Maria FILAR

Krystyna szazajko

ON A CERTAIN BOUNDARY PROBLEM FOR THE EQUATION
$\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u(X)=b$

Summary. In this paper is given the construction and synthesis of the equation $\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u(X)=0$, where $X=\left(x_{1}, \ldots, x_{n}\right)$ is a point of the Euclidean $n-$ space $(n \geq 2)$, in the set
$\Omega=\left\{X: x_{1}>0, i=1, \ldots, n\right\}$, satysfying on the subsets
$S_{i}^{+}=\left\{X: x_{i}=0, x_{k}>0, k \in\{1, \ldots, n\}^{\prime} \backslash\{i\}\right\}(i=1, \ldots, n)$ of the boundary $\partial \Omega$ the boundary conditions of the first type.

To this construction the convenient Green function is applied.

1. INTRODUCTION

The purpose of this note is to construct the solution u of a certain boundary problem for the equation

$$
\begin{equation*}
\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u(X)=0 \tag{1}
\end{equation*}
$$

where $X=\left(x_{1}, \ldots, x_{n}\right)$ denotes a point of the n-dimensional Euclidean space $E_{n}(n \geq 2), \Delta=\sum_{i=1}^{n} D_{x_{i}}^{2}$ is the Laplace operator, a, b are positive constants, $a \neq b$, in the set

$$
\Omega=\left\{X: x_{1}>0, \quad 1=1, \ldots, n\right\} .
$$

Let

$$
S_{i}^{+}=\left\{X: x_{i}=0, x_{k}>0, k \in\{1, \ldots, n\} \backslash\{i\}\right\} \quad(i=1, \ldots, n) .
$$

We shall look for the solution of the equation (1) satisfying on the subset $S_{i}^{+}(1=1, \ldots, n)$ of the boundary of Ω the boundary conditions of the first type.
Analogous problem for the equation (1) in the set $\left\{X: x_{n}>0\right\}$ was solved in [1].
Applying the results of [1] we shall solve our boundary problem. Following [2] we introduce the operation \circ and we derive with its help the formulas representing the Green function and the boundary problem for (1) in Ω.
2. THE FUNDAMENTAL SOLUTION AND THE FUNDAMENTAL FORMULA FOR THE Equation (1)

In this chapter applying the results of [1] we shall give some lemmas connected with the fundamental solution of the equation (1).
Let $X \in E_{n}, Y=\left(y_{1}, \ldots, y_{n}\right) \in E_{n}$. Further let us write
$r=|Y-X|=\sqrt{\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)^{2}}$. Let us consider the function

$$
\begin{equation*}
U(r)=-a^{-2 \nu}(b r)^{-\nu} Y_{\nu}(b r)+b^{2 \nu-\nu}(a r)^{-\nu} Y_{\nu}(a r), \tag{2}
\end{equation*}
$$

where $v=\frac{\mathrm{n}-2}{2}$ and $Y_{\nu}(z)$ is the Bessel function of the second kind [3]. We call the function (2) a fundamental solution of the equation (1).

Lemma 1. [1] If $r>0$, then the function $U(r)$ given by formula (2) satisfles the equation (1).

Theorem 1. [1] Let D be a bounded domain whose boundary we denote by S. Let S consist of finite number of piecewisesmooth hypersurfaces. Let u be a function of class C^{4} in D and of class C^{3} in $D \cup S$ satisfying the equation (1) in D. Then

$$
\begin{aligned}
& \frac{1}{\gamma_{n}} \int_{S}\left\{u D_{n}\left[\Delta U+\left(a^{2}+b^{2}\right) U\right]-D_{n} u\left[\Delta U+\left(a^{2}+b^{2}\right) U\right]+\right. \\
& \left.+\Delta u D_{n} U-D_{n} \Delta u U\right\} d S_{Y}= \begin{cases}u(X) & \text { for } X \in D \\
0 & \text { for } X \in E_{n} \backslash(D \cup S)\end{cases}
\end{aligned}
$$

where

$$
\gamma_{n}=\theta_{n} 2^{\nu+1} \Gamma(\nu+1) \Pi^{-1}(a b)^{-2 v}\left(a^{2}-b^{2}\right)
$$

and Θ_{n} is the surface of the n-dimensional unit sphere; D_{n} denotes the inward normal derivative to S at $Y \in S$.
3. THE DEFINITION OF THE OPERATION ○ AND ITS PROPERTIES

Let us consider the sets $N=\{1, \ldots, n\} W=\{0,1\} \quad C=W \times \ldots W$ (n-times). Let us denote by $\left(e_{1}, \ldots, e_{n}\right)$ the basis of the space E_{n} of the form $e_{i}=\left(e_{i 1}, \ldots, e_{i n}\right)$ with $e_{i 1}=1$ and $e_{i k}=0$ for $i \neq k \quad(i, k \in N)$.
The elements $c=\left(c_{1}, \ldots, c_{n}\right) \in C$ will be identified with the vectors $\sum_{i=1}^{n} c_{i} e_{i}$.
Let $X \in E_{n}, X_{c}=\left(x_{1}, \ldots, x_{n}{ }^{c_{1}}\right)$, where

$$
x_{i}^{c_{i}}= \begin{cases}x_{i} & \text { for } c_{i}=0 \\ -x_{i} & \text { for } c_{i}=1\end{cases}
$$

and $X_{(0, \ldots, 0)}=X$. Let $Y \in E_{n}$ and $r_{c}=\left|Y-X_{c}\right|, r_{(0, \ldots, 0)}=r=|Y-X|$. Let $V(r)$ be a function defined for $r>0$. We shall write V_{c} for $V\left(r_{c}\right)$ $(c \in C)$.

Definition 1. In the set of all functions $V_{c}, c \in C$, we define the operation 0 as follows: $V_{c} \circ V_{c^{\prime}}=V_{c+c^{\prime}}$ for $c, c^{\prime}, c+c^{\prime} \in C$.

In virtue of the definition 1 we have that the operation 0 is commutative and associative and has a neutral element V. We shall assume that this operation is also distributive with respect to addition and that the fixed factors may be taken outside the operation and multiplied.
4. CONSTRUCTION OF GREEN'S FUNCTIONS FOR THE EQUATION (1) AND FOR THE SET Ω UNDER BOUNDARY CONDITIONS OF THE FIRST TYPE

We shall now define some auxiliary functions which will be helpful in the formulation of the boundary problem for the equation (1) and the set Ω. Let us put $\Omega_{i}=\left\{X: x_{i}>0\right\}, S_{i}=\left\{X: X_{i}=0\right\}(1 \in N), \hat{\Omega}=\Omega \cup S_{1}^{+} \cup \ldots$ $\ldots v S_{n}^{+}$.
Let us consider the following functions

$$
\begin{equation*}
G_{e_{i}}=G_{e_{i}}(X, Y)=U-U_{e_{i}}(i \in N) \tag{3}
\end{equation*}
$$

and the function

$$
\begin{equation*}
G=G(X, Y)=G_{e_{i}} \circ \ldots \circ G_{e_{n}} \tag{4}
\end{equation*}
$$

Theorem 2. The functions $G_{e_{i}}(i \in N)$ given by (3) have the following properties:
$1^{\circ} G_{e_{i}}$ are of the class C^{∞} for $X \neq Y ;(X, Y) \in \Omega_{i} \times\left(\Omega_{i} \cup S_{i}\right)$ $\left[\left(\Omega_{i} \cup S_{i}\right) \times \Omega_{i}\right] ;$
$2^{\circ} G_{e_{i}}$ satisfy the equation (1) as the functions of the point
$X \in \Omega_{1}, \quad X \neq Y, \quad Y \in \Omega_{1} \cup S_{1} ;$
3° (a) $\Delta^{s} G_{e_{i}} \rightarrow 0$ when $X \rightarrow X_{i} \in S_{i}, \quad X \in \Omega_{i}, \quad Y$ is fixed in Ω_{i} $X \neq Y \quad(1 \in N ; \quad s=0,1) ;$
b) $\Delta^{s} G_{e_{i}} \rightarrow 0$ when $Y \rightarrow Y_{i} \in S_{i}, \quad Y \in \Omega_{i}, X$ is fixed in Ω_{i}, $Y \neq X \quad(1 \in N ; \quad s=0,1)$.

Theorem 2 follows from Lemma 1 and the formula (3).

Theorem 3. The function G given by (4) has the following properties:
$1^{\circ} G$ is of the class C^{∞} for $(X, Y) \in \Omega \times \hat{\Omega}\left[\hat{\Omega} \times \Omega,\left(\Omega \cup S_{i}^{+}\right) \times\left(\hat{\Omega} \backslash S_{i}^{+}\right)\right.$, $\left.\left(\hat{\Omega} \backslash S_{1}^{+}\right) \times\left(\Omega \cup S_{1}^{+}\right), \quad 1 \in N\right], \quad X \neq Y ;$
$2^{\circ} G$ satisfies the equation (1) as the function of the point $X \in \Omega$ with fixed $Y \in \hat{\Omega}, \quad Y \neq X$;
$3^{\circ} \quad$ (a) $\Delta^{S} G \rightarrow 0$ when $X \rightarrow X_{1} \in S_{1}^{+}, X \in \Omega, \quad Y \in \hat{\Omega} \backslash S_{1}^{+}, \quad X \neq Y$, $i \in N, \quad s=0,1 ;$
b) $\Delta^{S} G \rightarrow 0$ when $Y \rightarrow Y_{1} \in S_{i}^{+}, \quad Y \in \Omega, X \in \hat{\Omega} \backslash S_{i}^{+}, Y \neq X$, $i \in N, s=0,1$.

Proof. By (3), (4) the function G is the linear combination of the functions U_{c}, where $c \in C$. Since $U_{c}, c \in C$, satisfy the equation (1) as the functions of the point $X \in \Omega, X \neq Y$ with $Y \in \Omega$ fixed, theses $1^{\circ}, 2^{\circ}$ of our Theorem follow.
In order to prove 3° we will show only that the function G satisfies boundary conditions for $1=1$. The proof that G satisfies boundary conditions 3° where $\left.1 \in N \backslash 1\right\}$ is analogous. The function G is a linear combination of the functions $G_{e_{1}} \circ U_{c}$, where $c=\left(0, c_{2}, \ldots, c_{n}\right) \in C$.
By the definition of the operation 0 we obtain

$$
\begin{equation*}
G_{e_{1}} \circ U_{c}=\left.G_{e_{1}}\right|_{x_{1}=x_{i}}, \quad 1 \in N \backslash\{1\} \tag{5}
\end{equation*}
$$

for $X \in \Omega \cup S_{1}^{+}, \quad Y \in \hat{\Omega} \backslash S_{1}^{+}$
By 3° of Theorem 2 we obtain 3° for $i=1$.

5. FORMULATION OF THE BOUNDARY PROBLEM FOR THE EQUATION (1) IN THE DOMAIN SZ

Applying formally the results of Theorem 1 and Theorem 3 we shall present now formulae for the solution of the boundary problem for the equation (1) in Ω.
Let $y^{1}=\left(y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n}\right)$ denote the projection of the point Y on the plane $y_{i}=0 \quad(i \in N)$, if we identify this plane with the space E_{n-1}. Let

$$
D_{i}=\left\{y^{i}: y_{k}>0, \quad k \in N \backslash\{i\}\right\}, \quad i \in N
$$

Let us consider the function

$$
\begin{equation*}
u(x)=\sum_{j=1}^{n} u^{j}(x) \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& u^{j}(X)=\frac{1}{\gamma_{n}} \int_{D_{j}}\left\{f_{1}^{j}\left(y^{j}\right) D_{y_{j}}\left[\Delta G(X, Y)+\left(a^{2}+b^{2}\right) G(X, Y)\right]+\right. \\
& \left.+f_{2}^{j}\left(y^{j}\right) D_{y_{j}} G(X, Y)\right\}\left.\right|_{y_{j}}=0^{d y^{j} \quad(j \in N)} \tag{7}
\end{align*}
$$

$f_{k}^{j}(k=1,2)$ being given functions defined on $D_{j} \quad(j \in N)$.
We shall prove under suitable assumptions on the functions $\mathbf{f}_{k}^{j}(k=1,2 j \in N)$ that the function u given by (6) is the solution of the equation (1) in Ω satysfying the boundary conditions

$$
\begin{align*}
& \quad u(X)=f_{1}\left(x^{j}\right), \quad \Delta u(X)=f_{2}\left(x^{j}\right) \tag{8}\\
& \text { for } X \in S_{j}^{+} \quad(j \in N)
\end{align*}
$$

6. THE SYNTHESIS OF THE SOLUTION (6) OF THE PROBLEM (1), (8) IN Ω

Let us consider the following functions

$$
\begin{align*}
& \left\{\begin{array}{l}
\Delta^{s} D_{Y_{j}} G(X, Y) \\
\Delta^{s} D_{y_{j}}\left[\Delta G(X, Y)+\left(a^{2}+b^{2}\right) G(X, Y)\right]
\end{array}\right. \tag{9}\\
& s=0,1 ; \quad J \in N \backslash\{i\}, \quad 1 \in N,(X, Y) \in \Omega \times S_{j}^{+}
\end{align*}
$$

Lemm 2. The functions defined by formula (9) tend to zero when $x \rightarrow x_{1} \in S_{1}^{+}$.

Proof. Let us consider $i=1$. For $1 \neq 1$ the proof is analogous. The function G is a linear combination of the functions of the form (5). To get our thesis for $1=1, j \in N \backslash\{1\}$ it is sufficient to show that the functions

$$
\begin{equation*}
D_{y_{j}} \Delta^{s}\left(G_{e_{1}} \circ U_{c}\right) \tag{10}
\end{equation*}
$$

where $(X \times Y) \in \Omega \times S_{j}^{+}, \quad c=\left(0, c_{2}, \ldots, c_{n}\right) \in C$ tend to zero when $X \rightarrow X_{1} \in S_{1}^{+}, \quad X \in \Omega$.
Let $w^{s}(r)=r^{-1} D_{r} \Delta^{s} U, \quad \tilde{G}^{s} e_{1}=w^{s}-w_{e_{1}}^{s}$.
By definition of 0 we have

$$
D_{y_{j}} \Delta^{s}\left(G_{e_{1}} \circ U_{c}\right)=(-1)^{c j_{j}^{+1}} x_{j}\left[\tilde{G}_{e_{1}}^{s} \circ w_{c}^{s}\right]=\left.\left.(-1)^{c_{j}^{+1}} x_{j} \tilde{G}_{e_{1}^{s}}\right|_{x_{k}=x_{k}}\right|_{k}
$$

for $(X, Y) \in \Omega \times S_{j}^{+}$.
Since $\tilde{G}_{\mathrm{e}_{1}}^{S} \rightarrow 0$ as $X \rightarrow X_{1} \in S_{1}, \quad X \in \Omega_{1}, \quad Y \quad \in \Omega_{1}, \quad Y \neq X$ the functions (9) tend to zero as $X \rightarrow X_{1} \in S_{1}^{+}, X \in \Omega$.

Lemma 3. If the function $f^{j}\left(y^{j}\right)$ is measurable and bounded in D_{j} and

$$
\int_{D_{j}}\left|f^{j}\left(y^{j}\right)\right| d y^{j}<\infty \quad(j \in N)
$$

then

1° the integrals $\int_{D_{j}} f^{j}\left(y^{j}\right) D_{Y}^{\beta} D_{X}^{\alpha} G(X, Y) \mid y_{j}=0 d y^{J}$
where $|\alpha|,|\beta|=0,1,2, \ldots$ are locally uniformly convergent at every $X \in \hat{\Omega} \backslash S_{j}^{+} \quad(J \in N)$
$\left.2^{o} \quad D_{X}^{\alpha} \int_{D_{j}} f^{j}\left(y^{j}\right) D_{Y}^{\beta} G(X, Y)\right|_{y_{j}=0} d y^{j}=\left.\int_{D_{j}}{ }^{j}\left(y^{j}\right) D_{Y}^{\beta} D_{X}^{\alpha} G(X, Y)\right|_{y_{j}}=0 d y^{j}$
for $X \in \hat{\Omega} \backslash S_{j}^{+}, \quad j \in N$.

Proof. We consider the case $j=1$. For $j \neq 1$ the reasoning is similar. By definition of G and o it is enough to show the local uniform convergence of the following integrals

$$
I(X)=\left.\int_{D_{1}} f^{1}\left(y^{1}\right) D_{Y}^{\beta} D_{X}^{\alpha} U_{c}\right|_{y_{1}}=0 \text { dy for } c \in C
$$

at every point $X \in \hat{\Omega} \backslash S_{1}^{+}$.
Let $K(\bar{X}, \eta)$ be a sphere with the center $\bar{X}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in \hat{\Omega} \backslash S_{1}^{+}$and the radius $\eta>0, K(\bar{X}, \eta) \subset \Omega_{1}$. The functions $D_{X}^{\alpha} D_{Y}^{\beta} U_{c}, c \in C$, are ilnear combinations of the functions of the form

$$
\begin{equation*}
\left(h r_{c}\right)^{-\nu} Y_{\nu+s}\left(h r_{c}\right)\left(r_{c}\right)^{-s} \prod_{j=1}^{s}\left(y_{j}-x_{j}\right)^{\gamma} j \tag{11}
\end{equation*}
$$

where $s=\sum_{j=1}^{n} \gamma_{j} ; s, \gamma_{j}=0,1, \ldots, \quad|\alpha|+|\beta|, \quad j \in N$.
Since

$$
\begin{equation*}
r_{c} \geq \bar{x}_{1}-\eta>0 \text { for } c \in C, \quad X \in K(\bar{X}, \eta), \quad Y \in S_{1}^{+} \tag{12}
\end{equation*}
$$

thus by the asymptotical properties of the Bessel functions $Y_{s}(c r)$ as $r \rightarrow \infty$ ([3], p. 132) and by (12) we obtain

$$
\begin{equation*}
\left|D_{X}^{\alpha} D_{Y} \beta_{C}\right| \leq M \quad \text { for } \quad X \in K(\bar{X}, \eta), \quad Y \in S_{1}^{+} \tag{13}
\end{equation*}
$$

where M is the convenient positive constant. It follows from the assumptions of Lemma 3 and the formula (13) that the integrais $I(X)$ are locally uniformly convergent at the point $\bar{X} \in \hat{\Omega} \backslash S_{1}^{+}$. 2° is a consequence of 1°.

Lemma 4. If the functions $f_{k}^{j}\left(y^{j}\right)(k=1,2)$ are measurable and bounded in D_{j} and

$$
\int_{D_{j}}\left|f_{k}^{j}\left(y^{j}\right)\right| d y^{j}<\infty \quad(k=0,1), \quad j \in N
$$

then
1° the function u^{j} given by formula (7) satisfies the equatioon (1) in the $\operatorname{set} \Omega(J \in N)$;
2° the function u^{j} satisfies the following boundary conditions

$$
\Delta^{S} u_{j}(X)=0 \quad \text { for } \quad X \in S_{i}^{+} \quad i \in M\{j\}
$$

for $s=0,1 ; j \in N$.
Lemma 4 is an immediate consequence of Lemmas 2, 3 and thesis 2° of Theorem 3.

Let us write:

$$
\begin{align*}
& L_{1}(X)=\frac{2}{\gamma_{n}}-\int_{D_{i}}\left\{f_{1}^{i}\left(y^{i}\right) D_{y_{i}}\left[\Delta U(r)+\left(a^{2}+b^{2}\right) U(r)\right]+\right. \\
& \left.+f_{2}^{1}\left(y^{i}\right) D_{y_{i}} U(r)\right\}\left.\right|_{y_{1}}=0^{d y^{1}} \tag{14}
\end{align*}
$$

Lemma 5. If the functions $f_{k}^{1}\left(y^{1}\right)(k=1,2)$ are measurable and bounded in D_{1} and continuous at the point

$$
\begin{aligned}
& \tilde{x}^{1}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{i-1}, \tilde{x}_{1+1}, \ldots, \tilde{x}_{n}\right) \in D_{1}, \\
& \int_{D_{1}}\left|f_{k}^{1}\left(y^{1}\right)\right| d y^{1}<\infty \quad(k=1,2)
\end{aligned}
$$

then

$$
L_{1}(X) \rightarrow f_{1}^{1}\left(\tilde{x}^{i}\right), \quad \Delta L_{1}(X) \rightarrow f_{2}^{i}\left(\tilde{x}^{i}\right)
$$

as $X \rightarrow \tilde{x}_{i}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{i-1}, 0, \tilde{x}_{i+1}, \ldots, \tilde{x}_{n}\right) \in S_{i}^{+}$,
$X \in \Omega$ and $L_{i}(X)$ is given by (14) (i $\in N$).
The proof of Lemma 5 is analogical to that of Lemma 3 in [1].
Let

$$
L_{i}^{c}(X)=\int_{D_{i}}\left\{f_{1}^{1}\left(y^{1}\right) D_{y_{i}}\left[\Delta U\left(r_{c}\right)+\left(a^{2}+b^{2}\right) U\left(r_{c}\right)\right\}+\right.
$$

$$
\begin{equation*}
\left.+f_{2}^{i}\left(y^{i}\right) D_{y_{i}} U\left(r_{c}\right)\right\} \mid y_{i}=0^{d y^{i}} \tag{15}
\end{equation*}
$$

for $c \in C \backslash\left\{(0, \ldots, 0) e_{1}\right\}, \quad 1 \in N$.

Lemma 6. If the functions $f_{k}^{i}\left(y^{i}\right)(k=1,2)$ are measurable and bounded in D_{i},

$$
\begin{aligned}
& \int_{D_{i}}\left|f_{k}^{i}\left(y^{i}\right)\right| d y^{i}<\infty \quad(i \in N) \text {, then } \\
& \Delta^{s} L_{i}^{c}(X) \rightarrow 0 \quad(s=0,1) \text { when } X \rightarrow \widetilde{X}_{i} \in S_{i}^{+}, X \in \Omega
\end{aligned}
$$

and $L_{i}^{c}(X)$ is given by (15), i $\in N$.
Proof. Let $K\left(\tilde{X}_{i}, \delta\right)$ be a sphere with the center at $\tilde{X}_{i} \in S_{i}^{+}$and such radius $\delta>0$ that its projection on S_{i} is in $S_{i}^{+}(i \in N)$. Then there exists a number $\delta_{1}>0$ such that

$$
\begin{equation*}
r_{c} \geq \delta_{1} \text { for } X \in \mathbb{K}\left(\tilde{X}_{i}, \delta\right) \cap\left(\Omega \cup S_{i}^{+}\right), Y \in S_{i}^{+} \tag{16}
\end{equation*}
$$

and

$$
c \in C \backslash\left\{(0, \ldots, 0), e_{i}\right\}, \quad(i \in N)
$$

By (2), Lemma 1 and (16) we obtain

$$
\begin{align*}
& \left|D_{y_{i}} \Delta^{k} U\left(r_{c}\right)\right| \leq x_{i} M \quad \text { for } \quad X \in K\left(\tilde{X}_{i}, \delta\right) \cap\left(\Omega \cup S_{i}^{+}\right) \tag{17}\\
& Y \in S_{i}, \quad c \in C \backslash\left\{(0, \ldots, 0), e_{i}\right\} \quad(1 \in N, \quad k=0,1,2)
\end{align*}
$$

where M is a convenient positive constant.
By (17) and by assumptions of Lemma 6 we obtain the thesis of Lemma 6 .
From Lemmas 3, 4, 5 an (6) follows

Theorem 4. Let the functions $f_{k}^{j}\left(y^{j}\right)(k=1,2)$ be continuous and bounded on D_{j} and

$$
\int_{D_{j}}\left|f_{k}^{j}\left(y^{j}\right)\right| d y^{j}<\infty \quad \text { for } \quad j \in N
$$

Then the function u given by (6), (7) satisfies the equation (1) in Ω and the boundary conditions (8).

REFERENCES

[1] Filar M.: On a certain boundary problem for the equation $\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u=0$, Comment. Math. XIX (1976) p. 55-66.
[2] Filar M.: Boundary problems for the homogeneous iterated Helmholtz equation in a certain unbounded domain of the Euclidean n-space. Comment. Math. XXV (1985), p. 31-48.
[3] Lebiediew N.: Funkcje specjalne i ich zastosowania, Warszawa 1957.

0 PEWNYM PROBLEMIE BRZEGOWYM DLA RÓWNANIA $\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u(X)=0$

streszczenie

W pracy podana jest konstrukcja i synteza rozwiazania równania $\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u(X)=0$, gdzie $X=\left(x_{1}, \ldots, x_{n}\right)$ jest punktem przestrzeni euklidesowej n-wymiarowej $E_{n}(n \geq 2)$, w zbiorze $\Omega=\left\{X: x_{i}>0,1=1, \ldots, n\right\}$ sperniajacego na podzbiorach $S_{i}^{+}=\left\{X: x_{i}=0, x_{k}>0, k \in\{1, \ldots, n\} \backslash\{i\}\right\}$ ($1=1, \ldots, n$) brzegu Ω warunki brzegowe pierwszego rodzaju.

Do konstrukcji rozwiązań użyto odpowiedniej funkcji Greena.

ЕЕКОТОРАЯ КРАТВАЯ ЗАПАЧА ДТЯ УРАВНЕНИЯ $\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u(x)=0$

Pes w

B настояден работе репено уравнение $\left(\Delta+a^{2}\right)\left(\Delta+b^{2}\right) u(X)=0$, Где $X=\left(x_{1}, \ldots, x_{n}\right)$ точка n мерного эвклидого пространства $\mathbb{R}_{\square}(n \geq 2)$. в областғ $\Omega=\left\{X: x_{1}>0,1=1, \ldots, n\right\}, \quad$ с краевнми условнями первото рода на подмнохествах

$$
S_{i}^{+}=\left\{X: x_{1}=0, x_{k}>0, k \in\{1, \ldots, n\} \backslash\{i\}\right\}(i=1, \ldots, n)
$$

края области Ω
Конструкция того репения сделана с покопвл соответствулиен функции Грина.

