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COUNTABLE CARTESIAN PRODUCT OF DIFFERENTIAL SPACES

Summary. In this paper we study some properties of a differential
space (M,C) which is the countable Cartesian product of differential
spaces (M~,CMN), ieN, in the sense of Sikorski. It is proved that

the tanget space to the countable Cartesian product of differential
spaces is the direct pruduct of the tangent spaces to each factor.
The C-modul 1~(M) of all smooth vector fields tangent to (M,C ) paral-

lel to (NF.Cj) is defined and investigated. One proves that C-module
KM) of all smooth vector fields tangent to (M,C) is isomorphic to the
direct product of the C-modules K(M), ie N

Some properties of the countable Cartesian product of differential spa-
ces of constant differential dimension are presented. It is proved that
then in the graded algebra A(M) of the pointwise forms there exists a
unique operation which satisfies the well-known axioms of exterior de-
rivative. Some sufficient conditions for the existence of a linear con-
nection in a C-module KM) are presented. If (M,C) is a countable Car-
tesian product of compact differential spaces of constant differential
dimension, there exists a linear connection in the C-Module KM). The
notions of a smooth tensor of type (n,1), a vector field and a connec-
tion projectible onto (M*,C*) allow us to study some properties of a

connection and tensors on (M.C) by investigation of the properties of
its projection. In this way is proved that the curvature tensor of the
connection V in the Countable Cartesian product of parallelizable
differential space is equal to 0.

In this paper we study some properties of the countable Cartesian product
of differential space in the sense of Sikorski [4].
In particular the countable Cartesian product of differential manifolds of
class C” may be considered as a differential space. In section 1 we review
some of the standard facts on Sikorski’s differential spaces [3], [4].- It is
possible in a natural way to introduce a diferential structure on the
Cartesian product of differential spaces. InSection 2 we describe some basic
notions and facts concerning the countable Cartesian product of differential

spaces considered as a differential Space.
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1. PRELIMINARIES

Let M be a non-empty set and C a set of real functions defined on M. We
denote by the weakest topology on M such that all functions belonging to
C are continnnnous. For an arbitrary subset A c M we denote by Cthe set
of all functions g: A — >R such that for each point p s A there exist an
open neighbourhood U € of p and a function f 6 C such that
glAnU=Ff]An U

We denote byscC the set of all real functions of the form

<>(a1. ..... an), where w e ne , f 3 ﬁa €n C, neN and r? is the set
of all real smooth functions of class C on R .

A set C is said to be a differential structure on M if
a) the set C is closed with respect to localization, i.e., C =C",

b) the set C is closed with respect to composition with smooth functions,

i.e., C = scC.

By a differential space we shall mean any pair (M,C), where M is a set and
C is a differential structure on M.

For a set Co of real functions defined on M the set (sccow is the smal-
lest differential structure on M including the set Cq.

A differential structure C is said to be generated by CO iff C = (scC0 )hlAJ.

Pe (scco)}wj if for any point p e M there exist an open in X set 1)sp
0

and functions wee a a e C such that ®lU =u e« (a,,---,a )l
h 1 n o) | n

If (M,C) is a differential space and A c M, then (A,C") is also a diffe-
rential space called the differential subspace of (M,C) [5]-
By a vector tangent to a differential space (M,C)at apoint p e M we

shall mean any linear mapping vi C — >R such that
v(a =p) =v(@ <P +a@) =v (p for all a,p eC. (€))

The set T M of all tangent vectors at a given point pe M is a linear

space. For any v e T"M we have the formula

n
v *(«j,-..,an)) =y ujjta”p) ®)) = via) @)

for a a eC and w ee.
n n



Countable cartesian product. 133

Let (M,C) and (N,D) be differential spaces. A mapping = M — » N is sa-
id to be smooth iff f*(@) :=a °© 6 C for every a e D.
If = M >N is smooth and Vv e TPM’ then the formula

(f,Pv)(a) =v(aof) for aebD

defines a vector f*pv tanget to N at T(p).

Now we prove the following lemma which will be usefull in thesequal.

Lemma 1. Let C be a differential structure on M generated bya set Cq and
p e M be an arbitrary point. Let wq: Cq — » R be a mapping satysfying the
following condition:
*) for arbitrary ay.---.a, S C0 and wee..- if u °(a|...ﬁ a ) = 0 then
n
«Ji¢'1(p).===an(p))wo (ai] = 0 .

Then there is unique vector w e T~M tangent to (M,C) at p such that

Proof. For an arbitrary function < e C we put

n
WGI = W@ e > ®
1=1
where a1 , a n e C0 and use n are smooth functions such that there
exists an open sset in LL U3 p and <pl|U = o "(ai n o D] [OR

From the condition (*) it is easy to see correctness of (3) and one can
verify that w: C — >R is a vector tangent to (M,C) at p such that w|Cq = w(q-

If w is another vector such that w|C o 0W then by (2 we have
n
we>) =~ *ujfajip)an P))* wtoc)) = w(

So the vector w is tinique.
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By a smooth vector field to (M,C) we mean every R-linear mapping

X: C —»C such that
X(a = g) = a = X/3) + X()* p for all a, peC.

The set KM) of all smooth vector fields tangent to (M,C) is a C-module.

Now let (M,C) be a differential space and $ be a mapping which assigns a
real space O(p) to ant point p e M. By a $-field on M we shall mean any
function W which assigns an element W(p) € 8 (p) to any pe M [4].

A C-module i of ~-fields on (M,C) is said to be a differential module of
dimension m if

(@ 3B is closed with respect to localization, i.e., B

() I has locallt a vector basis composed of m fields, i.e., if every
point p eM has a neighbourhood U € x» and there exist $|U-Fields

on U such that for every point p e U the sequence @®),---,WCp)
is a basis of the linear space $(p) and is a basis of - mo-
dule 35y

Every vector field X e KM) may be interpreted as $-field, 4 being the
function 4>() = T for pe M and X(P)(@) = X@)(P) for p e M and a € C.

We say that a differential space (M,C) has a differential dimension m if
C-module KM) 1is a differential module of dimension m [4].

Now for k 6 N let fi (M) be a C-module of all skew-symmetric C-k-linear
mappings of the form o : X(Mx. . xKM) — >C. The direct sum

fij() = e nk(M), where QOCM) := C, together with the canonical operations of
K£0
addition and exterior multiplication is a graded algebra over R. In the alge-

bra Q(M) there is the operation d of exterior derivation given by the
well-known global formula [5], [2]-

Now let T™:= [ ) T M be a disjoint union of tangent spaces to (M,C).
peM P

By TC we denote the differential structure on TM generated by the set
(¢« 1 :aeCyu {da : a€C, where Il : TM —>M is the canonical projec-

tion and da : TM — »R is the function defined by

da)v) = v(a) for aeC and v e TM
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For any k e N put

A = {(Vi vk)e TMx. ..xTM : IKV}) = n(viO}
and

TKC = (TCx. ..XTC)~.

We denote AK(M), k € N, the set of all smooth mappings v : TkM — >R such
that the mapping ®&T™x. ..xXT™M is skew-symmetric k-linear for each point

p e M. The direct sum AMM) = © AkM), where A°(M) = C, together with the
KEO
canonical operations of addition and multiplication 1is a graded algebra

over R. The mapping 1/ Ak o - >d((M), k e N, given by the formula
MMu) (X1, ..., Xk)(p) = TtXjip)- VP)) for " € Ak,

Xj.-----X» e KM), is a homomorphism of graded algebras. If a differential

space (M,C) has a constant dimension then h”™ is an isomorphism.

Definition 1. A differential space (M,C) is said to have the property (P)
if for any v e TM there is a smooth vector Tfield X e KM) such that
XAIQv) = v.

One can prove

Lemma 2. If a differential space (M,C) has the property (P) then I is a
monomorphism.
If we want to define an operator of exterior derivation in the algebra A(M)
we meet some difficulties [2]. Let m M) for k £ 1 be the set of all ele-
mments m e A (M) such that for each point p e M there exists an open

neighbourhood U of p and a finite family of smooth functions

a ,a. e C. for (G ,...,0. )>s I c Nk 1 such that

a. - ,
1< k-1 X1 k-1

U da. . - "da i to.Mda.

-_—
=
-
r
[N
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and

8 W © W M, where 3P M := {0> is a homogeneous ideal in the graded
K£0

algebra AWM).
One can prove [2]
Proposition 1. Let (M,C) be a differential space.

3DM = {0} then in the graded algebra A(M) there exists exactly
k+l M, ke N, satisfying the wellknown condition of

If the ideal
operator d: Ak(M) — »A

exterior derivation.

If o has a local form uL. = £ a. . eda -...*da. the
1 11" ,1k X k
daw] = E dat, ~da -..."da .
1 Vv k 1 \

The following diagram commutes

AKW) o o AK+1 (W)
n- ih-

nk (M) fik+1 (M)

By a covariant derivative in a C-module of ~-fields B [5] we shall mean

a function V : i(M) x © — »B which assigns to every X e i(M) and to every

WeB a 4>field AMW in such a way that AAW is a C-linear function of

the variable W and the following condition is fulfield:

Ax(@W) = X(@) =W + a = AXW for aeC. Xe3ftM), WeB ®
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2.  MAIN RESULTS

Let M,,C,) 16 N be a sequence of differential spaces. Let M =X M,
ieN 1

be the Cartesian product of the sets W, 1ieN. We denote by pry M — >Mj

for j e N the natural projection onto the j-th coordinate.

For any aeCj] and jeN let a : M- »R be the function given by

a =pri(a =a ° prj €D
*
Put C = (] pr (C,). Let C be the differential structure on M generated
° ieN

by the set Cqg. Then the differential space (M,C) is said to be the countable

Cartesian product of differential spaces (M*.C"), ieN.

It is easy bo observe that the.topology ly is Tichonov’s topology of the

topologies t_ , 1ieN.
L1

We put M(k) = Mj X. ..x M. . X Mjc+l *»ee Ffor Kk e N. For an arbitrary

p=(iYXieN€EM let pkk) = (pl pk-17 pk+1,"")” k e N- OFf course
p(k) e M(k). For an arbitrary q e M(k) let Jg: M — »M be the imbeding
defined by

Jg(s) = (gl qk-1,s,gk”“”*) for sen ®)

It is easy to verify the identities:

Prk © Jg = ldvE @
(pr™ « Jg)(s) = g» for any s e if i* k @)
It follows easilt from (7) and (@) that is a smooth mapping.

Now let w e TpM be a vector tangent to (M,C) at the point p =

Put
v.I = Pri*pw for ieN. (©))

So every vector w e TPM determines the vectors v. e TP_M=, ieN defined
i § o0

by (9). Conversely
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Proposition 2. If a sequence of vectors v/ € Tp W, ieN

then there exists unique vector w e TPM such that
vy = er_l*pw for ieN.
Proof. Let wq: Cq — >»R be the mapping given by

w (@ = v.(@ for a6 C., ieN. 0
o J J

* *

It is easily seen that pr~iCL) n prj(Cj) for i * j consists ofconst
function on M. Thus the formula (10) is correct. It remains to prove that wq
satisfies the condition (*) of Lemma 1. Withoutof loss of generality assume
that u -(al an) = 0, where u e en, a.i 6 C.i for i =1.2, ..,n. Consider

the vector v e TPM defined

v =J *» _V, +...+ “L,, Nv.
pcly#pi V1 plrd<pn
Of course v (@& (@ an™ ~ ~ence ky we ~ave
n
n ujnrtp) --.. ~(pb vlian) =o0.
i=l
Clearly v = =vifai® =wo*ai® for 1 + 1,2 n*
n *
Thus n “idjrtajIp)%n(?)) ‘wo(ai> =*nv”~ewLemma 1 there is unique

vector w e TpM such that cho = WO. Observe that w (al =w 0(aT = V. 1(a) for

for any ae C0 . Hence Vi :igri,*pw for 1 e N

Now we may prove

Proposition 3. The mapping K: TM —» X T M. defined by the formula
P ieN Pi

KWw) = (rj*.pv)  for w e T @)

is an isomorphism of 'LM and the direct product of TPAM_., ieN.
i

is an isomorphism of TPM and the direct product of Tlet, ieN.
i
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The proof is immediate.

Now for a vector w e TPM put

wi = Q@p(i) ° i 577 for 1 e N* a2
Of course w* e TpM for i e N and the vector satisfies the folowing
condition:

wi(aj) =0 for «j cCj and j * i @@
The vector is said to be the i-th component of the vector w.

Definition 2. A vector v e TpM 1is said to be parallel to @W.CN) if
v(a) =0 for any aeCj and j mk
Clearly the i-th component of a vector w e TpM is parallel to (M"CJ.

Lemma 3. The foloowing conditions are equivalent:
(i) we TpM is a vector parallet to (M*,CM)

(ii) the k-th component w” 1is equal to w
i) w6 Jplh*p{\ \ h
The proof is straightforward.
It is easy to see that the subspace Jp(k)*pk(Tpk M’k) of all vectors from

TPM paralel to (Mk ,Ck) is isomorphic to TPk Mk' The maping

J : Tk Mk — =T M is an isomorphism onto image.
p pk p p

Proposition 4. If v~ e TpM, i eN is a sequence of vectors paralel to
(IL.C™) respectively then there is unique vector w e T M which has the i-th

component wh = v for i e N

Proof. It followsk from Proposition 2 that for the sequence pr»,, veTp R

i e N there is unique vector we TpM such that

pri»Pw = pri*pvi f°r 1€ n°

Of course wt + ClpA} °pr~w = Jp@""tpr”n) =Vj for 16 N.
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This finishes the proof.

Now let w e T M be an arbitrary vector.

wee
n

From (@) and (13)

One can verify the

such that c:p,|U =w » (p_I
1

Let < e C be a smooth function.

There exists an open neighbourhood U of p and functions (€ ,...,L e Cop
1 n
I )lU_
it follows that wAip) = 0 for i € (ij in>.
identity
e pr*(CM. (€7D
k

w@© Y=w @ ) if 0
K

k

Thus by (@) we have

witp) =
k=1

So we may uniquely present the vector

In the sequal

the vector w

wr - {ip)

w as a formal sum of its components:

in Proposition 4 corresponding to a sequence

(vi)I€N of vectors parallel to (hL.CM) respectively we will denote by

Proposition 5.

of class C°°then
curve c: (- e, €)
Proof. Choose

class COO, for the

such that Rri*pw =

Let c: (- e € —

c(t) = (CiD))ieN for

If (IL.CL),

for an arbitrary vector

c > 0.

vector pr™» w there exists a smooth curve c™:

ieN is a sequence of differential manifolds

w s TM there exists a smooth

» M such that c - %W andJc(@) =p- O

0 as

is a differential manifold of

(- e,e)— » 1

Since M.I for ieN

Cixo 3s . and cl1 Q) = p~

»M be the smooth curve defined by

te(- e ©.
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Of course c(0) = (Pj)ieN = P- 11 is easy to see that PN.pW =
= Pri*p(c*o as o for 1 e N. From Proposition 2 it follows that

a

w=oc, =
*0 9s

Now, let Z € f(M) be an arbitrary vector field tangentto (M,C). We will

denote by zZ~ for i eN the vector fieldtangent to (M, C)given by

7 - oPr,).DzZ® for P eM @as)
vV pJ " Up( 1 P

One can prove the identities:
(@) = Z(a) for a € (16)
Z~a) =0 foraeCj if j* i/ an
So the vector field Z» is smooth. The vector field Z~ is called the i-th

component of Z.

Let <9 e C be a smooth function. For an arbitrary point p e M there

exist an open neighbourhood U and functions fL __....... 6 C, oe such
that ipJU = u @ )IJU. Then
1 n
ZE<PIU = Zi@) U +..1+ Z (>D)|U. 8)
1 n
The sequence @ () is locally finite. We may write Z as a formal sum of

its components: Z =\ Z». From (16) it follows that the components 27,
ieN

ieN are C-linearly independent.

Definition 3. A vector field Z e 2(M) is said to be parallel to i~"*")
if for every p e M the vector Z(p) is parallel to (M,CM).

In a similar way as Lemma 3 one can prove

Lemma 4. Let Z e T(M). The foloowing condition are equivalent:

() Z is parallel to (W, C)
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(i) Z () e JIpCi,.pkCTpfc Mk) for each p e M
(iii) zZ = zZk
(v) Z & =0 for any a e Cj if jwmk

We denote ba/ J,k(M) the set of all smooth vector fields tangent to (M,0)
which are parallel to (MAC”~. It is clear that *kM) is a C-submodule of

the C-module KM).

Lemma 5. If X. € 1.(M,i 6 N is a sequence of smooth vector Tfields
parallel to (M..CL) respectively then there exists unique vector field

Z e KM) such that 2zZn = for ieN.

Proof. Let Z e KM) be the vector field given by

Z(p) =y-—-X.(p) TFfor peM (¢1))

ieN

For any p e M and a e Ck we have the equality Z(p) (& = X~pHa).
Thus Z(a) = Xk(@)- So Z is smooth. It is clear thatZj(p) = X~p) for ieN

and p e M. Hence 2z = X0 for ieN.
In the sequal the vector field Z defined by (19) we will denote by

Proposition 6. The mapping L: KM) —> X J, (M) defined by
ieN

L(Z) = (@r 22 ) for Z e KM) 0)

is an isomorphism of the C-module KM) and the direct product of the C-modu-

les 1 (M), ieN.

Proof. It is clear that L is a homomorphism of C-modules. Let Z e S(M) be
a vector field such that L(Z) = 0. Then z» = 0 for 1ieN. In view of Lem-
ma5 Z =0. Thus ker L = {0>. By Lemma 5 the homomorphism L is "onto".

Therefore L is an isomorphism.
Now we will give some characterisation of a smooth vector field tangent to

M,C) parallel to (MACAH.
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Definition 4. Indexed set smooth vector field X% e Is

said to be smooth if the function w : M — »TMN given by

o(p) = Xptk)(pk) TFfor peM

is a smooth mapping of (M,C) into (TMA.TCM).
Let us observe that a smooth indexed set(X*)geM(k) ofsmooth vector
fields Xq e determines the smooth vector field X 6 parallel to

M~.CN) by the formula

X(P) = Ip(k)*pk (PK)(pk) fFor p €M- (@a))

Conversely if X € (Ml then there exist the smooth idenxed set
X"geM(k) sraooth vector fields tangent to defined by

Xq(s) = prk.p X(p) for g e MKk), se 22)

ig\ is such a point of M that p(k) = q and pk = s.

Proposition 7. A vector field X € T(M) is parallel to (M~AC” if and only
if there exists a smooth indexed set (Xq)qem(,l{) of smooth vector fields tan
gent to (M©, Cfo) such that

X(P) = Jp(£)*pk A pEM.

Moreover there is one-to-one correspondence betwen smooth vector Ffields
parallel to (M, ,C, ) and smooth indexed sets of smooth vector fields tangent

to (Mk>Ck).

Noww, let X e be an arbitrary smooth vector field tangent to
M,,C. ). Let X2 M —> () T M be the mapping given by
K K peM P
X =J X £ M. 23
® =0 p X Tor P @

It is easy to verify that X 1is a smooth vector field tangent to (M,C)
parallel to (, Cf). The corresponding indexed set &XT) J is constant,
i.e., Xq = for ant g 6 M(K).
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Lemma 6. If is a differential space of dimension n then the
C-module *s an n-dimensional differential module of Tf-fields, where
$P) = JpCi)y*pktipkdvk) for P 6 M-

Proof. The closeness of with respect to localization is evident.
Let p = be an arbitrary point of M. Let V € xQ be an open neigh-

k
bourhood of p ,such that there is on V a local vector basis W . W of the
_ n
Ck-module KMj?). Consider the vector fields V , defined by (23) on the
open set V = MAX...XMK_JXVXMk+jX. .. ,
We will show that the sequence W ,...,W o0s avector basis of theC-module

I CM). OF course for any g e V the mapping Jgq(k)*q < Tq Mk — * *(g) is an

isomoorphism. Since W n ) is a basis of the vector space T Mk
n ~k
the sequence W”q) = Jg(™*.qgk W ~ } iMg) =Jg”"~j~ VYV is a basis
of $(g)- It remains to show that for any Z e fM)the restriction Z|V may
- . - — - [¢]
be presented as a (%/——Ilnear combination ofW.I,....V¥1. Let (Z )seM(k) be the

smooth indexed set of smooth vector fields from SiM") corresponding to Z and

N M —>TW” be the smooth function given by Definition 4. Since *kW) is

n
a differential module of dimension n we may write Z |V = T for
1=1
s e M(k), where <g* e Cky for i =1,2,..
Put
B @ = for geV and i =1....n. (€Z))
Let W* - TV — >R be a smooth function defined by
WAFWjFx)) = S~ for x eV, i,Jj=1,...,n.
It is easy to see that < = o(01v) for i =1 n. Thus € Cy for
i=1,...,n. An easy computation shows that
in

zt’ > -
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NV (@W, (@) for qgeV .
Jj=1 J

n
Hence Z

J=1

From Lemma 6 and Proposition 6 it folows the following corollary.

Corollary 1. If (W,C) ieN is a sequence of differential spaces of
cpmstamt dofferential dimension then the the C-module KM) is isomorphism to
the direct product X X.(M) of differential modules.

ieN
Now using Definition we prove the following lemma.
Lemma 7. If (MW.CM), ieN is a sequence of differential spaces having

the property (P) then the Cartesian product (M,C) has the property (P)-

Proof. Let weTM be an arbitrary vector tangent to M, C) at

p = Consider the sequence of vectors Vv~ = pr™iw, ieN.

Of course V" e for ieN. Since (W,CM) has the property (P) there
is a vector field e X(W) such that v» = X~(p) for 1ieN. Thus

pri*pw = Xi(p) ieN. Hence ‘]p(i)s)epi ri“pw) = Jﬂ(i)*pxl'\ﬂgi) or equivalen-

tly by (12) and (23) we have

wr = Xj(p) for ieN.

Thus w = such a

smooth vector field tangent to (M,C) that

We have proved that (M,C) has the property (P).

From Lemma 7 and Lemma 2 it follows
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Corollary 2. If i 6 N is a sequence of differential spaces of
constant differential dimension then for the Cartesian product (M,C) the

homomorphism h~» Ak(M) ——>Qk0\/|) for k e N is a monomorphism.

Corollary 3. If (M.,™) i e N 1is a sequence of differential spaces of
constant differential dimension then in the graded algebra A(M) there exists
exactly one exterior derivation d: Akﬂvl) - =A k+%M), k e N satisfying fol-

lowing conditions:
is R-linear

d

(ii) d ya =da foraeC
d (@a g =dwa 7 + C-DDdeg“W A d) for w, 7 e A(M)
d

od =0.

Proof. From Corollary 2 it follows that ker h™ = {0}. In [2] one has pro-
ved that 3JUM) c ker t. Hence the ideal lili0) = {0}.
Proposition 1 now shows Corollary 3.

The following diagram commutes

AKQD — 7~ Ak+1 QM)

*m

nk M) — nk+1 (M)

Proposition 8. Let (NL.CM) for every i e N be a connected differential

manifold of class ¢ Then for an arbitrary function a e C if da = 0 then

a is a constant function.

Proof. Let a e C besuch a f}_lnction that da = O. Consjderthe mapping
J »defined by (). For any g e M(k) and k 6 N we have J (da) = O. Hgnce
d(an) = O_. SincekM, isa connected differential manifold of class C the
mapping J7ais constant for any q e M(k) and k 6 N. Thereforea € C is a

constant function.

Lemma 8. If V* is a covariant derivative in the C-module K(M) for i e N

then the mapping 7: KM) x KM) — » KM) given by
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v o= 7XYi  for X7 Y 6 T(M)
ieN

25)

is a covariant derivative in the C-module T(MM).

The proof is straightforward.

Proposition 9. If (Mk>Ck) is a parallelizable differential space then in
the C-module

CM) there exists a covariant derivative.

Proof. Let 1 Vk ~ be a global basis of the ~-module 3f().
According to the proof of Lemma 6 we conclude that the sequence Vk 1 ’Vk n
is a vector basis of the C-module ’ ’
It Is easy to check that the mapping Vk: T(M) x T(M) — >\ (M) defined by
the formula

°k
WY =) X(i)Yk.i  for X e M) and Tsy«) , ©6)
i-1
°k

is a covariant derivative.

From Lemma 8 and Proposition 9 it follows

Corollary 4. If (NL.CM) i g N is a sequence of parallelizable differen-

tial spaces then in the C-module 3C(M) there exists a covariant derivative.

Proof.

From Proposition 9 we conclude that for every k e N in the C-modu-
le

(M) there exists the covariant derivative defined by (26).

From Lemma 8
it follows that V: TQM) x fM) — » T(M) given by (26)

VY = \ WY.l for X, Y e f(M)
ieN

is a covariant derivative in the C-module T(M).
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Example. Let , 1 eN be a sequence of Lie groups. OFf course every
is parallelizable. From Corollary 4 we conclude that in the module KXG*)
ieN

there exists a covariant derivative.

Proposition 10. If (IL,CM), ieN is a sequence of compact differential
spaces of constant differential dimension then in the C-module KM) there

exist a covariant derivative.

Proof. In a view of Lemma 6 for any ieN the C-module T™™(M) is a diffe-
rential module over the compact differential space (M,C). Using smooth parti-
tion of unity [1] one can show in a standart way that there exists a cova-
riant derivative V1 in TKM) for 1ieN.By Lemma 8 there exists a covariant
derivative 7 in KM) defined by (25).

Now we make the following definitions

Definition 5. A vector field Z e parallel to (M*.CM) is said to be
projectile onto (M*.C") if there exists a smooth vector field X e such
that X = Z.

Denote by T~r(M) the subset of of all projectile vector fields
onto (M, .CM). It is easy to see that the map H: — »TEr(M) given by

HCX) = X for X € KM.) @nD

is an isomorphism of C~-module T(MY) and pr2iCrJ-module  Tkr(W).

Definition 6. A covariant derivative 7: 3f(M) x KM) — » KM) is said
to be projectile onto M*.C*) if for any X, Y e T (W) thevector Tfield
7-Y € 1Er(W).

It is easy to prove

Proposition 11. If 7 is a covariant derivative in KM) which is projec-

tile onto (HXleCk) then 7k: KM~) xx KM~ — » 3f(WY) defined by

7KY = H_1(7%Y) 8)

is a covariant derivative in C”™-module



Countable cartesian product. 149

Definition 7. A C-n-linear map A: JK(Mx. . xik(M) — » is said to
be projectile onto M ,C,) if for any X X e FM) the vector
field A(X1 Xr)6 fPr .

If A2 IKMx. . . xFAIM) — > Is a C-n-linear mapping projectile onto

then the mapping prk A): KMAIx. .. xXKMj™N) — » givenby
prk(A)(X,i, __ﬁ,x) = H_l(A(Xi n X )} for Xz X e KM) 9

is a tensor of type (n,1) on

Lemma 9. If (M*.CM) is a differential space ofconstant dimension then for
an arbitrary tensor p : KMAJIx. ..xKM™) — » type (>D there exists

unique C-n-linear mapping

i FKQDX...xFKQD — > *k (D

k ~
such that B is projectile onto and M = Pr (p)-
Proof. Let p: FfkMWx. .. xlk\) — > maPPinE g*ven by

P(z1 Zn)(P} = JIp(i)*pkHizPik) Zn (K)){Pk} G0)
for any z~,...,z~ e *k(M) and p e M
It is easy to see that p(Xj,--.,". X)) = piXj,-- .,Xn) TFor any Xj,...X 6 EWM).
If Vk j Vk is a local vector basis of the Ck~module then
g * Vk, nk is a local vector basis of the C-module I.k(MI. Oof
course ?(VkJa~" Vk>j ) = p(vkd ,...,Vk>j ) for any
Jj Jn € {1.._. 1"}. Thus p(ZJ----H ) defined by (30) is a smooth vector

sv K -
field. A trivial vertification shows that p isunique and p = pr (P-

Definition 8. A tensor x: IMx. .. xFQM — »TM) of type (n, 1)is said
to be strongly projectile if for any k 6 N and for any XJ Xn €
the vektor field A(Xj,---,X ) is projectile onto (j*,Cfo).

If x is a strongly projectile tensor of type (n.l) then the formula (29)
defines for an arbitrary k € N the tensor pr (A) of type (n,D.
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Proposition 12. Let (M~AC.) be for every 1ieN a differential space of
constant differential dimension. If is a sequence of tensors of type
®,1) on (M.,C.), i e N respectively then there is unique strongly projec-
tile tensor1}}: TMDX...xi(M) — >TM) of type (n,I) such that pri(A) =A
for ieN. Moreover the correspondance A > prI(A) between projectille
tensors of type (n,1) on (M,C) and sequences of tensors of type (h,1) M .C))

for i e N is one-to-one.

Proof. Let ILFfM) —>T.M fori e N be the projection of a smooth vector
field tangent to (M,C) onto its i-th component. Denotes by A*» for ieN the
C-n-linearmapping defined by (30).

Let A: TXx. . B3FM) —>T(M) be the mapping given by

a(zi v o w o) t3i)

for ZI Zn e T(M).
From Lemma 9 it follows that A is unique strongly projectile tensor of type

(M, 1) such that pr*(A) = A forieN.

Lemma 10. Let V be a covariant derivative in the C-module T(M) projectile

onto (MM.CN) for every k e N and satisfying the following condition
VXY = for X e T(Mk) and Y e k * 1 (€72)

Then the torsion tensor T and the curvature tensor R ofV are stron-
gly projectile. Moreover pr™(T) = and pr~*(R) = RMor k eN, where
and Rk are the torsion tensor and the curvature tensor of Vk defined by (28).

The proof is straighforward.

Corollary 5. If (M\r.CM), ieN is a sequence of parallelizable differen-
tial spaces then the covariant derivative V defined by (26) is projectile

onto (M*.C") for every k e N and the curvature tensor of V R =0.
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Proof. Any easy computation shows that V is projectile onto (M~,~) for
k 6 N and satisfies the condition (32). From Lemma 10 it follows that
k k
pr ® =R
for any k e N. From Proposition 12 it follows that R = O.

if
for k 6 N. OF course l% =0 for every ke N.Thus pr R) =0
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Streszczenie

W pracy badamy whkasnosci przestrzeni roézniczkowej (M,C), ktoéra jest
przeliczalnym produktem Kkartezjanskim przestrzeni rézniczkowych (MACH,
i e N, w sensie Sikorskiego. Przestrzen styczna do przeliczalnego produktu
kartezjanskiego przestrzeni roézniczkowych jest produktem prostym prestrzeni
stycznych do poszczegdlnych czynnikéw. Definiujemy i badamy C-moduk K(M)
gtadkich pél stycznych do (M,C) roéwnolegtych wzgledem (M~C”). Dowodzi sie,
ze C-modut KM)  gtadkich p6l wektorowych stycznych do (M,C) jest
izomorficzny z produktem prostym C-modutéw K(M), i e N. Omébwione sg whas-
nosci przeliczalnego produktu kartezjanskiego przestrzeni rézniczkowych
statego wymiaru roézniczkowego. Udowodniono, ze w tym przypadku istnieje w
algebrze z gradacjag AM) form punktowych dokdadnie jedna operacja
rézniczkowania zewnetrznego spedniajgca dobrze znane aksjomaty. Przedstawione
sg warunki dostateczne na istnienie koneksji w C-module KM). Jezeli (M, 0)
jest przeliczalnym produktem kartezjanskim zwartych przestrzeni rézniczkowych
statego wymiaru roézniczkowego to w C-module KM) istnieje koneksja liniowa.

Wprowadzone pojecia gtadkiego tensora typu (n,1), pola wektorowego i koneksji
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rzutowalnych na (M», ) pozwalajg bada¢ whasnosci koneksji i tensoréw na
(M, C) poprzez badanie wkasnosci ich rzutéw. W ten spos6b pokazano, ze tensor
krzywizny koneksji V w przeliczalnym produkcie kartezjanskim paraleryzowal-

nych przestrzeni rézniczkowych jest réwny O.

P e3bme

B HacTOHmeg paSoie HCCjienyBics. cBofioiBa jm$$epeHiiHaabHoro npo-
CTpaHCTBa M,C) , HBJIHBmeBCH CHieTHHM AeKapTOBLIM npOH3BeASHHeM
$epeHiiHajiBHMx npocipaHCTB b CMHCjie Chkopckoto -
11oKa3aHO, hto KacaiejitHoe npocTpaHCTBo cneiHoro AenapTOBa npoH3-
BefleHHH AH$(J)epeHUKajiBHtDc npoCTpaHCTB ecib npauoe npoH3BeAeHne Kar-
careJiBHhDc npocipaHCTB Kaayioro H3 coMHoacmejiea. OnpeAejraeTCH h hc-
cjieNyeTca C-MOAyJdib I. (m) rjiaAKnx BeKiopHbix nojreg aa (m,C) napan-
jJieJdiBHtK oTHocuTejibho n~.Cc™N) - jI,0Ka3aHOL eto C-Monyjib KM) r\naA-
KHX BeKTOpHLK nOJiefl Ha (M,C) H3OMOpE@E npHMOHy npOH3BeAeHHB C-MO-
Ayjiea ijtM), i e N. yCTaHaBjmBaBTCH ranne CBaftciBa AeKapiosa npoH3-
BeAeHHH AH$ipepeHiuiaJibHHX npocipaHCTB kohkhhoS AH6SNpepeHiyiaAbHOFI
pa3nepHocTH. jioKa3aHo TaKxe”™ hto b stom cjiyaae b rpaAynpoBaHHoa
ajireCpe A(M) noToneHHbDc AH$$epeHi;HajibHHX $opM. cymecTByei b toh-
hocth oAHa onepaiiHH BHemHoro AH<M>epeHunpoBaHHH, y”~OBjieTBopHBinaa.
XOpOfFfFIO H3B6CTHHM aKCHOMaM. I1lpeACTaBJieHtl AOCTaTOHHHe yCJIOBHH oy-
mecTBOBaHHH cbh3hocth b C-MOAyae KM) Ecjih (M,C) ecTb caeiHoe
AeKapTHOBO npOH3BeA6HHe KOMUaKTHHX AH~4iepeHUHajlbHHX npocipaHCTB
kohkhhoH AH$$epeHrmajibHoa pa3MepHOCTH, to b C-MOAyae FWMW" cyae-
CTByeT AHHegHaH CBH3HOCTb. BBeAeHH nOHHTHH TJiaAKOrO TeH30pa THlia
(n,i), (-BeKTopHoro noxa h CBH3HOCTH, npoeKTHpyeMnx Ha (m~rc.) ,
n03BOJIHBmHe HCCJieAOBaTb CBOfiCTBa CBH3HOCTH H TeH30pOB Ha M,C
nocpeACBOM HCCJieAOBaHHK cboKctb ex npoeKHHS. 3thm npaeMOM noica-
3aHO, HTO TeH30p KpHBH3HU CBH3HOCTH V |B CHSTHOU A6KapTOBOM HpOH3-
BeAeHHH napajiJiejiH3yeMtix AH$<JI>epeHn;HajibHHx npocipaHCTB paBeH O.



