Michaz LOPENS

SKALAR DIFFERENTIAL CONCOMITANTS OF THE THIRD ORDER OF A METRIC TENSOR IN THE TWO-DIMENSIONAL SPACE AND THEIR APPLICATIONS

Summary. All scalar differential committants of the third order for a metric tensor in a two-dimensional space have been determined in the paper (Theorem 1). A full classification of two-dimensional Riemann's space of almost constant curvature has been created by means of these committants. The two-dimensional Riemann's space of almost constant curvature has been defined and its specification has been determined.

INTRODUCTION

Let V^{n} be the n-dimensional Riemannian space with a metric $g_{i j}$ (which need not be positive definite). As is known (cf. [3], p. 127 and also [4], p. 138), if a purely differential geometric object of the first class is a differential concomitant oforder s of $g_{i j}$, then this objects is an algebraic concomitant of the tensors

$$
g_{i j}, R_{i j k l}, \nabla_{v_{1}} R_{i j k l} \cdots \nabla_{v_{s-2}} \ldots v_{1} R_{i j k l}
$$

where $R_{1 j k 1}$ and ∇ denote the covariant curvature tensor and the covariant derivative determined by $\mathbf{g}_{\mathbf{i j}}$.

The determination of scalar differential concomitants is important from the geometric point of view, because one can characterize the spaces V^{n} by means of those scalars.

It is well known that in V^{2} every scalar differential concomitant of the second order of $g_{i j}$ is an arbitrary function of the Gauss curvature and the signature of $g_{i j}$

In the pressent note we determine in V^{2} all scalar differential concomitants of the third order of $g_{i j}$ and we give a certain classification of spaces $v^{2}(\xi 1$ and $\S(2)$. Finaly, we investigate one of the classes found in $\S 2$.

1. Let us consider a riemannian space v^{2} with a metric $g_{i j}$

The problem of finding scalar concomitants of the third order of $g_{i j}$ leads to that of solving the equation

$$
\begin{aligned}
& F\left(g_{i j}, R_{i j k l}, \nabla_{p} R_{i j k 1}\right)=F\left(g_{1}, j^{\prime}, R_{i} j^{\prime} k^{\prime} l^{\prime}, \nabla_{p^{\prime}} R_{1}, j^{\prime} k^{\prime} l^{\prime}\right), \\
& i, j, k, l, p, 1^{\prime}, j^{\prime}, k^{\prime}, 1^{\prime}, p^{\prime}=1,2 .
\end{aligned}
$$

In space v^{2} the curvature tensor has only one essential component R_{1212}. It is known that

$$
\begin{align*}
& R_{1212}=K \operatorname{det}\left(g_{i j}\right), \tag{1.2}\\
& \nabla_{p} R_{1212}=\left(\partial_{p} K\right) \operatorname{det}\left(g_{i j}\right), \quad p=1,2
\end{align*}
$$

where K is the Gauss curvature in v^{2}. From (1.2) it follows that

$$
F\left(g_{i j}, R_{i j k l}, \nabla_{p} R_{i j k l}\right)=H\left(g_{i j}, K, \underset{p}{\partial} K\right)
$$

Thus we have the following

Corollary 1. Every scalar differential concomitant of the third order of the tensor $g_{i j}$ in v^{2} is a function of the tensor $g_{i j}$, the Gauss curvature X and the gradient of K .

Hence equation (1.1) has the form

$$
H\left(g_{i j}, K, \partial_{p} K\right)=H\left(g_{i}, j, \quad K, \partial_{p}, K\right), \quad i, j, p, i^{\prime}, j, p{ }^{\prime}=1,2 .
$$

Now it is easily seen that our problem is equivalent to the determination of scalar concomitants of the pair

$$
\left(g_{1 j}, a_{1} K\right)
$$

or of the pair

$$
\left(g_{i j} \cdot \partial_{i} K \cdot \partial_{j} K\right)
$$

(cf. [2], p. 57).

```
Let us put
    \(G=\left(g_{i j}\right), \quad W=\left(\partial_{i} K \cdot \partial_{j} K\right)\)
```

and consider the matrix bundle

$$
\begin{equation*}
G \lambda+W . \tag{1.3}
\end{equation*}
$$

(Our considerations are based on the results of [5], p. 10-18, 21-23). We notice that the bundle (1.3) is regular and stricly equivalent to the bundle $E \lambda+G^{-1} W, E$ being the unit 2×2 matrix. Hence the bundles $G \lambda+W$ and $E \lambda+G^{-1} W$ have identical elementary divisors. The matrix $G^{-1} W$ has the following eigenvalues: $\mu=0, \rho=\operatorname{trG}^{-1} W=\Delta_{1} K\left(\Delta_{1} K \quad\right.$ is the Beltrami's differential parameter of the first order of the function K). It is known that the scalars μ, p and the Weierstrass characteristic of the matrix $G^{-1} W$ uniquely determine elementary divisors of the bundle $E \lambda+G^{-1} W$.

Thus we arrive at the following.

Theorem 1. Ewery scalar differential concomitant of the third order of the metric tensor $g_{i j}$. for $n=2$, is an arbitrary function of the partial signature of the canonical form of the bundle (1.3), of the Weierstrass characteristic of the matrix $G^{-1} W$, of the Gauss curvature K and of the Beltrami's parameter $\Delta_{1} K$.
2. WE USE RESULTS OF $\S 1$ TO GIVE A CERTAIN CLASSIFICATION OF SPACES v^{2}

The Weierstrass characteristic of the matrix $G^{-1} W$ can have the following forms:
$1^{\circ}[1,1]$,
2° [2].
In cases $1^{\circ}, 2^{\circ}$ we have the following canonical forms of the bundle (1.3) and of the matrix $\mathrm{G}^{-1} \mathrm{~W}$:
1^{0} a) $\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & \rho\end{array}\right], \quad\left[\begin{array}{ll}0 & 0 \\ 0 & \rho\end{array}\right], \quad \rho \geq 0$.
b) $\lambda\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]+\left[\begin{array}{rr}0 & 0 \\ 0 & -\rho\end{array}\right], \quad\left[\begin{array}{ll}0 & 0 \\ 0 & \rho\end{array}\right], \rho \leq 0$.
c) $\lambda\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & \rho\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & \rho\end{array}\right], \rho \geq 0$,
d) $\lambda\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]+\left[\begin{array}{rr}0 & 0 \\ 0 & -\rho\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & \rho\end{array}\right], \rho \leq 0$.
$2^{0} \quad \lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], \quad\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

Remark 1. The matrix W is semi-positive definite and rank $W \leq 1$. On account of the above, we obtain the following.

Corollary 2. If the Weierstrass characteristic of the matrix $\mathrm{G}^{-1} \mathrm{~W}$ is equal to [1,1] at every point $p \in V^{2}$, then:
v^{2} is a space of constant curvature $\Leftrightarrow \Delta_{1} K=0$, for every point $p \in v^{2}$.
Corollary 3. If the Weierstrass characteristic of $\mathrm{G}^{-1} \mathrm{~W}$ is equal to[2] at every point $p \in V^{2}$, then the signature of the metric tensor is $\{+,-\}, \Delta_{1} K=0$ and $\left(a_{1} K\right)^{2}+\left(a_{2} K\right)^{2}+\left(a_{2} K\right)^{2} \neq 0$ at every point $p \in V^{2}$.

Remark 2. If the Weierstrass characteristic of the matrix $\mathrm{G}^{-1} \mathrm{~W}$ is equal to [2] at some point $p \in V^{2}$, then there exists a neighbourhood U_{p} of p such that for every point $q \in U_{p}$ the Weierstrass charakteristic of $G^{-1} W$ is equal to [2].

Using corollaries 1 and 2 we formulate the following.

Definition. A Riemannian space V^{2} for which the Weierstrass characteristic of the matrix $G^{-1} W$ is equal to [2] at every point $p \in V^{2}$ is called a space of almost constant curvature.
3. WE CONSIDER a SPACE V^{2} of almost CONSTANT CURVATURE

We assume in this section that all functions are C^{∞}. It follows from Corollary 2 that then:
(i) the gradient of the Gauss curvature is an isotropic vector field,
(ii) the gradient of the Gauss curvature is a non-zero vector at every point $p \in V^{2}$.
Let us put

$$
v^{i}=g^{i s} v_{s}
$$

The field X is isotropic and $X_{p} \neq 0, p \in V^{2}$. A coordinate system (x, y) can be chosen so that

$$
v^{1}=1, v^{2}=0
$$

(cf. [1], p. 82). Thus we obtain

$$
\begin{align*}
& g_{11}=g_{1 j} v^{i} v^{j}=0, \tag{3.1}\\
& g_{1} K=g_{1 s} v^{s}=g_{11}=0, \\
& \partial_{2} K=g_{2 s} v^{s}=g_{12}, \tag{3.2}
\end{align*}
$$

where $\quad \partial_{1} K=\frac{\partial K}{\partial x}, \quad \partial_{2} K=\frac{\partial K}{\partial y}$.
From (3.1) and (3.2) it follows that

$$
\begin{align*}
& K(x, y)=f(y), \quad y \in \Delta(\Delta \text { is an open interval of } R), \tag{3.3}\\
& g_{12}(x, y)=f^{\prime}(y) \neq 0 \text { for } y \in \Delta .
\end{align*}
$$

Therefore in the chart (x, y) we have

$$
\left(g_{i j}(x, y)\right)=\left(\begin{array}{ll}
0 & f^{\prime}(y) \\
f^{\prime}(y) & h(x, y)
\end{array}\right)
$$

By an elementary calculation we obtain

$$
\begin{align*}
& \left\{\begin{array}{c}
1 \\
11
\end{array}\right\}=0,\left\{\begin{array}{r}
1 \\
12
\end{array}\right\}=\frac{1}{2 f^{\prime}} \frac{\partial h}{\partial x},\left\{\begin{array}{c}
1 \\
22
\end{array}\right\}=\frac{1}{2 f^{\prime}}\left(\frac{h}{f^{\prime}} \frac{\partial h}{\partial x}-2 \frac{h}{f^{\prime}} f^{\prime \prime}+\frac{\partial h}{\partial y}\right), \\
& \left\{\begin{array}{r}
2 \\
11
\end{array}\right\}=0,\left\{\begin{array}{r}
2 \\
12
\end{array}\right\}=0, \quad\left\{\begin{array}{r}
2 \\
22
\end{array}\right\}=\frac{f^{\prime \prime}}{f^{\prime}}-\frac{1}{2 f^{\prime}} \frac{\partial h}{\partial x} \\
& R_{1212}=\frac{1}{2} \frac{\partial^{2} h}{\partial x^{2}} \\
& K(x, y)=-\frac{\partial^{2} h(x, y)}{2\left[f^{\prime}(y)\right]^{2}} \tag{3.4}
\end{align*}
$$

Comparing (3.3) with (3.4) we get

$$
\frac{\partial^{2} h(x, y)}{\partial x^{2}}=-2 f(y)\left[f^{\prime}(y)\right]^{2}
$$

Hence we have

$$
h(x, y)=-f(y)\left[f^{\prime}(y)\right]^{2} x^{2}+k(y) x+1(y)
$$

where k, l are arbitrary real functions with the domain Δ, Therefore, in a space v^{2} of almost constant curvature the metric ds ${ }^{2}$ has (locally) the form

$$
\begin{equation*}
d s^{2}=2 f^{\prime}(y) d x d y+\left\{-f(y)\left[f^{\prime}(y)\right]^{2} x^{2}+k(y) x+1(y)\right\} d y^{2} \tag{3.5}
\end{equation*}
$$

On the other hand, it is easily seen that a space V^{2} with metric (3.5) is of almost constant curvature.

In this way we have proved.

Theorem 2. The space V^{2} is a space of almost constant curvature if and only if the metric $d s^{2}$ in v^{2} has (locally) the form

$$
\left.d s^{2}=2 f^{\prime}(y) d x d y+\left\{-f(y)\left[f^{\prime}(y)\right\}^{2} x^{2}+y f y\right) x+l(y)\right\} d y^{2}
$$

where f, k, l are arbitrary real C^{∞} functions in an open interwal $\Delta \subset \mathbb{R}$ and $f^{\prime}(y) \neq 0, \quad y \in \Delta$.

Remark 3. A space v^{2} of almost constant curvature is not compact.

Institute of Mathematics
College of Pedagogics
35-310 Rzeszów, Poland

REFERENCES

[1] Eisenhart L. P.: Riemannian Geometry, Prínceton, 1966.
[2] Lorens M.: Kilka uwag o wyznaczaniu komitant skalarnych obiektów geometrycznych, Rocznik Naukowo-Dydaktyczny WSP w Rzeszowie, Matematyka, Z. 5/41 (1979), p. 51-58.

13] kubczonok G.: On the reduction theorems, Ann. Pol. Math. XXVI (1972), p. 125-133.
[4] Schouten J.A. und Struik D. J.: Einfuhrung in die neuren Methoden der Differentialgeometrie, Groningen, 1935.
[5] Zajtz A. Komitanten der Tensoren zweiter Ordnung, Zeszyty Naukowe UJ w Krakowle, Prace Mat. 8 (1964).

SKALARNE KOMITANTY RÓŻNIGZKOWE TRZECIEGO RZẸDU TENSORA METRYCZNEGO W DWUWYMIAROWEJ PRZESTRZFNI I ICH ZASTOSOWANIA

Streszczenie
W pracy wyznaczono wszystkie skalarne komitanty różniczkowe trzeciego rzędu tensora metrycznego w dwuwymiarowej przestrzeni (Twierdzenie 1). Podano pewną klasyfikacje dwuwymiarowych przestrzeni Riemanna przy pomocy tych komitant. Zdefiniowano dwuwymiarowa przestrzeń Riemanna o prawie stakej krzywiźnie i wyznaczono jej metryke.

СКАЛЯРННЕ КОМИТАНTH TPETЬEГО ПОРЯДKА МЕТРИЧЕСКОГО TEHЗОРА ДВУぬЕРНОГО ІРОСТРАНСТБА И ИХ ПРИЛОЖЕНИЯ

Pe з роме
В работе автор намёл в двумерном пространстве все скалярные комитанты третьего порядка метрического тензора (Теорема 1). Далее с помощвэ этих скаляров он провел некоторуро классификацир двумерных пространств. В заклочение работы он определил пространство почти постолнной кривизнн и напёл его метрику.

