \ldots \land D_{X_{k+1}} \land D_{\eta(0,\ldots,0)}$$

From proposition 1.1 we get $dd_{\eta}(X_0, \ldots, X_{k+1}) = dd_{\eta}(X_0 | U, \ldots, X_{k+1} | U)$. Let us remark that any set $U \in topM$ the set of all smooth local vector fields X such that $D_X = U$ is a group with respect to addition. Hence (see [3] and also [1]) we get (3.3). Q.E.D.

3.2. If M is an n-dimensional premanifold, then there exists exactly one operation d which to eah $\omega \in A^k(M)$ assigns $d\omega \in A^{k+1}(M)$ in such a way that for any smooth local vector fields X_0, \ldots, X_k we have

$$(d\omega)'(X_0, \dots, X_k) = d\omega'(X_0, \dots, X_k).$$
 (3.4)

For each $\omega \in A^k(M)$ we have $D_{d\omega} = D_{\omega}$ and

$$dd\omega = 0 (3.5)$$

Proof. It sufficies to reffer to 1.3 and 3.1. Q.E.D.

REFERENCES

- Koszul J.L.: Lectures on fibre bundles and differential geometry, Notes by S. Raman, Tata Institute of Fundamental Research, Bombay 1960.
- [2] Matuszczyk H.: Vector fields and differential forms on premanifolds, Demonstratio Math. 23, No 2 (1990), 367-374.
- [3] Sikorski R.: Abstract exterior differential, Colloq. Math. 26 (1972), 55-58.
- [4] Waliszewski W.: Analytical premanifolds, Zeszyty Naukowe Politechniki Śląskiej, Seria: Matematyka-Fizyka 48 (1986), 217-226.
- [5] -, Complex premanifolds and foliations, Deformations of Mathematical Structures, 1989 by Kluwer Academic Publishers, J. Ławrynowicz (ed.), 65-78.

FORMY ZEWNETRZNE NA n-WYMIAROWEJ PREROZMAITOŚCI

Streszczenie

W pracy wprowadzono pojęcie formy zewnętrznej na n-wymiarowej prerozmaitości. Udowodniono równoważność punktowej i globalnej definicji formy zewnętrznej. Udowodniono też podstawowy dla teorii kohomologii de Rhama prerozmaitości skończenie wymiarowych wzór d \circ d = 0. ВНЕШНИЕ ФОРМН НА n -МЕРНЫХ ПРЕМНОГООБРАЗИЯХ

Резюме

В работе вводится понятие внешней формы на п-мерном премнорообразии. Показывается равносильность точечного и глобального определений внешней формы. Доказывается также основная для теории когомологии де Рама конечномерных премногообразий формула dod = 0