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LIE ALGEBRA OF VECTOR FIELDS VANISHING
ON A COMPACT SUBMANIFOLD

Summary. Lie algebras of vector fields on a smooth manifold make
fundamental examples of Lie algebras of infinite dimension.
L.E. Pursell and M.E. Shanks’es classical theorem says that Lie alge-
bra of all the vector fields on a given manifold wholly determines to-
pological and differential structure of the manifold. This theorem has
been widely generalized by way of considering Lie algebras of infini-
te-dimensional automorphisms of geometrical structure. This paper deals
also with such generalizations, viz. variou s Lie algebras of vector
fields which wanish on a certain compact submanifold are considered.
The importance of the paper consists in, among other things, its being
a far-going generalization of A. Koriyama’s result (A. Koriyama, Nagoya
J. Math. 55 (1974), p- 91). At the same time the method used in argu-
ments is totally different - it is based on a special type of unity
distribution and Stone’s topology in a set of maximal ideals.

INTRODUCT ION

The Lie algebra KM) of all vector fields on a smooth manifold M constitu-
te an important example of infinitely dimensional Lie algebra. L.E. Tursel
and M_E. Shanks proved in [5] that KM) determines completely the smooth
structure of M. More precisely, iIf KM) and KM?”) are isomorphic as Lie
algebras then there exists a diffeomorphism of M onto M”. Several authors
generalized this result. However, they usually considered the cases of sub-
algebras A of KM) satisfying A = {X :: X € A} *0 for any p e M, see
e.g- De Wilde and Lecomte [1], an extensive paper of Koriyama, Maeda and
Omori [3] or the author’s papers [6], [7] on foliations. The unique excep-
tion in a theorem in (1], where the Lie algebra of vector fields vanishing at
a point was considered. The purpose of this note consists on showing some
generalizations of the theorem of Pursell-Shanks in the case of algebras

vanishing on a compact submanifold.
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It is a fundamental result of [5] that the ideals of vector fields ani-
shing at single points with all their derivatives are the unique maximal
ideals in 3MM) the Lie algebra of vector Tfields with compact support.
Another such a characterization was proved in [1] for a large class of
subalgebras of £(M). The theorems inthis note are also based on such a
characterization which is analogous to that in [1].

Let us indicate an interpretation of uour theorems in the hamiltonian
mechanics. A manifold with a structure (M,a)can be viewedas a generaliz
phase-pace, possibly with some additionalconditions. Then the algebra
T°(M,K,a), 1is the algebra of symmetries of a phase-space. The theorems state
that the structure of a phase-space is uniquely characterized by its symme-
tries.

In this note all manifolds are smooth of class C* and second countable.
By M it will be denoted an n-dimensional manifold and by K a compact subma-

nifold of M with dimension k £ n. All objects on manifolds are also of class

1. A PARTITION OF A VECTOR FIELD VANISHING ON K

We start with the following lemma.

Lemma 1.1. Thederived ideal DWM) = tI(M)), £M)] coincides with f(M).
Moreover, if U is openin M and *CU) = X e £M) : suppX ¢ U}  then
0., 1.W1=s. O
Proof. Let X be an arbitrary element of £M). Let M = U be a covering by
chart domains of M and 17} a partition of unity subordinated to this cove-
ring i.e. supp <9 c U . We have a decomposition X = J) Xfc, where = ¥
and it suffices to show that X,e D(M). Let A denote a C°>- function such
that A = 1 on a neiborhood ofksupp and supp A c UM IF XE= £ fid'\,

where 8

i " 8/8xi and X X are local coordinates on U then we have

1 n k”

Xi

[A3r (& Fldx )8 7= A%F'3j = £

for any i. Hence and also X* belong to D(M). Notj.ce that this argument

is valid for the second part of the lemma.
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Now we introduce the following denotation:

i°M,K) = [X €1(M): Xvanishes on K},
i*(M,K) = [X eKM): X vamisheswith all its derivatives on K},
Dj = D(M,K) = {[X,Y]: X,Y e 1°(M,K)> the derived ideal of £°(M,K>,

Dkl = GROQMK)-V " Kk =

It is an easy observation that £°(M,K) = £M,K) iff dim K = n.
Lemma 1.2. (@ i*(M,K) = <X e KM) : [Y]} [Yr>xX]...1 6 £°(M,K) for any
integer ra O and Y~,...,Yr e KM)}.

00

® £MK = n K =
k=l K

Proof. It is a consequence of Lemma 1.1 that nothing can be changed locally
on MXK. The substitution of 9" in place of Yj and the partition-of-unity
argument ensures that (@) is satisfied. Next, (@ implies that £*(M,K) is
contained in any Dfe. On the other_hand, each contains only vector fields
k-flat on K.

Hence the lemma.

Let us recall the following definition.

Definition. Let L be an arbitrary Lie algebra. An ideal 1 of L is called
canonical if it is preserved by any isomorphism of L.

Corollary 1.3. 1*(M,K) is a canonical ideal of J°(M,K).

In the sequel, we need a special kind of the partition of unity. The fol-
lowing lemma 1is slightly different than Lemma 3.1, ch. 1 in [4 and the
proofs are essentially the same.

Lemma 1.4. Let C any compact subset of M. For any open covering
M\C = U of M\C there is a family i e I, of smooth functions on
M\C such that:

@ the family {supp g} is locally finite and finer than <jc>;
M £ 9 =1 on MC;
(© for any p e dc, (U.Xj xn)-a local coordinate system at p and
a = (a,,-- .,an) e N1 there is a constant Ma depending on a and coordi-

nates only such that

e, )|l sM @+ -—-—-—-~rr for x e UC,
1 “ d(x,C)l“1

where Da = 515“/ . a_l . ™ and d is the standard metric on U;
n
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(d for any x e M\C the number of all (@A such that x e supp ¢ is at most
4n
Now we are in a position to prove the following.
Proposition 1.5. Let M\K = Ul u... u Br be a finite opencovering of
MK. For any X e 3t*(M,K) there are X1,...,Xr e T*(M,K) such that

X=Xj + ... +Xr and supp ¥*c U, k=1,. ..,r.

Proof. Let be a partition of unity satisfying the previous lemma with
respect to K. We define =£{& :supp prCc@ C

2 ~ 2 SUPP 9i ¢ Ux and supp »~ cU2>....

Vr = Y<<fi msupp i c Uj supp c Ur-1 and supp @ c Ur>.

Thus we get a partition of unity Ok> k = 1,.... ,r, subordinated to Ufc. Obser-
ve. that 9k satisfies (¢) in Lemma 1.4. In fact, in view of (d), Ma; = 4°Ma
are constants satisfying (¢). We set

(ifikx on MK,

Xk = on K

The only thing to verify is the smoothness of X on 3 Let p e 3K and
(Xl xn) be a suitable local coordinate system at p such that
(xk+l,:...= Xq =0tcK ifFk<n, or {xn=0}cSK if k=n. Then for
any a e N (we use standard notations, cf. [4])

iDXACX) 1 = DA k)] = | (RYD\(X)Da~-BX)|

Bsa

1+ Iba RCGO|

sSYip i7"k ID“_RX() N D(x, K) 1

RBsa

XCO \L = o(xT‘s) for any i e Nn, as X > 6,

Rza

since x" = 0(d(x",K)), X* ———»0 (under the condition X" «K if k=n,
where x* = (X*,...,x )and 1=k+tl if k<n or 1=k if k=n Thus X®
is smooth infinitely flat at p. This completes the proof.
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2. ANALOGUES OF THE THEOREM OF PURSELL-SHANKS

Our aim is the following theorem.

Theorem 2.1. Let <pbe a Lie algebra isomorphism of T*(M,K) onto T*(M",K")
where K and K" are arbitrary compact submanifolds of M and M® respectively.
Then where is a diffeomorphism 9 of MK onto M™\K" such that <n= <

Let 1 , p e MK, denote the ideal T*(M,K) of all X vanishing with
all its derivatives at p. A standard argument shows that 1 is a maximal
ideal. Hovewer, there are other maximal ideals iIn T*(M,K). Namely, let

{pP"} ¢ M\K and pE > (@ is in the sense of the compactification of M\K),

for example p» ———»pQ, pQ e K. Then Kp®) = X e I"M,K) : X is flat
at pk for some sequence of intégrés tending to infinity} is an ideal not
contained in any IP. A maximal 1ideal 1 containing I(p.K) is an example of

maximal ideal different than IP.

We denote by J the set of all_maximal ideals of 1*(M,K) not containing
the derived ideal [Bc*(M,K), T1T*(M,K)I. It is a consequence from Lemma 1.1
that 1 e J.

Lemﬁa 2.2. Let 1 e J If r *sa finite open covering of M\K then
there is i1 such that =Xt X ] =0rc L
Proof. We have, in view of Proposition 1.5, apartition X = JX™, where supp
x» cuy, for any X e T*(M,K). Suppose that 1 for 1 =1,...,r. Then,
by the maximality of I, we have T*(M,K) = 1 + J._Hence for any i and

Y e T™M,K) the re is Y? el and Y € J. such that Y =Y* + Y. Thus,
for any X.Y e 3C*(M,K)

X, Y] = £[Xr Y] = EtA.Y~ + =ZIXi.Yj] e I .

This contradicts the assumption that 1 e J.

Lemma 2.3. Let X € T™WM,K) and p eMK. Then X» * 0 if and only if

™W,K) + Ip =I"(M,K), where L is the Lie derivative.

The proof 1is a slightmodificationof the proof of Lemma 1.1.

Corollary 2.4. Under the notation of Theorem 2.1, if O(lP): IQ then
for any X e I*(M,K) we have: X =* OP if O(X)’l* 0.

In fact, the condition in Lemma 2.3 is preserved by isomorphisms.

Proposition 2.5. The ldeals Ip, p 6 MK, are uniquely characterized in J.
by condition T’C‘(M,K) i Ip , where 'g"(M,K) = Xer*M,K) (p s M\K + )F(‘* (0} 3

is relatively compact in M\K}.
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Proof. It is clear that f’(‘:(M,K) cl b is satisfied. Suppose now that 1 e J
such that f;(M,K) c L Let Ye fg(M,K\I and U be a relatively compact open
neighborhood of supp Y. Then {X: XJU =0} ¢ L. Otherwise, by Lemma 2.2. we
have iX: XJV =0} c I, where V = M\(Ku supp Y), and Y e | which contra-
dicts the assumption on Y. Since {X]V =0} c I, by Lemma 2.2, for any {U\},
a finite open covering of supp Y, there is 1 such that X X | = 0} c L
This Implies the existence of p e supp Y such that for any Up, a neighbor-
hood of p, {X: XJU = 0} c L. Therefore we have that XP =0 for any X e L

In fact, otherwise X * O on some Up' Let Z = 21 +22_ be an arbitrary
element of I1*(M,K), where Zj = Z on anaighborhood of p and Z2|Up = O.
Then Z2 e 1 and, by Lemma 1.1. also Z1€ I. We get a contradiction that
Ze L

Therefore 1 c IP, since | is an ideal. Finally, by the maximality of I,
I = Ip. This completes the proof.

Now, let us denote by H the set of all maximal ideals of f*(M,K) and let
3={l ,p6 MK>. We have 3 c 3 c ®, Proposition 2.5 implies the folowing.

Corollary 2.6. If I € 3L then eiter | = 1», or S\M, ,K) c I, or DX*(M,K),
*(M,K) ] c L
Before proving Theorem 2.1, we announce the following lemma.

Lenma 2.7. If 1e 33 and X e I’é(M,K) then
™ML, + 1 PFMLK).
In fact, it follows immediately from Corollary 2.6.

Proof of Theorem 2.1.
We introduce the Stone topology on the set 3l by the following definition

of closure Let £ be any subset of 3L Then we define
=n e3Il:nu ej}c ik

In particular, # = s Observe that the bijection k : MK ---»3 satisfying
x(p) = 1™ is a homeomorphism (3 possesses the induced topology from ffi). In

fact, it is an easy observation that for any S c M\K we have

©® = k(@G (ow ~ denotes the closure on 3).
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Let HR", 3", 3" denote sets of maximal ideals of 3E*(M",K* ) analogous to
Bl, 3. 3, and k> is a homeomorphism analogous to k. The isomorphism O indu-
ces a homeomorphism 0 : R --->FR" defined by 0(1) = the image of I by O.

Let us define
G = {p eWMK: O(lp) = 1 forsome q e M*"\K">,
G"'= {g eM™\K* 0 *(@) = Ip f°rsome p e M\K}.

It suffices to show that G = M\K and G" = M"™\K! In fact, let 9pbe a map-

ping of Gonto G" safisfying0(Ip) = *(p) = 1) ~or anyP’
If G = MK and G = M"™\K" then the following diagram is commutative

0]3 3

M\K ———-- %,__"> M*\K*" .

Since each arrow besides < in this diagram is a homeomorphism, < is a ho-
meomorphism too. Now, a repetition of an argument from [5] shows that < is a
diffeomorphism such that = 0.

The rest of the proof is devided into two steps.
(D G is dense in MK.

Suppose Int(M\\(K u G)) *0. There is X e I*c(MK),X =*0, such that supp
X ¢ M\(K u G). By Corollary 2.4,we obtain supp O (X)cM*™\(KUG™). Suppose
o)™ » 0 for some g e M™\(K" u G").
Then, by Lemma 2.3, we have L,, P(M,K) + 01 = I*(M,K). Then Lemma 2.7
ensures that 0_1(1’\) e 3  but it contradicts,\ the assumption on g¢. Thus
0(X) =0 on M\(K" uG?), 0(X) =0 and X = O.
This contracidtion proves that G = MK.

) G = M\K.
Let pe M\(Ku G). There 1is a sequence () c G such that p~ * p~ for
k * 1, and P ——=>P- Then the sequence {lK}, where 1 K= | p is conver-

gent to the unique "point” IE€ Iin Ri.e. ¥ = lim

Denote G = ?p@p), I12 = qu: and I" = 0(1p) i 3" bythe assumption,

Then, 1° = lim I in 3R". Hence the sequence (gk> has no point of accumula-
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tion in M"™\K". It means that gt >«@ on M™\K". Let {qflc} and {q%o be any
two disjoint subsequences of

We define the ideals:

1j <X €T*(M",K") - X is o~-Flat at g* for some — >},

{X eT*(M",K") - X is o~-Flat at g~ for some — » @}

Let 1® (resp- 1I®) be a maximal ideal containing 1j (resp. 12). We have, by
thedefinition of topology, that I™, I"s
Suppose I™ = I" . Let U, V be open substets of M"MC*" such that
MNK* = U uv, ° {gfe> c U€V,{q’\} c WU. Let X be anarbitrary element
T*(M",K"). Then, in view of Proposition 1.5,X = X* + Xand supp X*c U,
supp X2 ¢ V. Hence Xj 6 12 c IV, XEe ~ c I®. Thus X e I® and 1® = T*(M",K").
This contradiction shows 1j * 12- This, in turm, contradicts lim = 1"
Consequently we have G = M\K.

This completes the proof of Theorem 2. 1

As a corollary of Theorem 2.1 and corollary 1.3,we have the following.

Theorem 2.8.IF there is 0 a Lie algebra isomorphism of 7T°(M,K) onto
3fF°(M",K™) thenthere is a diffeomorphism < of MMC onto M*MC*" such that
<P, = <

Remark. Let us discuss briefly the assumptions of Theorems 2.1 and 2.8.
All considerations in 82 remain true®if K and K* are closed subsets. However,
the proof of Proposition 1.5 beaks down even if Kisa compact subset. For
example, let 3K contain an edge pointing inside formed by two infinitely tan-
gent surfaces. It seems that there is no way to get a partition of elements

of 1*(M,K).

3. THE CASE OF GEOMETRIC STRUCTURES

Let (M, J) be a geometric structure where ® is one of the following:

(D SL-structure, i.e. a volume element with a constant factor * O,

(@ Sp-structure, i.e. a symplectic 2-form with a constant factor * O,
(@ contact structure, i.e. a contact 1-form with a non-zero function of
class 0~ as a factor,

(@ non-trivial foliation, i.e. dim p > O.
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Let K be a compact submanifold of M. We consider the Lie algebras I1°(M,K,T))
(resp. *(M,K,7))) of all infinittesimal automorphisms of 1 vanishing (resp.
vanishing with all its derivatives) on K. Here an infinitesimal automorphism
has its usual meaning i.e. its flow consists of isomorphisms of . In the
case of foliation it is assumed to be a leaf preserving vector field, that is
a vector field tangent to . We have the following analogues of Theorems 2.1
and 2. 8.

Theorem 3.1. If @ isa Liealgebra isomorphism off*(M, K,\j) onto
1*(M*K",7)”) then there 1is an isomorphism P of (WK, tZ/IMWK) onto
(M™N\K",v' IMN\K”) such that<q, = <=

Theorem 3.2.Theorem 3.1. is still true inthe case 3FM,K,» and
10(M" K™, ©)").

All propositions and lemmas from 88 1 and 2 remain true in the case of
the above structure. Theproofs need not anychanges in the case of
foliations. In the rest cases some standard modifications iIn the proofs are

necessary (e.g- in the proof of Proposition 1.5).
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ALGEBRY LIEGO POL WEKTOROWYCH ZNIKAJACE NA PODROZMAITOSCI ZWARTEJ

Streszczenie

Algebry Liego pél wektorowych na rozmaitosci gladkiej stanowig fundamen-
talne przyktady algebr Liego nieskonczonego wymiaru. Klasyczne juz twier-
dzenie L.E. Pursella i M.E. Shanksa méwi, ze algebra Liego wszystkich pol
wektorowych na danej rozmaitosci wyznacza catkowicie strukture topologiczng i
rézniczkowg tej rozmaitosSci. Twierdzenie to doczekato sie szeregu uogélnien,
polegajacych na rozpatrywaniu algebr Liego infinitezymalnych automorfizméw
pewnej struktury geometrycznej. Niniejsza praca poswiecona jest réwniez takim
uog6lnieniom. Rozpatruje sie mianowicie rozmaite algebry Liego pél wektoro-
wych, ktére znikaja na pewnej podrozmaitosci zwartej.

Znaczenie pracy polega m.in. na tym, ze jest daleko idacym uogélnieniem
wyniku A. Koriyamy (A. Koriyama, Nagoya J. Math. 55 (1974), p. 91). Jedno-
czesnie, technika wykorzystana w dowodach jest catkowicie odmienna - bazuje
na specjalnym typie rozkdadu jednosci oraz topologii Stone’a w zbiorze idea-
46w maksymalnych.

AJIrLERE JIH BEKTOPKEX TI0JIERT, KOLSSAJOTEKE
KA KONTLAKTHON nOHUKO rOOEPAXKH

P e 3dme

AjirefipH Jlh BeKxopHHx nojieii Ha manKou MHoroo6pa3HH cyn»
$yH,uaMeHTajii>HHe npHMepa aarefip Jlh 6ecKOHesHOfi pa3MepHOCTH*
KjiaccHuecicaH yse xeopeMa JI.E. nypcejiaa h M.E. EaHKca. yTBepa:-
Aaei, hto ajire6pa Jih Bcex bsktophhx noiiefi Ha naHHOM mhoi-o-
o6pa3H BnojiHe onpeflejtaeT TonojiorHHecKym h nHiJw”epeHiiHajiBHy»
CTpyKpypy stoto MHoroo6pa3HH. 3ia TeopeMa noxnanach pa*ia
ofiobmeHHii, coctohehx b paccMoipeHHH aareép Jih hh”~hhhte3HMajib—
htidc aBTOMOp$H3MOB HeKOTopoft reoMeTpHHecKoS CTpy&rypu. HaCTO-
anaa padoia Taxace nocBamaeTCH. TakKHM o6ofimeHHHM. PaccMaipHBa—
btck, HM6HHO, pa3Hoo6pa3HHe ajirefipN Jlh BeKTopHHX nojiefi, ko-
TOAHe HCneaaBT Ha HexoTopoM KOMnaKTHOM noflIMHorooépa3HH,

SHa”eHHe naHHofi padoTti coctoht Mesyty npoHHM b tom, hto OHa
HBMetcfi najieno HnymaM odéoCneHHeM pe3yjiBTaTa A. KopnaMa (A. Ko-
pnaMa, Haroa. J. Math. 55 (1974), CTp. 91).
£ to xe Bpeua, HCnoab3yeMaa npH AOKaaaiejiBCTBax TexHHica coBoeM
HHaA - OHa ocHOBtiBaeiCH Ha cneitHajibHOM pone pa36H6HHa eAHHHIM
h TonoitoraH Cioyaa bo MHoaceciBe MaKCHMajibHHK meaaoa.



