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COUNTABLE CARTESIAN PRODUCT OF DIFFERENTIAL SPACES

Summary. In this paper we study some properties of a differential 
space (M,C) which is the countable Cartesian product of differential 
spaces (M^,C^), i e N, in the sense of Sikorski. It is proved that
the tanget space to the countable Cartesian product of differential 
spaces is the direct pruduct of the tangent spaces to each factor.
The C-modul I^(M) of all smooth vector fields tangent to (M,C ) paral
lel to (Nf.Cj) is defined and investigated. One proves that C-module 
K M )  of all smooth vector fields tangent to (M,C) is isomorphic to the 
direct product of the C-modules K(M), i e N.
Some properties of the countable Cartesian product of differential spa
ces of constant differential dimension are presented. It is proved that 
then in the graded algebra A(M) of the pointwise forms there exists a 
unique operation which satisfies the well-known axioms of exterior de
rivative. Some sufficient conditions for the existence of a linear con
nection in a C-module KM) are presented. If (M,C) is a countable Car
tesian product of compact differential spaces of constant differential 
dimension, there exists a linear connection in the C-Module KM). The 
notions of a smooth tensor of type (n,1 ), a vector field and a connec
tion projectible onto (M^,C^) allow us to study some properties of a
connection and tensors on (M.C) by investigation of the properties of 
its projection. In this way is proved that the curvature tensor of the 
connection V in the Countable Cartesian product of parallelizable 
differential space is equal to 0.

In this paper we study some properties of the countable Cartesian product 
of differential space in the sense of Sikorski [4].
In particular the countable Cartesian product of differential manifolds of 
class C” may be considered as a differential space. In section 1 we review 
some of the standard facts on Sikorski’s differential spaces [3], [4]. It is 
possible in a natural way to introduce a diferential structure on the 
Cartesian product of differential spaces. InSection 2 we describe some basic 
notions and facts concerning the countable Cartesian product of differential 
spaces considered as a differential Space.
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1. PRELIMINARIES

Let M be a non-empty set and C a set of real functions defined on M. We
denote by the weakest topology on M such that all functions belonging to
C are continnnnous. For an arbitrary subset A c M we denote by C t h e  set
of all functions g: A — > R such that for each point p s A there exist an
open neighbourhood U € of p and a function f 6 C such that
g|A n U = f|A n U.

We denote by scC the set of all real functions of the form
<> (a......a ), where w e  e  , a  a € C, n e N and e is the set

1 n n 1 n n
co nof all real smooth functions of class C on R .

A set C is said to be a differential structure on M if
a) the set C is closed with respect to localization, i.e., C = Ĉ ,
b) the set C is closed with respect to composition with smooth functions,

i.e., C = scC.
By a differential space we shall mean any pair (M,C), where M is a set and

C is a differential structure on M.
For a set C of real functions defined on M the set (scC )w is the smal- o o M

lest differential structure on M including the set Cq.
A differential structure C is said to be generated by C iff C = (scC )u.O  O  M

<p e ( scC )u if for any point p e M there exist an open in x_ set l)sp 
O  M  C O

and functions w e e ,  a  a  e  C such that ®|U = u  • ( a , , . .. ,a ) III.n 1 n o 1 I n '

If (M, C) is a differential space and A c M, then (A,C^) is also a diffe
rential space called the differential subspace of (M,C) [5].

By a vector tangent to a differential space (M,C) at a point p e M we
shall mean any linear mapping v: C — > R such that

v(a • p) = v(a) • P(p) + a(p) • v (p) for all a,p e C. (1)

The set T M of all tangent vectors at a given point p e M is a linear
space. For any v e T^M we have the formula

n
v(u> *(«j,. .. ,an)) = y  ujjta^p) (p)) • via^) (2 )

i=l

for a a e C and w e e .I n n
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Let (M,C) and (N,D) be differential spaces. A mapping f: M — » N is sa
id to be smooth iff f*(a) := a ° f 6 C for every a e D.

If f: M  > N is smooth and v e T M, then the formulaP

(f, v)(a) = v(a o f) for a e D P

defines a vector f*pv tanget to N at f(p).
Now we prove the following lemma which will be usefull in the sequal.

Lemma 1. Let C be a differential structure on M generated by a set Cq and
p e M be an arbitrary point. Let wq: Cq — » R be a mapping satysfying the 
following condition:
(*) for arbitrary a.,...,a s C and w e e ..if u °(a..... a ) = 0 theni n o n I n

n
«ji(“ 1 (p).•••an(p))wo (ai| = 0 .

i=l

Then there is unique vector w e T^M tangent to (M,C) at p such that

wIC = w .
1 o o

Proof. For an arbitrary function <p e C we put

n
W(,J = wj i (aj (p),. .. ,an (p)> . (3)| x a. ii u x

1= 1

where a , a  e C and u s e  are smooth functions such that there 1 n o n
exists an open sset in L  U 3 p and <p|U = oi ° ( a  , a  )|U.L 1 i n '

From the condition (*) it is easy to see correctness of (3) and one can
verify that w: C — > R is a vector tangent to (M,C) at p such that w |Cq = wq.

If w is another vector such that w|C = w then by (2) we have' o o

n
w(»>) = ^ * uj^ajip) .an (P))* wtocj) = w(

i=l

So the vector w is tinique.
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By a smooth vector field to (M, C) we mean every R-linear mapping 
X: C --» C such that

X(a • g) = a • XC/3) + X(a)* p for all a, p e C.

The set K M )  of all smooth vector fields tangent to (M,C) is a C-module.
Now let (M,C) be a differential space and $ be a mapping which assigns a 

real space 0(p) to ant point p e M. By a $-field on M we shall mean any 
function W which assigns an element W(p) € § (p) to any p e M [4].

A C-module ffi of ^-fields on (M,C) is said to be a differential module of 
dimension m if

(a) SB is closed with respect to localization, i.e., SB
(b) 35 has locallt a vector basis composed of m fields, i.e., if every 

point p e M has a neighbourhood U € x^ and there exist $|U-fields
 on U such that for every point p e U the sequence (p),...,W^Cp)

is a basis of the linear space $(p) and  is a basis of - mo
dule 35y

Every vector field X e KM) may be interpreted as $-field, 4> being the
function 4>(p) = T^M for p e M and X(p)(a) = X(a)(p) for p e M and a € C.

We say that a differential space (M,C) has a differential dimension m if
C-module K M )  is a differential module of dimension m [4].

Now for k 6 N let fi (M) be a C-module of all skew-symmetric C-k-linear
mappings of the form o> : X (M)x. . . xKM) — > C. The direct sum 

k ofi(M) = e n (M), where Q CM) := C, together with the canonical operations of 
k£0

addition and exterior multiplication is a graded algebra over R. In the alge
bra Q(M) there is the operation d of exterior derivation given by the 
well-known global formula [5], [2].

Now let TM: = [ ) T M be a disjoint union of tangent spaces to (M,C).
peM P

By TC we denote the differential structure on TM generated by the set 
(« • I : a e C} u {da : a € C), where II : TM --> M is the canonical projec
tion and da : TM — » R is the function defined by

(da)(v) = v(a) for a e C and v e TM.
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For any k e N put

A  = {(Vj vk )e TMx. . . xTM : IKVj) = n(vfc)}

and

TkC = (TCx. . .xTC)^.

We denote Ak (M), k € N, the set of all smooth mappings u> : TkM --> R such
that the mapping t<>| T^Mx. . . xT^M is skew-symmetric k-linear for each point
p e M. The direct sum A(M) = © Ak(M), where A°(M) = C, together with the

k£0
canonical operations of addition and multiplication is a graded algebra

k kover R. The mapping 1̂ : A (M) — > C2 (M), k e N, given by the formula 

(hMu)(X1 ,...,Xk )(p) = itfCXjip). V P ) )  f0r " € Ak (M),

Xj.-.-.X^ e KM), is a homomorphism of graded algebras. If a differential
space (M, C) has a constant dimension then h^ is an isomorphism.

Definition 1. A differential space (M,C) is said to have the property (P) 
if for any v e TM there is a smooth vector field X e KM) such that 
X(II(v) = v.

One can prove

Lemma 2. If a differential space (M, C) has the property (P) then lî  is a 
monomorphism.
If we want to define an operator of exterior derivation in the algebra A(M) 
we meet some difficulties [2]. Let rn (M) for k £ 1 be the set of all ele-
mments m e A (M) such that for each point p e M there exists an open
neighbourhood U of p and a finite family of smooth functions

a. . , a  ,a. e C.. for (i ,...,i. )s I c Nk 1 such that
1‘'' k-1 X1 k-1

= Y da. . "da . "..."da.'U u  i i i lI l k 1 k- 1
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and

?  a i . . . . i .  . * d a i .  ' '  ' ' * d a l  = ° -  I 1 K-l 1 k-1

SB (M) © UĴ  (M), where 3lP (M) := {0>, is a homogeneous ideal in the graded
k£0

algebra A(M).

One can prove [2]

Proposition 1. Let (M,C) be a differential space.
If the ideal 3J)(M) = {0} then in the graded algebra A(M) there exists exactly 

~ k k+1operator d: A (M) — » A (M), k e N, satisfying the wellknown condition of
exterior derivation.

If o) has a local form uL. = £ a. . • da -... *da. the
I 1 l " ,1k X k

dw| = E dot, ~da -...'da .
I V  k 1 \

The following diagram commutes

k o ł  AK (M) -->• Ak+1 (M)n! ih-

nk (M) fik+1 (M)

By a covariant derivative in a C-module of ^-fields B  [5] we shall mean 
a function V : i(M) x ©  — » B  which assigns to every X e i(M) and to every 
W e B  a 4>-field A^W in such a way that A^W is a C-linear function of 
the variable W and the following condition is fulfield:

Ax (aW) = X(a) • W + a • AXW for a e C. X e 3fCM), W e B (4)
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2. MAIN RESULTS

Let (M, ,C, ) i 6 N be a sequence of differential spaces. Let M = X M,
ieN 1

be the Cartesian product of the sets M^, i e N .  We denote by pry M — > Mj

for j e N the natural projection onto the j-th coordinate.
For any a e Cj and j e N let a : M — » R be the function given by

_ *
a = prj(a) = a ° prj (5)

*
Put C = ( | pr (C,). Let C be the differential structure on M generated

° ieN
by the set Cq. Then the differential space (M,C) is said to be the countable 
Cartesian product of differential spaces (M^.C^), i e N .

It is easy bo observe that the.topology ly is Tichonov’s topology of the
topologies t _ , i e N .

L 1

We put M(k) = Mj x. ..x M. . x Mjc+1 *• • • for k e N. For an arbitrary

p = (pi}i e N € M let p(k) = (pl pk-l’ pk+l,' " )’ k e N- 0f course
p(k) e M(k). For an arbitrary q e M(k) let Jq: M — » M be the imbeding 
defined by

Jq (s) = (ql qk-l,s,qk’ ‘ ’ ‘ ) for s e ^  (6)

It is easy to verify the identities:

Prk ° Jq = ldMfc (7)

(pr^ « Jq)(s) = q^ for any s e if i * k. (8 )

il
Now let w e TpM be a vector tangent to (M, C) at the point p =

It follows easilt from (7) and (8 ) that is a smooth mapping.

Put

v. = pr., w for i e N .  (9)l r  i*p

So every vector w e T M determines the vectors v. e T M., i e N  defined P i Pj i
by (9). Conversely
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Proposition 2. If a sequence of vectors v.̂ € Tp M^, i e N

then there exists unique vector w e T M such thatP

v. = pr.. w for i e N .
1 r i*p

Proof. Let wq: Cq — -» R be the mapping given by

w (a) = v.(a) for a 6 C., ieN. (10)o J J
* *

It is easily seen that pr^iCL) n prj(Cj) for i * j consists of constant
function on M. Thus the formula (10) is correct. It remains to prove that wq

satisfies the condition (*) of Lemma 1. Without of loss of generality assume
that u • (a   a ) = 0, where u e e , a. 6 C. for i = 1.2, ..,n. ConsiderI n n i i
the vector v e T M defined P

v = J ,T•,» v, +...+ J ,“,, nv. p(l)*Pj 1 p(n)*pn

Of course v (a>- (a^ an ^  ~ ^ence ky we ^ave

n
^ u j ^ t p ) .... ^(pD'vla^) = 0.
i=l

Clearly v (o^) = = vi^aî  = wo*aî  for 1 + 1 , 2  n'
n *

Thus ^ ' idj^tajlp).%(?)) "wo(ai > = *n v^ew Lemma 1 there is unique
i=l

vector w e T M such that w|C = w . Observe that w (al = w (aT = v. (a) forp 1 o o o 1

for any a e C . Hence v. = pr,. w for i e N.o i K i*p
Now we may prove

Proposition 3. The mapping K: T M --» X T M. defined by the formula
P ieN Pi

K(w) = (prj^.pW) for w e T^M (1 1 )

is an isomorphism of T M and the direct product of T M., i e N .
P PA i

is an isomorphism of T M and the direct product of T M,, i e N .
P P1 i
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The proof is immediate.
Now for a vector w e T M put P

wi = (Jp(i) ° ^ i 5*?” for 1 e N‘ (12)

Of course w^ e TpM for i e  N and the vector satisfies the folowing 
condition:

wi(aj) = 0 for «j c Cj and j * i. (13)

The vector is said to be the i-th component of the vector w.

Definition 2. A vector v e TpM is said to be parallel to (M^.C^) if
v(a) = 0 for any a e Cj and j *■ k.
Clearly the i-th component of a vector w e TpM is parallel to (M^CJ.

Lemma 3. The foloowing conditions are equivalent:
(i) w e  TpM is a vector parallet to (M^,C^)
(ii) the k-th component w^ is equal to w

(iii) w 6 J p l h * p {\ \ h  

The proof is straightforward.
It is easy to see that the subspace J (T M, ) of all vectors fromp(k)*pk pk k

T M paralel to (M ,C ) is isomorphic to T M . The maping P k k Pk k

J : Tk Mk — -> T M is an isomorphism onto image.
p pk p p

Proposition 4. If v^ e TpM, i e N is a sequence of vectors paralel to 
(IL.C^) respectively then there is unique vector w e T M which has the i-th 
component w^ = v^ for i e N.

Proof. It followsk from Proposition 2 that for the sequence pr^„ v^eTp , 

i e N there is unique vector w e TpM such that

pri»Pw = pri*pvi f°r 1 € n‘

Of course wt + CJp(J} ° p r ^ w  = Jp(j ^ t p r ^ )  = Vj for i 6 N.
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This finishes the proof.
Now let w e T M be an arbitrary vector. Let <p e C be a smooth function. 

P
There exists an open neighbourhood U of p and functions (L , . . . , (L e Cq>

1 n
w e e  such that cpj„ = w » (p. )|U.n 'U i. l 1

1 n
From (2) and (13) it follows that w A ip ) = 0 for i € (ij in>.
One can verify the identity

w(0 ) = w (0 ) if 0 e pr*(C^). (14)
k k k

Thus by (2) we have

w )tp) = w^ {ip) .

k=l k

So we may uniquely present the vector w as a formal sum of its components:

« = r «, ■
ieN

In the sequal the vector w in Proposition 4 corresponding to a sequence 
(vi)l€N of vectors parallel to (hL.C^) respectively we will denote by

EieN V

Proposition 5. If (IL.CL), i e N  is a sequence of differential manifolds
of class C°°then for an arbitrary vector w s T M there exists a smooth
curve c: (- e, e)  » M such that c, - " — J 0*o as w and c(0 ) = p.

Proof. Choose c > 0. Since M. for i e N  is a differential manifold ofl
00class C , for the vector pr^» w there exists a smooth curve ĉ : (- e,e)— » 1L

Q
such that pr.. w = c,.K i*p i*o 3s and c1 (0 ) = p .̂

o
Let c: (- e, e) — » M be the smooth curve defined by

c(t) = (°i(t))ieN f°r t e(- e, c).
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Of course c(0) = (Pj)ieN = P- 1 1 is easy to see that P^.pW =

= Pri*p(c*o as for 1 e N. From Proposition 2 it follows that
o

aw = c. —  *o 9s

Now, let Z € f(M) be an arbitrary vector field tangent to (M,C). We will
denote by Z^ for i e N the vector field tangent to (M, C) given by

7 - o Pr,).D Z (P) for P e M. (15)
V pJ " U p(l) 1 P

One can prove the identities:

Z^(a) = Z(a) for a € (16)

Z^a) = 0  for a e Cj if j * i/ (17)

So the vector field Z^ is smooth. The vector field Z^ is called the i-th
component of Z.

Let <p e C be a smooth function. For an arbitrary point p e M there 
exist an open neighbourhood U and functions fL ........ 6 C , o> e such

that ip|U = u  (3 )|U. Then
1 n

Z(<p)|U = Zi (<p) |U +..!+ Z (i>)|U. (18)
1 n

The sequence (2^ (sp)) is locally finite. We may write Z as a formal sum of

its components: Z = \ Z^. From (16) it follows that the components Z^,
ieN

i e N are C-linearly independent.

Definition 3. A vector field Z e 2(M) is said to be parallel to i ^ * ^ )  
if for every p e M the vector Z(p) is parallel to (M,C^).

In a similar way as Lemma 3 one can prove

Lemma 4. Let Z e T(M). The foloowing condition are equivalent:
(i) Z is parallel to (M̂ , C^)
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(ii) Z (p) e JpCi,.pkCTpfc Mk) for each p e M

(iii) Z = Zk 

(iv) Z (a) = 0 for any a e Cj if j *■ k.

We denote by J, (M) the set of all smooth vector fields tangent to (M,C)
J k

which are parallel to (M^C^. It is clear that *k (M) is a C-submodule of 
the C-module KM).

Lemma 5. If X. € I.(M),i 6 N is a sequence of smooth vector fields 
parallel to (M..CL) respectively then there exists unique vector field 
Z e KM) such that Z^ = for i e N .

Proof. Let Z e KM) be the vector field given by

Z(p) = y -- X.(p) for p e M. (19)
ieN

For any p e M and a e Ck we have the equality Z(p) (a) = X^pHa).
Thus Z(a) = Xk (a). So Z is smooth. It is clear that Zj(p) = X^p) for i e N
and p e M. Hence Z^ = X^ for i e N .

In the sequal the vector field Z defined by (19) we will denote by
ieN

Proposition 6. The mapping L: KM) --> X J, (M) defined by
ieN

L(Z) = (Zr Z2  ) for Z e KM) (20)

is an isomorphism of the C-module KM) and the direct product of the C-modu- 
les I (M), i e N .

Proof. It is clear that L is a homomorphism of C-modules. Let Z e S(M) be 
a vector field such that L(Z) = 0. Then Z^ = 0 for i e N .  In view of Lem
ma 5 Z = 0. Thus ker L = {0>. By Lemma 5 the homomorphism L is "onto". 
Therefore L is an isomorphism.

Now we will give some characterisation of a smooth vector field tangent to 
M,C) parallel to (M^C^.
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Definition 4. Indexed set smooth vector field X*̂  e Is
said to be smooth i f  the function i/i : M — » TM^ given by

0(p) = Xptk)(pk ) for p e M

is a smooth mapping of (M,C) into (TM^.TC^).
Let us observe that a smooth indexed set(X^)qeM(k) of smooth vector

fields Xq e determines the smooth vector field X 6 parallel to
(M^.C^) by the formula

X(P) = Jp(k)*pk 5(P(k)(pk) for p € M- (21)

(X'
Conversely if X € (Ml then there exist the smooth idenxed set 
^qeM(k) sraooth vector fields tangent to defined by

Xq (s) = prk.p X(p) for g e M(k), s e (22)

where p = (PiîigN is such a point of M that p(k) = q and pk = s.
So we may write

Proposition 7. A vector field X € ï(M) is parallel to ( M ^ C ^  if and only 
there exists a smooth : 

gent to (Mĵ , Cfc) such that
if there exists a smooth indexed set (Xq ) w ,r, of smooth vector fields tanqeM(k)

X(P) = Jp(£)*pk ^  p € M .

Moreover there is one-to-one correspondence betwen smooth vector fields 
parallel to (M, ,C, ) and smooth indexed sets of smooth vector fields tangent 
to (Mk>Ck ).

Noww, let X e be an arbitrary smooth vector field tangent to
(M,,C. ). Let X: M --> ( ) T M be the mapping given by
K K peM P

X(p) = J X for p e M. (23)P (k) p Pk

It is easy to verify that X is a smooth vector field tangent to (M,C) 
parallel to ( ,  Cfc). The corresponding indexed set (X*1*) j is constant, 
i.e., Xq = for ant q 6 M(k).
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Lemma 6. If is a differential space of dimension n then the
C-module *s an n-dimensional differential module of f-fields, where

$(p) = Jp(i)*pktTpkMk) for P 6 M-

Proof. The closeness of with respect to localization is evident.
Let p = be an arbitrary point of M. Let V € xQ be an open neigh-

k
bourhood of p , such that there is on V a local vector basis W  W of thek _ I n
Ck-module KMj^). Consider the vector fields V , defined by (23) on the

open set V = M^x...xMk_jXVxMk+jX. . . ,

We will show that the sequence W , ...,W os a vector basis of the C-module
3Ek CM). Of course for any q e V the mapping Jq(k )*q •' Tq Mk — * *(q) is an

isomoorphism. Since W ^ ) is a basis of the vector space T Mk
n ^k

the sequence W^q) = Jq(^ . qk W ^ }  iMq) = J q ^ j ^ V V  is a basis

of $(q). It remains to show that for any Z e fM) the restriction Z|V may
— — g

be presented as a C.--linear combination of W....... W . Let (Z ) be theV 1’ n seM(k)
smooth indexed set of smooth vector fields from SiM^) corresponding to Z and
^ : M -- > TMĵ  be the smooth function given by Definition 4. Since *k W) is

n
a differential module of dimension n we may write Z |V = ¡T for

1=1

s e M(k), where <p* e Cky for i = 1,2,..
Put

ł>1 (q) = for q e V and i = 1.... n. (24)

Let W* : TV — > R be a smooth function defined by

W^fWjfx)) = S.^ for x e V, i,j = l,...,n.

It is easy to see that <p̂  = o (01V) for i = 1 n. Thus € Cy for
i = l,...,n. An easy computation shows that

i n
zt’ > -



Countable cartesian product. 145

n

^ V (q)W,(q) for q e V .
j=l J

n
Hence Z

J=1

From Lemma 6 and Proposition 6 it folows the following corollary.

Corollary 1. If (M^,C^) i e N  is a sequence of differential spaces of
cpmstamt dofferential dimension then the the C-module KM) is isomorphism to
the direct product X X.(M) of differential modules. 

ieN
Now using Definition we prove the following lemma.

Lemma 7. If (M^.C^), i e N  is a sequence of differential spaces having 
the property (P) then the Cartesian product (M,C) has the property (P).

Proof. Let w e T M be an arbitrary vector tangent to (M, C) at 
p = Consider the sequence of vectors v^ = pr^^w, i e N .
Of course v^ e for i e N .  Since (M^,C^) has the property (P) there

is a vector field e X(M^) such that v^ = X^(p) for i e N .  Thus

pr., w = X,(p) i e N .  Hence J * » (pr.„ w) = Ji*p i p(i)*pi r i*p ]p(i)*p/VpiX.(p.) or equivalen

tly by (12) and (23) we have

w^ = Xj(p) for i e N .

Thus w = such a

smooth vector field tangent to (M,C) that

We have proved that (M,C) has the property (P). 
From Lemma 7 and Lemma 2 it follows
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Corollary 2. If i 6 N is a sequence of differential spaces of
constant differential dimension then for the Cartesian product (M,C) the 

k khomomorphism h^  A (M) --> Q (M) for k e N is a monomorphism.

Corollary 3. If (M.,^) i e N is a sequence of differential spaces of
constant differential dimension then in the graded algebra A(M) there exists

~ k k+1exactly one exterior derivation d: A (M) — -> A (M), k e N satisfying fol
lowing conditions:

(i) d is R-linear
(ii) d y a = da for a e C

(iii) d (u A  tj) = dw A  17 + C-l)deg“W A  dr) for w, 17 e A(M)
(iv) d o d = 0.

Proof. From Corollary 2 it follows that ker h^ = {0}. In [2] one has pro
ved that 3JUM) c ker t^. Hence the ideal liliCM) = {0}.
Proposition 1 now shows Corollary 3.

The following diagram commutes

Ak (M) — ^  Ak+1 (M)

*m

nk (M) — nk+1 (M)

Proposition 8 . Let (NL.C^) for every i e N be a connected differential 
manifold of class c” . Then for an arbitrary function a e C if da = 0 then 
a is a constant function.

Proof. Let a e C be such a function that da = 0. Consider the mapping~ *
J defined by (6 ). For any q e M(k) and k 6 N we have J (da) = 0. Henceq » q a
d(J a) = 0. Since M, is a connected differential manifold of class C theq . k
mapping J^a is constant for any q e M(k) and k 6 N. Therefore a € C is a
constant function.

Lemma 8. If V* is a covariant derivative in the C-module K(M) for i e N 
then the mapping 7: KM) x KM) — » KM) given by



Countable cartesian product. 147

V  = 7XYi for X’ Y 6 Ï(M) (25)
ieN

is a covariant derivative in the C-module ï(M).
The proof is straightforward.

Proposition 9. If (Mk>Ck ) is a parallelizable differential space then in 
the C-module CM) there exists a covariant derivative.

Proof. Let 1  Vk ^  be a global basis of the ^-module 3f( ) .

According to the proof of Lemma 6 we conclude that the sequence V ... Vk,l’ ’ k,n
is a vector basis of the C-module

It Is easy to check that the mapping Vk: ï(M) x ï(M) — > \ ( M) defined by 
the formula

°k
w V -
X?yY = )  X(» 1 )Yk.i for X e Ï(M) and ï s y « )  , (26)

i—1

°k
where Y = ^ is a covariant derivative.

i=l

From Lemma 8 and Proposition 9 it follows

Corollary 4. If (NL.C^) i g N is a sequence of parallelizable differen
tial spaces then in the C-module 3C(M) there exists a covariant derivative.

Proof. From Proposition 9 we conclude that for every k e N in the C-modu- 
le (M) there exists the covariant derivative defined by (26). From Lemma 8 

it follows that V: ï (M) x f(M) — » ï(M) given by (26)

V Y = \ V* X 1 VXVY. for X, Y e f(M)
A  1

ieN

is a covariant derivative in the C-module Ï(M).
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Example. Let , i e N  be a sequence of Lie groups. Of course every 
is parallelizable. From Corollary 4 we conclude that in the module KXG^)

ieN
there exists a covariant derivative.

Proposition 10. If (IL,C^), i e N  is a sequence of compact differential 
spaces of constant differential dimension then in the C-module KM) there 
exist a covariant derivative.

Proof. In a view of Lemma 6 for any i e N  the C-module ï^(M) is a diffe
rential module over the compact differential space (M,C). Using smooth parti
tion of unity [1 ] one can show in a standart way that there exists a cova
riant derivative V 1 in ÏKM) for i e N .  By Lemma 8 there exists a covariant
derivative 7 in KM) defined by (25).

Now we make the following definitions

Definition 5. A vector field Z e parallel to (M^.C^) is said to be
projectile onto (M^.C^) if there exists a smooth vector field X e such
that X = Z.

Denote by ï^r(M) the subset of of all projectile vector fields
— » ï£r(M) given by

HCX) = X for X € KM.) (27)

is an isomorphism of C^-module ï(M^) and

Definition 6 . A covariant derivative 7: 3f(M) x KM) — » K M )  is said
to be projectile onto (M^.C^) if for any X, Y e ï (M^) the vector field
7-Ÿ € l£r(M).

It is easy to prove

Proposition 11. If 7 is a covariant derivative in KM) which is projec
tile onto (HJc>Ck ) then 7k: KM^) xx K M ^  — » 3f(M̂ ) defined by

7kY = H_1 (7^Y) (28)

is a covariant derivative in C^-module

pr^iC^J-module ïkr(M).

onto (M, .C^). It is easy to see that the map H:



Countable cartesian product. 149

Definition 7. A C-n-linear map A: Jk (M)x. . . xik (M) — » is said to
be projectile onto (M , C, ) if for any X .X e 3E(M. ) the vector
field A(X1 Xr)6 fPr(M).

If A: Ik (M)x. . .xf^iM) — > ls a C-n-linear mapping projectile onto
then the mapping prk (A): KM^Jx. . .xKMj^) — » given by

prk (A)(X,, . . . ,X) = H_1(A(X. X )} for X X e KM) (29)i n  i n  i n

is a tensor of type (n,1) on

Lemma 9. If (M^.C^) is a differential space of constant dimension then for
an arbitrary tensor p : KM^Jx. . . xKM^) — » type (n> D  there exists
unique C-n-linear mapping

i : fk (M)x...xfk (M) — > *k(M)

m k ~such that p is projectile onto and M = Pr (p)-

Proof. Let p: fk (M)x. . . xIk <M) — > maPPin£ g*ven by

P (Z 1  Zn )(P } = Jp(i)*pk*iizPik) Zn(k)){Pk} (30)

for any Z ^ , . . . , Z ^  e *k (M) and p e M.
It is easy to see that p(Xj,.. ,',Xn) = piXj,.. ., Xn) for any Xj,...X 6 3E (M^).
If Vk j Vk is a local vector basis of the Ck~module then

V. ......V. is a local vector basis of the C-module I. (Ml. Of»I * k, nk k
course ?(VkJ ^  Vk>j ) = p(vk J  , ...,Vk>j ) for any

Jj Jn € {1.... i^}. Thus p(Zj.... H ) defined by (30) is a smooth vector
>v k ~field. A trivial vertification shows that p is unique and p = pr (p).

Definition 8. A tensor X: I(M)x. . . xf (M) — » T(M) of type (n, 1) is said
to be strongly projectile if for any k 6 N and for any Xj Xn €
the vektor field A(Xj,...,X ) is projectile onto (Mĵ ,Cfc).

If X is a strongly projectile tensor of type (n.l) then the formula (29) 
defines for an arbitrary k € N the tensor pr (A) of type (n,1).
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Proposition 12. Let (M^C.) be for every i e N  a differential space of 
constant differential dimension. If is a sequence of tensors of type
(n, 1) on (M.,C.), i e N respectively then there is unique strongly projec-

1 1  itile tensor A: T(M)x...xi(M) — > Ï(M) of type (n,l) such that pr (A) = Ai 1
for i e N .  Moreover the correspondance A  > pr (A) between projectille
tensors of type (n,1) on (M,C) and sequences of tensors of type (n, 1) (M^.Cj) 
for i e N is one-to-one.

Proof. Let ILfM) — >ï.M for i e N be the projection of a smooth vector
field tangent to (M,C) onto its i-th component. Denotes by A^ for i e N  the 
C-n-linearmapping defined by (30).

Let A: ï(M)x. . . x3f (M) --> ï(M) be the mapping given by

a (z i  v  ......w )  t3i)
ieN

for Z, Z e I(M).
1 n

From Lemma 9 it follows that A is unique strongly projectile tensor of type 
(n, 1) such that pr*(A) = A^ for i e N .

Lemma 10. Let V be a covariant derivative in the C-module ï(M) projectile
onto (M^.C^) for every k e N and satisfying the following condition

VXY = for X e ï(Mk ) and Y e k * 1 (32)

Then the torsion tensor T and the curvature tensor R of V are stron
gly projectile. Moreover pr^(T) = and pr^(R) = R^ for k e N, where

k kand R are the torsion tensor and the curvature tensor of V defined by (28).
The proof is straighforward.

Corollary 5. If (M^.C^), i e N  is a sequence of parallelizable differen
tial spaces then the covariant derivative V defined by (26) is projectile
onto (M^.C^) for every k e N and the curvature tensor of V R = 0.
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Proof. Any easy computation shows that V is projectile onto (M^,^) for
k 6 N and satisfies the condition (32). From Lemma 10 it follows that

k k k ifpr (R) = R for k 6 N. Of course R = 0 for every k e N. Thus pr (R) = 0
for any k e N. From Proposition 12 it follows that R = 0.
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S t r e s z c z e n i e
W pracy badamy własności przestrzeni różniczkowej (M,C), która jest 

przeliczalnym produktem kartezjańskim przestrzeni różniczkowych (M^C^, 
i e N, w sensie Sikorskiego. Przestrzeń styczna do przeliczalnego produktu 
kartezjańskiego przestrzeni różniczkowych jest produktem prostym prestrzeni 
stycznych do poszczególnych czynników. Definiujemy i badamy C-moduł K(M) 
gładkich pól stycznych do (M, C) równoległych względem (M^C^). Dowodzi się, 
że C-moduł KM) gładkich pól wektorowych stycznych do (M,C) jest 
izomorficzny z produktem prostym C-modułów K(M), i e N. Omówione są włas
ności przeliczalnego produktu kartezjańskiego przestrzeni różniczkowych 
stałego wymiaru różniczkowego. Udowodniono, że w tym przypadku istnieje w 
algebrze z gradacją A(M) form punktowych dokładnie jedna operacja 
różniczkowania zewnętrznego spełniająca dobrze znane aksjomaty. Przedstawione 
są warunki dostateczne na istnienie koneksji w C-module KM). Jeżeli (M, C) 
jest przeliczalnym produktem kartezjańskim zwartych przestrzeni różniczkowych 
stałego wymiaru różniczkowego to w C-module KM) istnieje koneksja liniowa. 
Wprowadzone pojęcia gładkiego tensora typu (n,1), pola wektorowego i koneksji
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rzutowalnych na (M^, )  pozwalają badać własności koneksji i tensorów na 
(M, C) poprzez badanie własności ich rzutów. W ten sposób pokazano, że tensor 
krzywizny koneksji V w przeliczalnym produkcie kartezjańskim paraleryzowal- 
nych przestrzeni różniczkowych jest równy 0.

P e 3 b  m e

B HacTOHmeg paSoie HCCjienyBics. cBofioiBa jm$$epeHiiHaabHoro npo- 
CTpaHCTBa (M, C) , HBJIHBmeBCH CHieTHHM AeKapTOBŁIM npOH3BeASHHeM 
$epeHiiHajiBHMx npocipaHCTB b CMHCjie C h k o p c k o t o .
IIoKa3aHO, hto KacaiejiŁHoe npocTpaHCTBo cneiHoro AenapTOBa npoH3- 
BefleHHH AH$(J)epeHUKajiBHŁDc npoCTpaHCTB ecib npauoe npoH3BeAeHne Kar- 
careJiBHhDc npocipaHCTB Kaayioro H3 coMHoacmejiea. OnpeAejraeTCH h hc- 
cjie^yeTca C-MOAyJib I. (m) rjiaAKnx BeKiopHbix nojreg aa (m,C) napan- 
jieJiBHŁK oTHocuTejibho (M^.C^) . jl,0Ka3aH01 eto C-Monyjib KM) r\naA- 
KHX BeKTOpHŁK nOJiefl Ha (M, C) H3 0M0p(J)6H npHMOHy npOH3BeAeHHB C-MO- 
Ayjiea ijtM), i e N. yCTaHaBjmBaBTCH ranne CBaftciBa AeKapiosa npoH3- 
BeAeHHH AH$ipepeHiuiaJibHHX npocipaHCTB kohkhhoS AHóŚNpepeHiyiaAbHOfl 
pa3nepHocTH. jioKa3aHo TaKxe^ hto b stom cjiyaae b rpaAynpoBaHHoa 
ajireCpe A(M) noToneHHbDc AH$$epeHi;HajibHHX $opM. cymecTByei b toh- 
hocth oAHa onepaiiHH BHemHoro AH<M>epeHunpoBaHHH, y^OBjieTBopHBinaa. 
XOpOfflO H3B6CTHHM aKCHOMaM. IIpeACTaBJieHŁI AOCTaTOHHHe yCJIOBHH oy- 
mecTBOBaHHH cbh3hocth b C-MOAyae KM) Ecjih (M,C) ecTb caeiHoe 
AeKapTHOBO npOH3BeA6HHe KOMUaKTHHX AH^4iepeHUHajIbHHX npocipaHCTB 
kohkhhoH AH$$epeHrmajibHoa pa3MepH0CTH, to b C-MOAyae 3E(M)' cyąe- 
CTByeT AHHegHaH CBH3H0CTb. BBeAeHH nOHHTHH TJiaAKOrO TeH30pa THIia 
(n,i), (-BeKTopHoro noxa h CBH3H0CTH, npoeKTHpyeMnx Ha (m^c.) , 
n03B0JIHBmHe HCCJieAOBaTb CBOfiCTBa CBH3HOCTH H TeH30pOB Ha M,C 

nocpeACBOM HCCJieAOBaHHK cboKctb ex npoeKHHS. 3thm npaeMOM noica- 
3aH0, HTO TeH30p KpHBH3HU CBH3H0CTH V |B CHSTHOU A6KapT0B0M HpOH3- 
BeAeHHH napajiJiejiH3yeMŁix AH$<J>epeHn;HajibHHx npocipaHCTB paBeH 0.


