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SKALAR DIFFERENTIAL CONCOMITANTS OF THE THIRD ORDER OF A METRIC 

TENSOR IN THE TWO-DIMENSIONAL SPACE AND THEIR APPLICATIONS

Summary. All scalar differential committants of the third order for 
a metric tensor in a two-dimensional space have been determined in the 
paper (Theorem 1). A full classification of two-dimensional Riemann’s 
space of almost constant curvature has been created by means of these 
committants. The two-dimensional Riemann’s space of almost constant 
curvature has been defined and its specification has been determined.

INTRODUCTION

Let V11 be the n-dimensional Riemannian space with a metric (which
need not be positive definite). As is known (cf. [3], p. 127 and also [4], 
p. 138), if a purely differential geometric object of the first class is a 
differential concomitant oforder s of g „  , then this objects is an algebraic 
concomitant of the tensors

g, . . Rs . 7 R. , ,...,9 R. ,sij ijkl u1 ijkl us-2' "U1 iJkl>

where R. ,, . and V denote the covariant curvature tensor and the covariant ijkl
derivative determined by g^j .

The determination of scalar differential concomitants is important from 
the geometric point of view, because one can characterize the spaces Vn by 
means of those scalars.

It is well known that in V2 every scalar differential concomitant of the 
second order of g „  is an arbitrary function of the Gauss curvature and the 
signature of .

In the pressent note we determine in V2 all scalar differential concomi
tants of the third order of g „  and we give a certain classification of 
spaces V2 (§jl and §2). Finaly, we investigate one of the classes found in §2.
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1. LET US CONSIDER A RIEMANNIAN SPACE V2 WITH A METRIC g „

The problem of finding scalar concomitants of the third order of g ^  
leads to that of solving the equation

F(gij ' Rijkl ’ Vp ^ j k l 3 = F(gi’j’ * Ri’j’k’l’ ’ V  Ri,j,k’l,)’ (1,1)

i.j.k.i.p.r.j'.k'.r.p* = 1,2 .

In space V2 the curvature tensor has only one essential component Rj2i2 ’ ^  
is known that

R1212 = K det(giJ} '

Vp R1212 = t V )det(gU }* P = 1’2*

(1.2 )

where K is the Gauss curvature in v . From (1.2) it follows that

F(gij • Rijkl ■ gp Rljkl} " H(gij ’ K’ ^ K,‘

Thus we have the following

Corollary 1. Every scalar differential concomitant of the third order of 
the tensor in V2 is a function of the tensor g^j , the Gauss curvature K 
and the gradient of K.

Hence equation (1.1) has the form

H(giJ , K, SpK) = H(gi>J> . K, dp,K) , i, J.p.i’. j’.p’ = 1,2.

Now it is easily seen that our problem is equivalent to the determination of 
scalar concomitants of the pair

(gjj . SjK) .

or of the pair

(giJ . ajt • djK)

(cf. (2), p. 57).
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Let us put

G = (giJ), W = (3^ • 3jK)

and consider the matrix bundle

GA + W . (1.3 )

(Our considerations are based on the results of 15], p. 10-18, 21-23). We 
notice that the bundle (1.3) is regular and stricly equivalent to the bundle 
EA + G W,E being the unit 2 x 2  matrix. Hence the bundles GA + W and 
EA + G *W have identical elementary divisors. The matrix G *W has the fol
lowing eigenvalues: p = 0,p = trG 1W = A^K (A^K is the Beltrami’s diffe
rential parameter of the first order of the function K). It is known that the 
scalars p, p and the Weierstrass characteristic of the matrix G uniquely 
determine elementary divisors of the bundle EA + G *W.

Thus we arrive at the following.

Theorem 1. Ewery scalar differential concomitant of the third order of the 
metric tensor g^j , for n = 2, is am arbitrary function of the partial signa
ture of the camonical form of the bundle (1.3), of the Weierstrass characte
ristic of the matrix G *W, of the Gauss curvature K and of the Beltrami’s 
parameter Â K.

2. WE USE RESULTS OF § 1 TO GIVE A CERTAIN CLASSIFICATION OF SPACES V2

The Weierstrass characteristic of the matrix G *W can have the following 
forms:
1° [1,11.
2° [2].
In cases 1°, 2° we have the following camonical forms of the bundle (1.3) and 
of the matrix G_1W:
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•° ■> * [ j  ; h s  : ] •  [ s  “ ] •
» [ I - ? ] *  [ S - S ]  ■
»[■j î ] * [ s î ] -  [ : ; ] •

-  * [ i - . ° ] * [ s 4 ] -  [ s ; ] •

b)

c)

p £ 0 ,

p s 0 ,

p a  0 , 

p s 0 ,

Remark 1. The matrix W is semi-positive definite and rank W £ 1. On 
account of the above, we obtain the following.

Corollary 2. If the Weierstrass characteristic of the matrix G *W is equal 
to [1,1] at every point p € V2, then:

V2 is a space of constant curvature <=* A^K = 0, for every point p 6 V2.

Corollary 3. If the Weierstrass characteristic of G *W is equal to[2] at 
every point p e V2, then the signature of the metric tensor is {+,-}, A^K=0
and (3jK)2 + (^K)2 + (a2K.)2 * 0 at every point p e V2.

Remark 2. If the Weierstrass characteristic of the matrix G *W is equal to
[2] at some point p e v, then there exists a neighbourhood Up of p such
that for every point q e the Weierstrass charakteristic of G *W is equal 
to [21.

Using corollaries 1 and 2 we formulate the following.

2Definition. A Riemannian space V for which the Weierstrass characteri-
-1 2 stic of the matrix G W is equal to [2] at every point p e V is called a

space of almost constant curvature.
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3. WE CONSIDER A SPACE V2 OF ALMOST CONSTANT CURVATURE

We assume in this section that all functions are C . It follows from 
Corollary 2 that then:
Ci) the gradient of the Gauss curvature is an isotropic vector field,
(ii) the gradient of the Gauss curvature is a non-zero vector at every point 

p e V2.
Let us put

i is v = g vs .

The field X is isotropic and * 0, p e v . A coordinate system (x,y) can be 
chosen so that

v1 = 1, v2 = 0

(cf. [1], p. 82). Thus we obtain 

gll = gi / vJ = 0 ’ (3.1)

3lK = g lsV = gl l = 0 >

S2K = g2sV = g12 ’
(3.2)

_ -, 3K _ ÔK where 3 ^  = ^  . 32K = ^  .

From (3.1) and (3.2) it follows that

K(x,y) = f(y), y e A (A is an open interval of R),

g12(x,y) = f'(y) * 0 for y e A .
(3.3)

Therefore in the chart (x,y) we have

(gij(x,y)) =
0 f' (y) 

f' (y) h(x,y)
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By an elementary calculation we obtain

1

..0"H [12j
2 . = 0..M11 l12J

J L  ah j i  
2f' dx ' |22

= 0,

_Lfh_  ah h_ „ ah'!
2f' [f' ax f  ayj

f"
f'

i ah 
2f' dx

_ i a2h 

1212 "  2 ax2 ’

K(x,y) =

a2h(x,y) 

ax2 
2[f'(y)]5

(3.4)

Comparing (3.3) with (3.4) we get

8 h(x’y) = - 2f(y)[f'(y)]2.
ax

Hence we have

h(x,y) = - f(y)[f' (y)J x + k(y)x + 1(y) ,

where k, 1 are arbitrary real functions with the domain A, Therefore, in a 
space V2 of almost constant curvature the metric ds2 has (locally) the form

ds2 = 2f'(y)dxdy + (-f(y)[f'(y)] x2 + k(y)x + l(y)}dy2. (3.5)

2On the other hand, it is easily seen that a space V with metric (3.5) is of 
almost constant curvature.

In this way we have proved.

2Theorem 2. The space V is a space of almost constant curvature if and 
only if the metric ds2 in V2 has (locally) the form

ds2 = 2f'(y)dxdy + {- f(y)[f'(y)i x2 * K(y)x + l(y)>dy2,
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where f,k, 1 are arbitrary real c“ functions in an open interwal A c IR
and f'(y) * 0, y e A .

Remark 3. A space of almost constant curvature is not compact.
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SKALARNE KOMITANTY RÓŻNICZKOWE TRZECIEGO RZĘDU TENSORA METRYCZNEGO 
W DWUWYMIAROWEJ PRZESTRZENI I ICH ZASTOSOWANIA

S t r e s z c z e n i e
W pracy wyznaczono wszystkie skalarne komitanty różniczkowe trzeciego 

rzędu tensora metrycznego w dwuwymiarowej przestrzeni (Twierdzenie 1). Podano 
pewną klasyfikację dwuwymiarowych przestrzeni Riemanna przy pomocy tych komi
tant. Zdefiniowano dwuwymiarową przestrzeń Riemanna o prawie stałej krzy- 
wiźnie i wyznaczono jej metrykę.
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CKAJIflPHHE KOMTAHTH TPEIbErO  IIOPii,fi,KA METPEHECKOrO TEH30PA 

P,ByMEPHOrO HPOCTPAHCTBA H HX ITPHJIOSCEHHH

P e 3 »  m e

B padoie aBTop Hameji b flByMepHOM npoaipaHCTBe Bee CKajmpHNe k o - 
MHTaHTti TpeTBero nopa^Ka MeTpnaecicoro TeH3opa (PeopeMa 1) . .̂ajiee 
0; IIOMOmbLl 3TUX CKajIHpQB OH HPOBejI HeKOTOpyiO KJiaCC.H(|)HKaHH» AByMep— 
h h x  npocipaHCTB. B 3aKjnoaeHHe padoTH o h onpeAejmji npocTpaHCTBO 
h o h t h  nocTOHHHoft KpHBH3HH-h  Ham&t exo MeTpHKy.


