Janusz BRZDȨK

SUBGROUPS OF CLIFFORD'S GROUP

Summary. Let K be a commutative field. The set $H=(K \backslash\{0\}) x K$ equipped in the operation:

$$
(a, b)(c, d)=(a c, a d+c b)
$$

is called Clifford's group of the field K. It is isomorphous with the multiplicative group of matrices in the form of $\left[\begin{array}{ll}a & 0 \\ b & a\end{array}\right]$, where $a, b \in K$, $a \neq 0$.

Let $F_{1} \subset K \backslash\{0\}, F_{2} \subset K$ be a non-empty sets and $f_{1}: F_{1} \longrightarrow X$, $\mathrm{f}_{2}: \mathrm{F}_{2} \rightarrow \mathrm{~K} \backslash\{0\}$.
Theorem. (1) The $\operatorname{set}\left\{\left(a, f_{1}(a)\right): a \in F_{1}\right\}$ is $a \operatorname{sb}+$ group of the group H only provided that F_{i} is a multiplicative subgroup of the field K and the function $F_{1} \ni a \longrightarrow a^{-1} f_{1}(a) \in K$ satisfies the functional equation (6).
(ii) The set $\left\{\left(f_{2}(a), a\right): a \in F_{2}\right\}$ is a subgroup of the group ($H_{i} \cdot{ }^{\circ}$) only provided that additive subgroup of the field K as well as an function $k: A \rightarrow K \backslash\{0\}$ which satisfies conditions (7), (8) exist and they are such that:

$$
\left.F_{2}=\{k(a) a: a \in A), \quad f_{2} k(a) a\right)=k(a) \text { for } a \in A
$$

In particular, the general solution of functional equation (3) is given in the paper.

Let K be a commutative field. We define a binary operation $: H \times H \rightarrow H$ where $H=(K \backslash\{0\}) \times K$, as follows:

$$
\begin{equation*}
(a, b)(c, d)=(a c, a d+c b) \tag{1}
\end{equation*}
$$

The set H endowed with operation (1) is called Clifford's group of the field K (cf. [2] p. 281). It is isomorphic to the multiplicative group of matrices of the form $\left[\begin{array}{ll}a & 0 \\ b & a\end{array}\right]$, where $a, b \in K, a \neq 0$.

Using the well known method of finding subgroups (e.g. see [1]-[3]) we are going to give necessary and sufficient conditions for non-empty sete $F_{1} \subset K \backslash\{0\}, F_{2} \subset K$ and functions $f_{1}: F_{1} \rightarrow K, \quad f_{2}: F_{2} \rightarrow K \backslash\{0\}$ in order that the sets

$$
\begin{aligned}
& D_{1}=\left\{\left(a, f_{1}(a)\right): a \in F_{1}\right\}, \\
& D_{2}=\left\{\left(f_{2}(a), a\right): a \in F_{2}\right\}
\end{aligned}
$$

were subgroups of the group ($\mathrm{H}, \cdot \cdot$). The case where $\mathrm{K}=\mathrm{R}, \mathrm{F}_{1}=\mathrm{R} \backslash\{0\}, \mathrm{F}_{2}=\mathrm{A}$ (where R denotes the set of all real numbers), and f_{1}, f_{2} are continuous is solved in [2].

Let us start with the following

Lemma 1. The following conditions hold:
(i) D_{1} is a subgroup of the group (H, \cdot) if and only if F_{1} is a multiplica* tive subgroup of K and f_{1} satisfies the functional equation

$$
\begin{equation*}
g\left(a b^{-1}\right)=b^{-2}(b g(a)-a g(b)), \tag{2}
\end{equation*}
$$

(ii) D_{2} is a subgroup of the group ($\mathrm{H}, \cdot \cdot$) if and only if there exists function $f_{o}: K \rightarrow K$ satisfying the following conditional functional equation

$$
\begin{equation*}
\text { If } f(a) f(b) \neq 0 \text {, then } f\left(f(b)^{-2}(f(b) a-f(a) b)\right)=f(a) f(b)^{-1} \tag{3}
\end{equation*}
$$

such that $F_{2}=\left\{a \in K: f_{0}(a) \neq 0\right\}$ and $f_{2}(a)=f_{0}(a)$ for $a \in F_{2}$.

Proof. (i) Observe that

$$
(a, b)^{-1}=\left(a^{-1},-b a^{-2}\right) \text { for }(a, b) \in H
$$

and consequently

$$
(c, d)(a, b)^{-1}=\left(c a^{-1}, a^{-2}(a d-c b)\right) \text { for }(a, b),(c, d) \in H
$$

Thus D_{1} is a subgroup of the group (H, \cdot) if and only if

$$
\left(a, f_{1}(a)\right)\left(b, f_{1}(b)\right)^{-1}=\left(a b^{-1}, b^{-2}\left(b f_{1}(a)-a f_{1}(b)\right)\right) \in D_{1} \quad \text { for } a, b \in F_{1}
$$

which implies the assertion.
(ii) In the same way, as above, we obtain that D_{2} is a subgroup of the group (H, \cdot) if and only if

$$
\begin{aligned}
& \left(f_{2}(a), a\right)\left(f_{2}(b), b\right)^{-1}= \\
& =\left(f_{2}(a) f_{2}(b)^{-1}, f_{2}(b)^{-2}\left(f_{2}(b) a-f_{2}(a) b\right)\right) \in D_{2} \quad \text { for } \quad a, b \in F_{2}
\end{aligned}
$$

It is equivalent to the following condition

$$
\begin{align*}
& f_{2}(b)^{-2}\left(f_{2}(b) a-f_{2}(a) b\right) \in F_{2} \text { and } \\
& f_{2}\left(f_{2}(b)^{-2}\left(f_{2}(b) a-f_{2}(a) b\right)\right)=f_{2}(a) f_{2}(b)^{-1} \text { for } a, b \in F_{2} . \tag{4}
\end{align*}
$$

Assume that D_{2} is a subgroup of (H, \cdot). Then (4) holds. Consequently the function $\mathbf{f}_{0}: \mathbf{K} \rightarrow \mathbf{K}$,

$$
f_{0}(a)= \begin{cases}f_{2}(a) & \text { for } a \in F_{2} \\ 0 & \text { otherwise }\end{cases}
$$

satisfies (3). Moreover, $\mathrm{F}_{2}=\left\{a \in K\right.$: $\left.f_{0}(a) \neq 0\right\}$ and $f_{2}(a)=f_{0}(a)$ for $a \in F_{2}$.

On the other hand, if there exists a function $f: K \rightarrow K$ such that (3) holds, $F_{2}=\{a \in K: f(a) \neq 0\}$, and $f_{2}(a)=f(0)$ for $a \in F_{2}$, then F_{2} and f_{2} fulfil (4). As a result D_{2} is a subgroup of the group (H, \cdot), which completes the proof.

We are going to solve functional equations (2) and (3) in a more general case, i.e. in the classes of functions $f: L \rightarrow E$ and $g: E \rightarrow K$, where E is a linear space over the commutative field K and L is a multiplicative subgroup of K . We have the following

Lemma 2. Let $f: E \rightarrow K$ be a function satisfying (3) and $F=\{x \in E: f(x) \neq 0\}$. Then the following conditions hold:
(i) if $F \neq \phi$, then $f(0)=1$,
(ii) If $x, y \in F$ and $f(x)^{-1} x=f(y)^{-1} y$, then $x=y$,
(iii) $f(f(x) y+f(y) x)=f(x) f(y)$ for $x, y \in F$,
(iv) $A=\left\{f(x)^{-1} x: x \in F\right\}$ is an additive subgroup of E.

Proof. (i) Fix a $z \in F$. Then, by (3),

$$
f(0)=f\left(f(z)^{-2}(f(z) z-f(z) z)\right)=1
$$

(ii) Fix any $x, y \in F$ and assume that $f(x)^{-1} x=f(y)^{-1} y$. Then

$$
\begin{equation*}
f(y) x-f(x) y=0 \tag{5}
\end{equation*}
$$

Thus, in virtue of (3),

$$
f(0)=f\left(f(y)^{-2}(f(y) x-f(x) y)\right)=f(x) f(y)^{-1}
$$

Since, by (i), $f(0)=1$, we obtain $f(x)=f(y)$. Hence (5) implies that $x=y$.
(iii) The proof is strightforward.
(iv) It is enough to prove that $a-b \in A$ for every $a, b \in A$. $F i x$ any $x, y \in F$ and denote $z=f(y)^{-2}(f(y) x-f(x) y)$. Then, by (3), $f(z)=f(x) f(y)^{-1} \neq 0$. Thus $f(z)^{-1} z \in A$. It is easy to verify that $f(x)^{-1} x-f(y)^{-1} y=f(z)^{-1} z$. Hence $f(x)^{-1} x-f(y)^{-1} y \in A$, which completes the proof.

Proposition 1. The following conditions are valid:
(i) a function $g: L \rightarrow E$ satisfies functional equation (2) if and only if the function $h: L \rightarrow K, h(a)=a^{-1} g(a)$ satisfies the functional equation

$$
\begin{equation*}
h(a b)=h(a)+h(b) \tag{6}
\end{equation*}
$$

(ii) a function $f: E \rightarrow K$ satisfies functional equation (3) if and only if there exist an additive subgroup A of E and a function $k: A \rightarrow K \backslash\{0\}$ such that

$$
\begin{equation*}
k(x+y)=k(x) k(y) \quad \text { for } \quad x, y \in A \tag{7}
\end{equation*}
$$

if $x, y \in A$ and $k(x) x=k(y) y$, then $x=y$,

$$
f(x)= \begin{cases}k(y) & \text { if } x=k(y) y, \quad y \in A ; \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. (i) It is enough to notice that a function g : $L \rightarrow E$ satisfies (2) if and only if

$$
g(a b)=a g(b)+b g(a) \quad \text { for } \quad a, b \in L
$$

(1i) Let $f: E \rightarrow K$ be a function given by (9). We are going to prove that f fulfils (3). Fix $x, y \in E$. The case where $f(x) f(y)=0$ is trivial. Assume that $f(x) f(y) \neq 0$. Then there exist $z, w \in A$ such that $x=k(z) z$ and $y=k(w) w$. Since $f(x)=k(z)$ and $f(y)=k(w)$, we have

$$
\begin{aligned}
& f\left(f(y)^{-2}(f(y) x-f(x) y)\right)=f\left(k(z) k(w)^{-1}(z-w)\right)= \\
& =f(k(z-w)(z-w))=k(z-w)=f(x) f(y)^{-1}
\end{aligned}
$$

Thus f satisfies (3).
Now, assume that a function $f: E \rightarrow K$ fulfils (3). Put $A=\left\{f(x)^{-1} x: x \in E \backslash f^{-1}(\{0\})\right\}$. By Lemma $2(i v) A$ is an additive subgroup of E. Define a function $k: A \rightarrow K$ as follows:

$$
k\left(f(x)^{-1} x\right)=f(x) \quad \text { for } \quad x \in E \backslash f^{-1}(\{0\})
$$

It results from Lemma 2 (ii) that k is well defined. We want to prove that k satsfies (7) and (8). Fix $z, w \in A$. Then there exist $x, y \in E$ such that $f(x) f(y) \neq 0$ and $z=f(x)^{-1} x, \quad w=f(y)^{-1} y$. According to the definition of k we have $k(w)=f(y)$ and $k(z)=f(x)$.

Thus in view of Lemma 2(iii)

$$
k(z+w)=k\left(f(x)^{-1} f(y)^{-1}(f(y) x+f(x) y)\right)=f(x) f(y)=k(z) k(w)
$$

In this way we have proved that k fulfils (7). Further, suppose that $k(z) z=k(w) w$. Then $x=k(z) z=k(w) w=y$ and consequently $z=f(x)^{-1} x=$ $=f(y)^{-1} y=w$. Hence (8) holds, too.

Let

$$
f_{0}(x)= \begin{cases}k(y) & \text { if } x=k(y) y, \quad y \in A ; \\ 0 & \text { otherwise }\end{cases}
$$

for $x \in E$. In order to complete the proof it is enough to show that $f_{0}=f$. Fix an $x \in E$. If $f(x) \neq 0$, then $f(x)^{-1} x \in A$ and $k\left(f(x)^{-1} x\right)=f(x)$.

Thus

$$
f_{0}(x)=f_{0}\left(k\left(f(x)^{-1} x\right) f(x)^{-1} x\right)=k\left(f(x)^{-1} x\right)=f(x)
$$

On the contrary, if $f(x)=0$, then $x \notin\{k(z) z: z \in A\}$. Thus $f_{0}(x)=0$ and consequently $f_{0}(x)=f(x)$. Hence $f_{0}=f$, which completes the proof.

Lemma 1 and Proposition 1 yield the following

Theorem. The following conditions hold:
(i) D_{1} is a subgroup of the group ($\left.H, \cdot\right)$ if and only if F_{1} is a multiplicative subgroup of K and the function

$$
F_{1} \Rightarrow a \rightarrow a^{-1} f_{1}(a)
$$

satisfies functional equation (6),
(ii) D_{2} is subgroup of the group (H, \cdot) if and only if there exist an additive subgroup A of K and a function $k: A \rightarrow K \backslash\{0\}$ satisfying (7) and (8) and such that $F_{2}=\{k(a) a: a \in A\}, f_{2}(k(a) a)=k(a)$ for $a \in A$.

The subsequent proposition and corollary explain condition (8) a little.

Proposition 2. Let A be an additive subgroup of E. Let $k: A \rightarrow K \backslash\{0\}$ be a function satisfying (7). Then k fulfils (8) if and only if

$$
\begin{equation*}
z \notin(1-k(z)) A \quad \text { for } \quad z \in A \backslash\{0\} \tag{10}
\end{equation*}
$$

Proof. Assume that \mathbf{k} satisfies (8). For an indirect proof suppose that there exist $z, w \in A \backslash\{0\}$ such that $(1-k(z)) w=z$ and denote $y=w-z$. Then $y \neq w$ and $(1-k(z)) w=w-y$. Since $z=w-y$ and, by $(7), k(w-y)=k(w) k(y)^{-1}$, we have $k(w) w=k(y) y$, which contradicts (8).

Now, assume that (10) holds. For an indirect proof suppose that k does not satisfy (8). Then there exist $z, w \in A \backslash\{0\}, z \neq w$ such that $k(z) z=$ $=k(w) w$. Denote $y=w-z$. Then $k(w) w=k(w-y)(w-y)$ and consequently, by (7), $w=k(-y)(w-y)$. Since, on account of $(7), k(-y)=k(y)^{-1}$, we obtain that $y=(1-k(y)) w$, a contradiction.

Corollary. The following conditions hold.
(1) Let A be an additive subgroup of E. Let B a multiplicative subgroup of K. If

$$
\begin{equation*}
A \cap((1-B) A)=\{0\}, \tag{11}
\end{equation*}
$$

then every function $k: A \rightarrow B$ satisfying (7) fulfils also (8).
(ii) If a function $k: E \rightarrow K \backslash\{0\}$ satisfies (7) and (8), then $k \equiv 1$.
(iii) If A is an additive subgroup of K and

$$
B:=K \backslash\left\{1-a b^{-1}: a, b \in A \backslash\{0\}\right\},
$$

then every function $k: A \rightarrow B$ satisfying (7) fulfils (8), too.
Condition (ii) is due to 2. Wilczynski; the author wish to thank him for that at this place.

Proof. (1) Since (11) holds and $k(A) \subset B$, we obtain that (10) is valid, Which, by Proposition 2, completes the proof.
(ii) For an indirect proof suppose that there exists a $y \in E$ such that $k(y) \neq 1$. Then $y \in(1-k(y)) E$. Thus (10) does not hold, a contradiction.
(11i) Let us observe that, for every $b \in B$ and $a_{1}, a_{2} \in A \backslash\{0\}$, we have $b \neq 1-a_{1} a_{2}^{-1}$ and consequently $a_{1} \neq a_{2}(1-b)$. Thus, on account of Proposition 2 , we get the assertion.

Remark. By Corollary (i), (iii) one can find numerous examples of functions satisfying (7) and (8). For instance, if $K=R$, then the function

$$
Z \ni n \rightarrow \pi^{n}
$$

fulfils (7) and (8), where R and Z denote the sets of all real numbers and integers, respectively.

REFERENCES

[1] Aczé J. and Gokąb S.: Remark on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10.
[2] Brillouêt N. and Dhombres J.: Equations functionnelles et recherche de sous groupes, Aequationes Math. 31 (1986), 253-293.
[3] Midura S.: Sur la determination de certains sous-groupes du groupe L_{s}^{1} a l'aide d'equations fonctionnelles, Dissertationes Math. 105 (1973).

Institute of Mathematics
Pedagogical University
Rejtana 16 A
35-310 Rzeszów
POLAND

PODGRUPY GRUPY CLIFFORDA

Streszczenie

Niech K będzie cialem przemiennym. Zbior $H=(K \backslash\{0\}) x K$ wyposazony w dziakanie

$$
(a, b)(c, d)=(a c, a d+c b)
$$

nazywamy grupa Clifforda ciaka K. Jest ona izomorficzna z multiplikatywna grupa macierzy postaci $\left[\begin{array}{ll}a & 0 \\ b & a\end{array}\right]$, gdzie $a, b \in K, \quad a \neq 0$.

Niech $F_{1} \subset K \backslash\{0\}, F_{2} \subset K$ będa niepustymi zbiorami i $f_{1}: F_{1} \rightarrow K, f_{2}: F_{2} \rightarrow K \backslash\{0\}$.
Twierdzenie. (i) Zbiór $\left\{\left(a, f_{1}(a)\right): a \in F_{1}\right\}$ jest podgrupa grupy (H, \cdot) wtedy i tylko wtedy, gdy F_{i} jest podgrupa multiplikatywną ciaka K i funkcja $F_{1} \ni a \rightarrow a^{-1} f_{1}(a) \in K$ spełnia równanie funkcyjne (6).
(ii) Zbiór $\left\{\left(\mathrm{f}_{2}(\mathrm{a}), \mathrm{a}\right):\right.$ a $\left.\in \mathrm{F}_{2}\right\}$ jest podgrupa grupy (H, \cdot) whedy i tylko wtedy, gdy istnieje podgrupa addytywna A ciała $K i$ funkcja $k: A \rightarrow K \backslash\{0\}$ spelniająca warunki (7) i (8) takie, ze $F_{2}=\{k(a) a: a \in A\}, f_{2}(k(a) a)=k(a)$ dla $a \in A$.

W szczególnosci, w pracy podane jest rozwiązanie ogólne równania funkcyjnego (3).

ПОДГРУППН ГРУППЫ КЛИФФОРДА

Pe3 Dx е
Пусть К будет полем. Множество $\mathrm{H}=\left(\mathrm{K} \backslash\{0\}_{\mathrm{x}} \mathrm{K}\right.$ с бинарнон операцен

$$
(a, b)(c, d)=(a c, a d+c b)
$$

называется группой Клиффорда поля К. Она изоморфна мультипликативнон группе матрид вида $\left.\left[\begin{array}{ll}a & 0 \\ b & a\end{array}\right] \right\rvert\,$ где $\quad a, b \in K, \quad a \neq 0$.

Пусть $\mathrm{F}_{1} \subset \mathrm{~K} \backslash\{0\}, \mathrm{F}_{2} \subset \mathrm{~K}$ буудут непустьми мноществами и $\mathrm{f}_{1}: \mathrm{F}_{1} \longrightarrow \mathrm{~K}$, $\mathrm{f}_{2}: \mathrm{F}_{2} \longrightarrow \mathrm{~K} \backslash\{0\}$.

теорема. (I) Множество $\left\{\left(\mathrm{a}, \mathrm{f}_{1}(\mathrm{a})\right): \mathbf{a} \in \mathrm{F}_{1}\right\}$ является подгруппои группы (H,.) тогда и только тогда, если F_{1} является мультипликативнои подгруппои K и функдия $F_{1} \ni a \longrightarrow a^{-1} f_{1}(a) \in K$ удовлетворлет функдиональному уравненио (6).
(II) Множество $\left\{\left(f_{2}(a), a\right): a \in F_{2}\right\}$ двляется подгруппой группы (Н,.) тогда и только тогда, если существует аддитшвная подгруппе А поля К и функция $k: A \rightarrow K \backslash\{0\}$ для которъх внполняртся условия (7), (8) и такде чтс $F_{2}=\{k(a) a: a \in A\}, f_{2}(k(a) a)=k(a)$ для $a \in A$.

В особенности представлено общее рещение функционального уравнения (3).

