Seria: MATEMATYKA-FIZYKA z. 67

Nr kol. 1115

Michał LORENS

SKALAR DIFFERENTIAL CONCOMITANTS OF THE THIRD ORDER OF A METRIC TENSOR IN THE TWO-DIMENSIONAL SPACE AND THEIR APPLICATIONS

Summary. All scalar differential committants of the third order for a metric tensor in a two-dimensional space have been determined in the paper (Theorem 1). A full classification of two-dimensional Riemann's space of almost constant curvature has been created by means of these committants. The two-dimensional Riemann's space of almost constant curvature has been defined and its specification has been determined.

INTRODUCTION

Let V^n be the n-dimensional Riemannian space with a metric g_{ij} (which need not be positive definite). As is known (cf. [3], p. 127 and also [4], p. 138), if a purely differential geometric object of the first class is a differential concomitant of order s of g_{ij} , then this objects is an algebraic concomitant of the tensors

$$g_{ij}$$
, R_{ijkl} , $\nabla_{v_1} R_{ijkl}$, \dots , $\nabla_{v_{s-2}} \dots v_1^R_{ijkl}$,

where $R_{{\rm ijkl}}$ and $~\nabla$ denote the covariant curvature tensor and the covariant derivative determined by g_{i,i} .

The determination of scalar differential concomitants is important from the geometric point of view, because one can characterize the spaces V^{n} by means of those scalars.

It is well known that in V^2 every scalar differential concomitant of the second order of g_{ij} is an arbitrary function of the Gauss curvature and the signature of g_{ij} .

In the pressent note we determine in V^2 all scalar differential concomitants of the third order of g_{ij} and we give a certain classification of spaces V^2 (§1 and §2). Finaly, we investigate one of the classes found in §2.

1. LET US CONSIDER A RIEMANNIAN SPACE v^2 with a metric $g_{4,4}$

The problem of finding scalar concomitants of the third order of g_{ij} leads to that of solving the equation

$$F(g_{ij}, R_{ijkl}, \nabla_{p} R_{ijkl}) = F(g_{i'j}, R_{i'j'k'l'}, \nabla_{p}, R_{i'j'k'l'}), (1.1)$$

i, j, k, l, p, i', j', k', l', p' = 1, 2.

In space V^2 the curvature tensor has only one essential component ${\rm R}^{}_{1212}$. It is known that

$$R_{1212} = K \det(g_{ij}),$$

$$\nabla_{p} R_{1212} = (\partial_{p} K) \det(g_{ij}), \quad p = 1, 2,$$
(1.2)

where K is the Gauss curvature in v^2 . From (1.2) it follows that

$$F(g_{ij}, R_{ijkl}, \nabla_p R_{ijkl}) = H(g_{ij}, K, \partial K).$$

Thus we have the following

Corollary 1. Every scalar differential concomitant of the third order of the tensor g_{ij} in V^2 is a function of the tensor g_{ij} , the Gauss curvature K and the gradient of K.

Hence equation (1.1) has the form

$$H(g_{i,i}, K, \partial_{R}K) = H(g_{i,i}, K, \partial_{R}, K), i, j, p, i', j', p' = 1, 2.$$

Now it is easily seen that our problem is equivalent to the determination of scalar concomitants of the pair

$$(g_{11}, \partial_1 K)$$
,

or of the pair

$$(g_{ij}, \partial_i K \cdot \partial_j K)$$

(cf. [2], p. 57).

Let us put

$$G = (g_{i}), \quad W = (\partial_i K \cdot \partial_i K)$$

and consider the matrix bundle

$$G\lambda + W$$
. (1.3)

(Our considerations are based on the results of [5], p. 10-18, 21-23). We notice that the bundle (1.3) is regular and stricly equivalent to the bundle $E\lambda + G^{-1}W$, E being the unit 2 x 2 matrix. Hence the bundles $G\lambda + W$ and $E\lambda + G^{-1}W$ have identical elementary divisors. The matrix $G^{-1}W$ has the following eigenvalues: $\mu = 0, \rho = trG^{-1}W = \Delta_1 K$ ($\Delta_1 K$ is the Beltrami's differential parameter of the first order of the function K). It is known that the scalars μ , ρ and the Weierstrass characteristic of the matrix $G^{-1}W$ uniquely determine elementary divisors of the bundle $E\lambda + G^{-1}W$.

Thus we arrive at the following.

Theorem 1. Ewery scalar differential concomitant of the third order of the metric tensor g_{ij} , for n = 2, is an arbitrary function of the partial signature of the canonical form of the bundle (1.3), of the Weierstrass characteristic of the matrix $G^{-1}W$, of the Gauss curvature K and of the Beltrami's parameter $\Delta_{i}K$.

2. WE USE RESULTS OF § 1 TO GIVE A CERTAIN CLASSIFICATION OF SPACES v^2

The Weierstrass characteristic of the matrix $G^{-1}W$ can have the following forms:

1[°] [1,1],

2[°] [2].

In cases 1° , 2° we have the following canonical forms of the bundle (1.3) and of the matrix $G^{-1}W$:

10	a)	$\lambda \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \cdot$	$+ \left[\begin{array}{cc} 0 & 0 \\ 0 & \rho \end{array} \right] .$	[00].	ρ≥0,
	Ъ)	$\lambda \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	+ [0 0 0 -ρ],	$\left[\begin{array}{cc} 0 & 0 \\ 0 & \rho \end{array} \right] ,$	ρ≤0,
	c)	$\lambda \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$+ \left[\begin{array}{cc} 0 & 0 \\ 0 & \rho \end{array} \right]$,	[0 0 0 ρ] ,	ρ≥0,
	d)	$\lambda \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] +$	$\left[\begin{array}{cc} 0 & 0 \\ 0 & -\rho \end{array} \right] ,$	$\left[\begin{array}{cc} 0 & 0 \\ 0 & \rho \end{array}\right],$	ρ≤0,
2 ⁰		$\lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$+ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$,	$\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] .$	

Remark 1. The matrix W is semi-positive definite and rank W ≤ 1. On account of the above, we obtain the following.

Corollary 2. If the Weierstrass characteristic of the matrix $G^{-1}W$ is equal to [1,1] at every point $p \in V^2$, then: V^2 is a space of constant curvature $\Leftrightarrow \Delta_1 K = 0$, for every point $p \in V^2$.

Corollary 3. If the Weierstrass characteristic of $G^{-1}W$ is equal to[2] at every point $p \in V^2$, then the signature of the metric tensor is {+,-}, $\Delta_1 K=0$ and $(\partial_{A}K)^{2} + (\partial_{A}K)^{2} + (\partial_{A}K)^{2} \neq 0$ at every point $p \in V^{2}$.

Remark 2. If the Weierstrass characteristic of the matrix $G^{-1}W$ is equal to [2] at some point $p \in V^2$, then there exists a neighbourhood U_p of p such that for every point $q \in U_n$ the Weierstrass charakteristic of $[G^{-1}W$ is equal to [2].

Using corollaries 1 and 2 we formulate the following.

Definition. A Riemannian space V^2 for which the Weierstrass characteristic of the matrix $G^{-1}W$ is equal to [2] at every point $p \in V^2$ is called a space of almost constant curvature.

3. WE CONSIDER A SPACE V² OF ALMOST CONSTANT CURVATURE

We assume in this section that all functions are C^{∞} . It follows from Corollary 2 that then:

(i) the gradient of the Gauss curvature is an isotropic vector field,

(ii) the gradient of the Gauss curvature is a non-zero vector at every point $p \in V^2$.

Let us put

$$v^{i} = g^{is}v_{s}$$

The field X is isotropic and $X_p \neq 0$, $p \in v^2$. A coordinate system (x,y) can be chosen so that

$$v^1 = 1, v^2 = 0$$

(cf. [1], p. 82). Thus we obtain

 $g_{11} = g_{1,j} v^{i} v^{j} = 0$, (3.1)

$$\partial_1 K = g_{1s} v^s = g_{11} = 0$$
,
 $\partial_2 K = g_{2s} v^s = g_{12}$, (3.2)

where $\partial_1 K = \frac{\partial K}{\partial x}$, $\partial_2 K = \frac{\partial K}{\partial y}$.

From (3.1) and (3.2) it follows that

$$\begin{split} &K(x,y)=f(y), \quad y\in\Delta \ (\Delta \text{ is an open interval of } R), \\ &g_{12}(x,y)=f'(y)\neq 0 \quad \text{for } y\in\Delta \ . \end{split}$$

Therefore in the chart (x,y) we have

 $(g_{ij}(x,y)) = \begin{pmatrix} 0 & f'(y) \\ f'(y) & h(x,y) \end{pmatrix}.$

By an elementary calculation we obtain

$$\begin{cases} 1\\11 \end{pmatrix} = 0, \quad \begin{cases} 1\\12 \end{pmatrix} = \frac{1}{2f'} \frac{\partial h}{\partial x} , \quad \begin{cases} 1\\22 \end{pmatrix} = \frac{1}{2f'} \left(\frac{h}{f'} \frac{\partial h}{\partial x} - 2 \frac{h}{f'} f'' + \frac{\partial h}{\partial y} \right) \\\\ \begin{cases} 2\\11 \end{pmatrix} = 0, \quad \begin{cases} 2\\12 \end{pmatrix} = 0, \quad \begin{cases} 2\\22 \end{pmatrix} = \frac{f''}{f'} - \frac{1}{2f'} \frac{\partial h}{\partial x} , \\\\ R_{1212} = \frac{1}{2} \frac{\partial^2 h}{\partial x^2} , \end{cases}$$

$$K(x,y) = -\frac{\frac{\partial^2 h(x,y)}{\partial x^2}}{2[f'(y)]^2}$$

Comparing (3.3) with (3.4) we get

$$\frac{\partial^2 h(x,y)}{\partial x^2} = -2f(y)[f'(y)]^2.$$

Hence we have

$$h(x,y) = -f(y)[f'(y)] x^{2} + k(y)x + 1(y) ,$$

where k, 1 are arbitrary real functions with the domain Δ . Therefore, in a space V^2 of almost constant curvature the metric ds² has (locally) the form

$$ds^{2} = 2f'(y)dxdy + \{-f(y)[f'(y)]^{2}x^{2} + k(y)x + 1(y)\}dy^{2}.$$
 (3.5)

On the other hand, it is easily seen that a space V^2 with metric (3.5) is of almost constant curvature.

In this way we have proved.

Theorem 2. The space V^2 is a space of almost constant curvature if and only if the metric ds² in V^2 has (locally) the form

$$ds^{2} = 2f'(y)dxdy + \{-f(y)[f'(y)]^{2}x^{2} + k(y)x + l(y)\}dy^{2}$$

(3.4)

where f,k,l are arbitrary real C^{∞} functions in an open interwal $\Delta \subset \mathbb{R}$ and f'(y) $\neq 0$, $y \in \Delta$.

Remark 3. A space V^2 of almost constant curvature is not compact.

Institute of Mathematics College of Pedagogics 35-310 Rzeszów, Poland

REFERENCES

- [1] Eisenhart L.P.: Riemannian Geometry, Princeton, 1966.
- [2] Lorens M.: Kilka uwag o wyznaczaniu komitant skalarnych obiektów geometrycznych, Rocznik Naukowo-Dydaktyczny WSP w Rzeszowie, Matematyka, Z. 5/41 (1979), p. 51-58.
- [3] Łubczonok G.: On the reduction theorems, Ann. Pol. Math. XXVI (1972), p. 125-133.
- [4] Schouten J.A. und Struik D.J.: Einfuhrung in die neuren Methoden der Differentialgeometrie, Groningen, 1935.
- [5] Zajtz A. Komitanten der Tensoren zweiter Ordnung, Zeszyty Naukowe UJ w Krakowie, Prace Mat. 8 (1964).

SKALARNE KOMITANTY RÓŻNICZKOWE TRZECIEGO RZĘDU TENSORA METRYCZNEGO W DWUWYMIAROWEJ PRZESTRZENI I ICH ZASTOSOWANIA

Streszczenie

W pracy wyznaczono wszystkie skalarne komitanty różniczkowe trzeciego rzędu tensora metrycznego w dwuwymiarowej przestrzeni (Twierdzenie 1). Podano pewną klasyfikację dwuwymiarowych przestrzeni Riemanna przy pomocy tych komitant. Zdefiniowano dwuwymiarową przestrzeń Riemanna o prawie stałej krzywiźnie i wyznaczono jej metrykę. СКАЛЯРНЫЕ КОМИТАНТЫ ТРЕТЬЕГО ПОРЯДКА МЕТРИЧЕСКОГО ТЕНЗОРА ДВУМЕРНОГО ПРОСТРАНСТВА И ИХ ПРИЛОЖЕНИЯ

Резюме

В работе автор нашёл в двумерном пространстве все скалярные комитанты третьего порядка метрического тензора (Теорема 1). Далее с: помощью этих скаляров он провел некоторую классификацию двумерных пространств. В заключение работы он определил пространство почти постоянной кривизны и нашёл его метрику.