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Summary. Lie algebras of vector fields on a smooth manifold make 
fundamental examples of Lie algebras of infinite dimension.
L. E. Pursell and M.E. Shanks’es classical theorem says that Lie alge
bra of all the vector fields on a given manifold wholly determines to
pological and differential structure of the manifold. This theorem has 
been widely generalized by way of considering Lie algebras of infini
te-dimensional automorphisms of geometrical structure. This paper deals 
also with such generalizations, viz. variou s Lie algebras of vector 
fields which wanish on a certain compact submanifold are considered. 
The importance of the paper consists in, among other things, its being 
a far-going generalization of A. Koriyama’s result (A. Koriyama, Nagoya 
J. Math. 55 (1974), p. 91). At the same time the method used in argu
ments is totally different - it is based on a special type of unity 
distribution and Stone’s topology in a set of maximal ideals.

INTRODUCTION

The Lie algebra KM) of all vector fields on a smooth manifold M constitu
te an important example of infinitely dimensional Lie algebra. L. E. Tursel 
and M.E. Shanks proved in [5] that KM) determines completely the smooth 
structure of M. More precisely, if KM) and K M ’ ) are isomorphic as Lie 
algebras then there exists a diffeomorphism of M onto M’. Several authors 
generalized this result. However, they usually considered the cases of sub
algebras A of KM) satisfying A = {X : X € A} * 0 for any p e M, see 
e.g. De Wilde and Lecomte [1], an extensive paper of Koriyama, Maeda and 
Omori [3] or the author’s papers [6], [7] on foliations. The unique excep
tion in a theorem in C 2 J , where the Lie algebra of vector fields vanishing at 
a point was considered. The purpose of this note consists on showing some 
generalizations of the theorem of Purse 11-Shanks in the case of algebras 
vanishing on a compact submanifold.
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It is a fundamental result of [5] that the ideals of vector fields ”ani- 
shing at single points with all their derivatives are the unique maximal 
ideals in 3MM) the Lie algebra of vector fields with compact support.
Another such a characterization was proved in [1] for a large class of 
subalgebras of £(M). The theorems in this note are also based on such a
characterization which is analogous to that in [1].

Let us indicate an interpretation of uour theorems in the hamiltonian 
mechanics. A manifold with a structure (M,a) can be viewed as a generalized
phase-pace, possibly with some additional conditions. Then the algebra
T°(M,K,a), is the algebra of symmetries of a phase-space. The theorems state 
that the structure of a phase-space is uniquely characterized by its symme
tries.

In this note all manifolds are smooth of class C°° and second countable. 
By M it will be denoted an n-dimensional manifold and by K a compact subma
nifold of M with dimension k £ n. All objects on manifolds are also of class

1. A PARTITION OF A VECTOR FIELD VANISHING ON K

We start with the following lemma.
Lemma 1.1. The derived ideal D(M) = tl(M)), £(M)] coincides with f(M).

Moreover, if U is open in M and *C(U) = {X e £(M) : suppX c U} then
[I (U), I (U)] = S (U). c c c
Proof. Let X be an arbitrary element of £(M). Let M = U be a covering by 
chart domains of M and 1^} a partition of unity subordinated to this cove
ring i.e. supp <p c Û . We have a decomposition X = J) Xfc, where = cp̂ X,
and it suffices to show that X, e D(M). Let A denote a C°°- function such

k ithat A = 1 on a neiborhood of supp and supp A c Û . If Xfc = £ f d^,

where 8, = 8/8x. and x x are local coordinates on U, , then we havei i 1 n k

Xi

[A3r  (A i 2 i if dx )8 ] = A f 3j = f

for any i. Hence and also X^ belong to D(M). Notj.ce that this argument
is valid for the second part of the lemma.
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Now we introduce the following denotation: 

i°(M,K) = [X € I(M): X vanishes on K},
i*(M,K) = [X e KM): X varnishes with all its derivatives on K},
Dj = D(M,K) = {[X,Y]: X,Y e I°(M,K)> the derived ideal of £°(M,K>,

Dk+1 = t3f0(M-K)- V '  k =

It is an easy observation that £°(M,K) = £*(M,K) iff dim K = n.
Lemma 1.2. (a) i*(M,K) = <X e KM) : [Yj [Yr>X]...] 6 £°(M,K) for any

integer r a 0 and Y^,...,Yr e KM)}.

00

(b) £*(M,K) = n K  ■
k=l K

Proof. It is a consequence of Lemma 1.1 that nothing can be changed locally 
on M\K. The substitution of 9̂  in place of Yj and the partition-of-unity 
argument ensures that (a) is satisfied. Next, (a) implies that £*(M,K) is 
contained in any Dfe. On the other.hand, each contains only vector fields
k-flat on K.

Hence the lemma.
Let us recall the following definition.
Definition. Let L be an arbitrary Lie algebra. An ideal I of L is called 

canonical if it is preserved by any isomorphism of L.
Corollary 1.3. I*(M,K) is a canonical ideal of J°(M,K).
In the sequel, we need a special kind of the partition of unity. The fol

lowing lemma is slightly different than Lemma 3.1, ch. I in [4] and the 
proofs are essentially the same.

Lemma 1.4. Let C any compact subset of M. For any open covering 
M\C = U of M\C there is a family i e I, of smooth functions on
M\C such that:
(a) the family {supp qô } is locally finite and finer than <Ujc>;
(b) £ <pi = 1 on M\C;
(c) for any p e dC, (U.Xj xn)- a local coordinate system at p and

a = (a,, .. ., a ) e N11 there is a constant M depending on a and coordi- 1 n a
nates only such that

|D%>, (x) | s M (1 + ---- —̂ r— r for x e U\C,
1 “  d ( x , C ) l “ l

la I / al anwhere Da = 5'a ' / . . .  x and d is the standard metric on U;
/  1 n
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(d) for any x e M\C the number of all (Pi such that x e supp <pi is at most 
4n
Now we are in a position to prove the following.
Proposition 1.5. Let M\K = U1 u . . . u l>r be a finite open covering of

M\K. For any X e 3t*(M,K) there are X1,...,Xr e Ï*(M,K) such that 
X = Xj + . . . + Xr and supp Xĵ  c Û , k = 1,. . . , r.
Proof. Let be a partition of unity satisfying the previous lemma with
respect to K. We define = £ {çel : supp ¡p̂  c qp. c
<l>2 ~ : SUPP 9i c Ux and supp ^  c U2>....
V]’r = Y.<<Pi  ■ supp <pi c Uj supp c Ur-1 and supp (pj c Ur>.
Thus we get a partition of unity 0k> k = 1,.... ,r, subordinated to Ufc. Obser
ve. that 0, satisfies (c) in Lemma 1.4. In fact, in view of (d), M' = 4°Mvk a a
are constants satisfying (c). We set

Xk =
(ifi, X on M\K, k

on K.

The only thing to verify is the smoothness of X^ on 3̂ . Let p e 3K and
(x x ) be a suitable local coordinate system at p such that1 n
(x, , = . . . =  x = 0} c K if k < n, or {x = 0} c SK if k = n. Then for k+1 n n
any a e N (we use standard notations, cf. [4])

iD^X^Cx) I = |Da (0kX)| = I (ß)D\(x)Da~ßX(x)|
ßsa

s Y j p  i ^ k (x) i iD“_ßx(x) n
ßsa

1 +
D(x, K) 1

|Da ßC(x)|

X(x) \ , Tts r. „n _ L = o(x ) for any i  e N , as x  > 0,
ßza

since x' = 0(d(x',K)), x' ---» 0 (under the condition x' <t K if k = n),
where x' = (x^,...,x ) and 1 = k+1 if k < n or 1 = k if k = n. Thus X^ 
is smooth infinitely flat at p. This completes the proof.
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2. ANALOGUES OF THE THEOREM OF PURSELL-SHANKS

Our aim is the following theorem.
Theorem 2.1. Let <p be a Lie algebra isomorphism of Ï*(M,K) onto Ï*(M',K')

where K and K' are arbitrary compact submanifolds of M and M' respectively.
Then where is a diffeomorphism <p of M\K onto M'\K' such that <pm = <p.

Let I , p e M\K, denote the ideal T*(M,K) of all X vanishing with
all its derivatives at p. A standard argument shows that I is a maximal
ideal. Hovewer, there are other maximal ideals in ï*(M,K). Namely, let
{p^} c M\K and pfe  > oo (to is in the sense of the compactification of M\K),
for example p^ ---» pQ, pQ e dK. Then K p fc) = {X e I*(M,K) : X is flat
at pk for some sequence of intégrés tending to infinity} is an ideal not
contained in any I . A maximal ideal I containing I(p. ) is an example of P K
maximal ideal different than I .P

We denote by J the set of all.maximal ideals of I*(M,K) not containing
the derived ideal [3c*(M,K), ï*(M,K)l. It is a consequence from Lemma 1.1
that I e J.

P rLemma 2.2. Let I e J. If *s a finite open covering of M\K then
there is i such that = {X: X | = 0} c I.
Proof. We have, in view of Proposition 1.5, a partition X = J X^, where supp
X̂  c Û , for any X e T*(M,K). Suppose that <f. I for i = l,...,r. Then, 
by the maximality of I, we have ï*(M,K) = I + J.. Hence for any i and
Y e ï*(M,K) the re is Y? e I and Y^ € J. such that Y = Y* + Ŷ . Thus,
for any X.Y e 3C*(M,K)

[X, Y] = £[Xr Y] = Et^.Y^ + = ZIXi. Yj] e I .

This contradicts the assumption that I e J.
Lemma 2.3. Let X € ï*(M,K) and p e M\K. Then X^ * 0 if and only if
ï*(M,K) + Ip = I*(M,K), where L is the Lie derivative.
The proof is a slight modification of the proof of Lemma 1.1.
Corollary 2.4. Under the notation of Theorem 2.1, if 0(1 ) = I thenP Q

for any X e Ï*(M,K) we have: X * 0 if 0(X) * 0.P 1̂
In fact, the condition in Lemma 2.3 is preserved by isomorphisms.
Proposition 2.5. The Ideals Ip, p 6 M\K, are uniquely characterized in J.

by condition Ï*(M,K) i  I , where f*(M,K) = {Xeï*(M,K) : (p s M\K + X * 0}c p c p
is relatively compact in M\K}.
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Proof. It is clear that f*(M,K) c l  is satisfied. Suppose now that I e Jc p
such that f*(M,K) c I. Let Y e f*(M,K\I and U be a relatively compact open c c
neighborhood of supp Y. Then {X: X|U = 0} c I. Otherwise, by Lemma 2.2. we
have iX : X|V = 0} c I, where V = M\(K u supp Y), and Y e I which contra
dicts the assumption on Y. Since {X|V = 0} c I, by Lemma 2.2, for any {Û }, 
a finite open covering of supp Y, there is i such that {X: X | = 0} c I. 
This Implies the existence of p e supp Y such that for any Up, a neighbor
hood of p, {X: X|U = 0} c I. Therefore we have that X = 0  for any X e I. p P

In fact, otherwise X * 0 on some U . Let Z = Z, + Z_ be an arbitraryp 1 2
element of I*(M,K), where Zj = Z on a naighborhood of p and Z2 |Up = 0.
Then Z2 e I and, by Lemma 1.1. also Z1 € I. We get a contradiction that
Z e I.

Therefore I c I , since I is an ideal. Finally, by the maximality of I, P
I = Ip. This completes the proof.

Now, let us denote by 9H the set of all maximal ideals of f*(M,K) and let 
3 = {I , p 6 M\K>. We have 3 c 3 c ®, Proposition 2.5 implies the folowing.

Corollary 2.6. If I € 3J1 then eiter I = 1̂ , or S(M, ,K) c I, or [X*(M,K), 
I*(M, K) ] c I.

Before proving Theorem 2.1, we announce the following lemma.
Lenma 2.7. If I e JJt\3 and X e I*(M,K) thenc

1^ I*(M,K) + I * f*(M,K).

In fact, it follows immediately from Corollary 2.6.

Proof of Theorem 2.1.
We introduce the Stone topology on the set 311 by the following definition 

of closure Let £ be any subset of 3J1. Then we define

I  = n  e 311 : n u  e ¡; } c i}.

In particular, # = <p. Observe that the bijection k : M\K ---» 3 satisfying
x(p) = 1̂  is a homeomorphism (3 possesses the induced topology from ffi). In 
fact, it is an easy observation that for any S c M\K we have

(c(S) = k (S) (now ~ denotes the closure on 3).
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Let HR', 3', 3' denote sets of maximal ideals of 3E*(M',K' ) analogous to 
Bl, 3. 3, and k> is a homeomorphism analogous to k. The isomorphism 0 indu
ces a homeomorphism 0 : UR ---> 3R' defined by 0(1) = the image of I by 0.
Let us define

G = {p e M\K: 0(Ip) = I forsome q e M'\K'>,

G'= {q e M'\K' : 0 *(1^) = Ip f°r some p e M\K}.

It suffices to show that G = M\K and G' = M'\K! In fact, let <p be a map
ping of G onto G' safisfying 0(Ip) = ^(p) = 1<p(p) ^or any P"
If G = M\K and G' = M'\K' then the following diagram is commutative

0|3 3-»

M\K ----------> M'\K'.
<P

Since each arrow besides <p in this diagram is a homeomorphism, <p is a ho
meomorphism too. Now, a repetition of an argument from [5] shows that <p is a 
diffeomorphism such that = 0.

The rest of the proof is devided into two steps.
(I) G is dense in M\K.

Suppose Int(M\(K u G)) * 0. There is X e I*c(M,K), X * 0, such that supp
X c M\(K u G). By Corollary 2.4, we obtain supp 0(X) c M'\(KUG'). Suppose
0(X)^ * 0 for some q e M'\(K' u G').
Then, by Lemma 2.3, we have L„ f*(M,K) + 0 1(I ) = I*(M,K). Then Lemma 2.7

-1 ^ ensures that 0 (1̂ ) e 3 but it contradicts the assumption on q. Thus
0(X) = 0 on M'\(K' u G'), 0(X) = 0  and X = 0.
This contracidtion proves that G = M\K.
(II) G = M\K.

Let p e M\(K u G). There is a sequence (p^) c G such that p^ * p^ for
k * 1, and p ---> p. Then the sequence {I }, where I = I , is conver-k K K p ̂
gent to the unique "point" Ifc in 5R i.e. 1̂ = lim

Denote q, = <p(p ), I,' = I and I' = 0(1 ) i 3' by the assumption,k r Kp k qfc p
Then, I' = lim Ifc' in 3R'. Hence the sequence (qk> has no point of accumula-
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1 2tion in M'\K'. It means that qfc  > «> on M'\K'. Let {qfc} and {qfc> be any
two disjoint subsequences of 
We define the ideals:

Ij = <X € Ï*(M',K') : X is o^-flat at q* for some -- > <»},

I = {X e Ï*(M',K') : X is o^-flat at q^ for some -- » oo}.

Let I® (resp. I®) be a maximal ideal containing Ij (resp. 12). We have, by 
the definition of topology, that I™, I™ s
Suppose I™ = I™. Let U, V be open substets of M'MC' such that

1 -  2 -  M'\K' = U u V, {qfe> c U\V, {q^} c V\U. Let X be an arbitrary element of
Ï*(M',K'). Then, in view of Proposition 1.5, X = X^ + X a n d  supp X^ c U,
supp X2 c V. Hence Xj 6 I2 c I™, X£ e ^  c I®. Thus X e I® and I® = Ï*(M',K').
This contradiction shows Ij * I2- This, in turn, contradicts lim = I'.
Consequently we have G = M\K.

This completes the proof of Theorem 2. 1.
As a corollary of Theorem 2.1 and corollary 1.3, we have the following.
Theorem 2.8. If there is 0 a Lie algebra isomorphism of ï°(M,K) onto

3f°(M',K') then there is a diffeomorphism <p of MMC onto M'MC' such that
< P , = <P-

Remark. Let us discuss briefly the assumptions of Theorems 2. 1 and 2.8. 
All considerations in § 2 remain true'if K and K' are closed subsets. However, 
the proof of Proposition 1.5 beaks down even if K is a compact subset. For
example, let 3K contain an edge pointing inside formed by two infinitely tan
gent surfaces. It seems that there is no way to get a partition of elements 
of I*(M,K).

3. THE CASE OF GEOMETRIC STRUCTURES

Let (M, rj) be a geometric structure where t) is one of the following:
(1) SL-structure, i.e. a volume element with a constant factor * 0,
(2) Sp-structure, i.e. a symplectic 2-form with a constant factor * 0,
(3) contact structure, i.e. a contact 1-form with a non-zero function of 

class 0°° as a factor,
(4) non-trivial foliation, i.e. dim r) > 0.
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Let K be a compact submanifold of M. We consider the Lie algebras I°(M,K,T)) 
(resp. f*(M,K,7))) of all infinittesimal automorphisms of i) vanishing (resp. 
vanishing with all its derivatives) on K. Here an infinitesimal automorphism 
has its usual meaning i.e. its flow consists of isomorphisms of i). In the 
case of foliation it is assumed to be a leaf preserving vector field, that is 
a vector field tangent to r). We have the following analogues of Theorems 2.1 
and 2. 8.

Theorem 3.1. If (t is a Lie algebra isomorphism of f*(M, K, vj) onto
I*(M'K',7)’) then there is an isomorphism <p of (M\K,t/|M\K) onto 
(M'\K', v ' |M’\K’) such that <p„ = <t>.

Theorem 3.2. Theorem 3.1. is still true in the case 3c°(M,K,t)) and
I0(M'.K',t)').

All propositions and lemmas from §§ 1 and 2 remain true in the case of
the above structure. The proofs need not any changes in the case of
foliations. In the rest cases some standard modifications in the proofs are 
necessary (e.g. in the proof of Proposition 1.5).
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ALGEBRY LIEGO PÓL WEKTOROWYCH ZNIKAJĄCE NA PODROZMAITOŚCI ZWARTEJ

S t r e s z c z e n i e
Algebry Liego pól wektorowych na rozmaitości gładkiej stanowią fundamen

talne przykłady algebr Liego nieskończonego wymiaru. Klasyczne już twier
dzenie L. E. Pursella i M. E. Shanksa mówi, że algebra Liego wszystkich pól 
wektorowych na danej rozmaitości wyznacza całkowicie strukturę topologiczną i 
różniczkową tej rozmaitości. Twierdzenie to doczekało się szeregu uogólnień, 
polegających na rozpatrywaniu algebr Liego infinitezymalnych automorfizmów 
pewnej struktury geometrycznej. Niniejsza praca poświęcona jest również takim 
uogólnieniom. Rozpatruje się mianowicie rozmaite algebry Liego pól wektoro
wych, które znikają na pewnej podrozmaitości zwartej.

Znaczenie pracy polega m.in. na tym, że jest daleko idącym uogólnieniem 
wyniku A. Koriyamy (A. Koriyama, Nagoya J. Math. 55 (1974), p. 91). Jedno
cześnie, technika wykorzystana w dowodach jest całkowicie odmienna - bazuje 
na specjalnym typie rozkładu jedności oraz topologii Stone’a w zbiorze idea
łów maksymalnych.

A J i r Ł E P H  J I H  B E K T 0 P H H X  I I O J I E i i ,  H O L S S A J O I Ę K E  
H A  K 0 M I I A K T H 0 M  n O H M H O  r O O E P A X K H

P e 3 d m e

A jire fip H  JIh BeKxopHHx n o jie ii Ha m a n K o u  MHoroo6pa3HH cy n »  

$yH,uaMeHTajii>HHe npHMepa a a re fip  JIh 6ecK0H esH 0fi pa3MepHOCTH* 

K jiaccH u ecicaH  y s e  xeopeM a J I . E .  n y p c e jia a  h M .E . EaHKca. yTB epa:-  

A a e i ,  h t o  a jir e ó p a  JIh B ce x  b s k to p h h x  n oiiefi Ha naHHOM m hoi-o- 

o6pa3H  BnojiHe onpeflejtaeT TonojiorHHecKym  h nHiJw^epeHiiHajiBHy» 

CTpyK pypy s t o t o  M Horoo6p a3HH. 3 i a  TeopeMa n o x n a n a cb  pa*ia 

ofioómeHHii, c o c t o h ę h x  b paccM oipeH H H  a a re ó p  JIh h h ^ h h h t e3HMajib— 

hłdc aBT0M0p$H3M0B HeKOTopoft reoM eTpHHecKoS C T p y & ry p u . HaCTO- 

a n a a  p a ó o ia  Taxace nocBamaeTCH. TaKHM oóofimeHHHM. P a ccM a ip H B a — 

b t c k ,  HM6HH0, pa3H oo6pa3H H e a jire fip N  JIh BeKTopHHX n o jie fi, k o -  

TOńHe HCneaaBT Ha HexoTopoM KOMnaKTHOM noflM Horooópa3HH,

SHa^eHHe naHHofi paóoTŁi coctoht Mesyty npoHHM b tom, hto OHa 
HBMetcfi najieno HnymaM oóoCneHHeM pe3yjiBTaTa A .  KopnaMa ( A .  Ko- 
pnaMa, Haroa. J. Math. 55 (1974), CTp. 91).
£ to xe Bpeua, HCnoab3yeMaa npH AOKaaaiejiBCTBax TexHHica coBoeM 
HHaA - OHa ocHOBŁiBaeiCH Ha cneitHajibHOM pone pa36H6HHa eAHHHim 
h TonoitoraH C ioyaa bo MHoaceciBe MaKCHMajibHHK m eaaoa.


