Seria: MATEMATYKA-FIZYKA z. 67

Nr kol. 1115

Roman WITULA

ON THE CONVERGENCE OF SERIES OF THE FORM $\sum \min \; \{a_n, b_n\}$

Summary. Biler P. and Witkowski A. asked in [1] when the series of the form $\sum \min \{a_n, b_n\}$ is convergent, where $\{a_n\}$ and $\{b_n\}$ belong to the class d of all decreasing to zero sequences of positive reals such that $\sum a_n = \sum b_n = \infty$. In the paper, necessary and sufficient conditions for a fixed $\{a_n\} \in d$ are given in order that $\sum \min \{a_n, b_n\} < \infty$ for some $\{b_n\} \in d$. These conditions lead to large classes of concrete examples of sequences $\{a_n\} \in d$ such that the above property holds/does not hold.

Let d denote the class of all sequences $\{a_n\}$, $a_n>0$ such that $a_n \geq a_{n+1}$ for $n \in \mathbb{N}$, $a_n \to 0$ and the series $\sum a_n$ is divergent. In [1] (Problem 3.11), the following question is formulated: what can be said about convergence of the series $\sum \min\{a_n,b_n\}$, where $\{a_n\} \in d$? The answer given in [1] is that the series can be convergent, i.e. there exist $\{a_n\}$, $\{b_n\} \in d$ such that $\sum \min\{a_n,b_n\} < \infty$.

The aim of this note is to give more insight into this problem. Namely, we give necessary as well as sufficient conditions for a sequence $\{a_n\} \in d$ for which there exist a sequence $\{b_n\} \in d$ such that $\sum \min\{a_n,b_n\} < \infty$.

Theorem. Suppose that $\{a_n\} \in d$. If

$$\sum_{n \in \mathbb{N}} \min\{a_n, b_n\} < \omega \tag{1}$$

for some sequence $\{b_n^{}\}\in d,$ then the sequence $\{a_n^{}\}$ contains a subsequence $\{a_n^{}\}$ satisfying the conditions

(i)
$$\sum_{i \in N} (n_{2i} - n_{2i-1}) a_{n_{2i}} < \omega ;$$

$$(ii) \qquad \sum_{i \in \mathbb{N}} \sum_{\substack{n \geq n \leq n \\ 2i+1}} a_n < \infty ;$$

(iii)
$$\sum_{i \in \mathbb{N}} (n_{2i+1} - n_{2i}) a_{n_{2i}-1} = \infty .$$

Conversely, if $\{a_n\}$ contains a subsequence $\{a_n\}$ satisfying conditions (ii), (iii) and the following, stronger than (i), condition

(iv)
$$\sum_{n \in \mathbb{N}} (n_{2i} - n_{2i-1}) a_{n_{2i}-1} < \infty ,$$

then there exists a sequence $\{b_n\} \in d$ with the property (1).

In particular, if $\lim_n \sup a_{n-1}^{-1} a_n^{-1} < \infty$, then the set of conditions (i), (ii) and (iii) (or, equivalently, (ii), (iii) and (iv)) is sufficient and necessary for the existence of a sequence $\{b_n\} \in d$ such that (1) holds.

Proof. Assume that (i) holds for a certain sequence $\{b_n\} \in d$. Since $\{a_n\}$, $\{b_n\} \in d$, there exists an increasing sequence of positive integers $\{n_i\}$ such that

$$\min\{a_n,b_n\} = \begin{cases} a_n & \text{if} & n \in \mathbb{N}_{2i} \text{,} & i \in \mathbb{N} \text{,} \\ \\ b_n & \text{if} & n \in \mathbb{N}_{2i-1} \text{,} & i \in \mathbb{N} \text{,} \end{cases}$$

where $N_k = \{n \in \mathbb{N} : n_k \le n < n_{k+1} \}$ for $k \in \mathbb{N}$. Evidently,

$$\sum_{i \in N} \sum_{n \in N_{2i}} a_n < \infty \quad \text{and} \quad \sum_{i \in N} \sum_{i \in N_{2i-1}} b_n < \infty$$

Since $a_{n_{2i}} \le b_{n_{2i}} \le b_{n_{2i}}$ for $n < n_{2i}$ and $b_{n_{2i}} \le b_{n_{2i}} \le a_{n_{2i}} = a_{n_{2i}}$ for $n \ge n_{2i}$ we have

$$\sum_{i \in \mathbb{N}} (n_{2i} - n_{2i-1}) a_{n_{2i}} < \sum_{i \in \mathbb{N}} \sum_{i \in \mathbb{N}_{2i-1}} b_n < \omega$$

and

$$\sum_{i \in \mathbb{N}} (n_{2i+1} - n_{2i}) a_{n_{2i}-1} \ge \sum_{i \in \mathbb{N}} \sum_{i \in \mathbb{N}_{2i}} b_n = \infty .$$

Consequently, conditions (i)-(iii) are satisfied.

Suppose now that a subsequence $\{a_n^i\}$ of the sequence $\{a_n^i\}$ fulfills conditions (ii)-(iv). Put $b_n = a_{n_{2i}-1}$ for $n \in \mathbb{N}_{2i-1} \cup \mathbb{N}_{2i}$, $i \in \mathbb{N}$ and $b_n = a_1$ for $n \in \mathbb{N}$ such that $n < n_1$. Clearly, $b_n \geq b_{n+1}$ for $n \in \mathbb{N}$, $b_n \to 0$ and

$$\sum_{i \in N} \sum_{n \in N_{2i}} b_n = \sum_{i \in N} (n_{2i+1} - n_{2i}) a_{n_{2i}-1} = \omega ,$$

in view of (iii). Hence $\{b_n\} \in d$. It is easy to see that

$$\min \; \{a_n,b_n\} \; = \; \begin{cases} a_{n_2i^{-1}} & \text{for} \quad n \in \mathbb{N}_{2i-1} \;, \quad i \in \mathbb{N} \\ \\ a_n & \text{for} \quad n \in \mathbb{N}_{2i} \;, \quad i \in \mathbb{N} \end{cases}$$

and thus, by (i1) and (iv),

$$\sum_{n \ge n_1} \min\{a_n, b_n\} = \sum_{i \in N} (n_{2i} - n_{2i-1}) a_{n_{2i-1}} + \sum_{i \in N} \sum_{n \in N_{2i}} a_n < \infty ,$$

which completes the proof.

Corollary 1. For every {bn} ed we have

$$\sum \min\{n^{-1}, b_n\} = \infty . \tag{2}$$

Proof. Suppose that there is a sequence $\{b_n\} \in d$, for which (2) does not hold. Then, by (ii) and (iii), there exists an increasing sequence $\{n_i\} \in N$ such that

$$\sum_{i \in N} (n_{2i+1} - n_{2i}) n_{2i+1}^{-1} < \omega$$
 (3)

and

$$\sum_{i \in \mathbb{N}} (n_{2i+1} - n_{2i}) n_{2i}^{-1} = \omega$$
 (4)

or, equivalently,

$$\sum_{i \in \mathbb{N}} \varepsilon_i < \omega \tag{3'}$$

and

$$\sum_{i \in \mathbb{N}} \varepsilon_{i} (1 - \varepsilon_{i})^{-1} < \infty \tag{4'}$$

where $\varepsilon_i = (n_{2i+1} - n_{2i})n_{2i+1}^{-1}$ for $i \in \mathbb{N}$.

Hence $\epsilon_i \to 0$, in view of (3'). But this means that conditions (3'), (4') cannot hold at the same time. Contradiction. The proof is thus completed.

Given a > 0, let us now denote

$$a(\alpha,0) = \alpha;$$
 $a(\alpha,1) = a^{\alpha};$ $a(\alpha,k) = a^{a(\alpha,k-1)};$ $L_1x = \ln x \ (x > 0);$ $L_{b}(x) = \ln(L_{b-1}x) \ (x > e(0,k-1))$

for $\alpha \in \mathbb{R}$ and k = 2, 3, ...

Corollary 2. For arbitrary $k\in \mathbb{N}$ there exists a sequence $\{b_n\}\in d$ such that

$$\sum_{n>e(1,k)} \min \{f(n),b_n\} < \infty,$$

where
$$f(x) = x^{-1}(L_1x)^{-1}...(L_kx)^{-1}$$
 for $x > e(1,k)$.

Proof. Fix $k \in \mathbb{N}$. By theorem, it suffices to show that there exists an increasing sequence $\{n_i\}$ of positive integers satisfying the conditions:

(I)
$$\sum_{i \in \mathbb{N}} (n_{2i} - n_{2i-1}) f(n_{2i}) < \infty$$
;

(II)
$$\sum_{i \in \mathbb{N}} \sum_{n_{2i} \le n < n_{2i+1}} f(n) < \infty$$
;

(III)
$$\sum_{i \in \mathbb{N}} (n_{2i+1} - n_{2i}) f(n_{2i}) = \infty$$
.

Let $\{\mathbf{m}_{\underline{\mathbf{1}}}\}$ be an arbitrary increasing sequence of positive integers such that

$$2(m_{1},k) > e(1,k);$$
 $m_{i+1} - m_{i} \ge 2$ for $i \in N$;

and

$$\sum_{i \in \mathbb{N}} m_i^{-1} < \infty. \tag{5}$$

Define

$$n_{2i-1} = \begin{cases} 2(m_{j}^{2}, k) & \text{if } i = 2j-1, \\ \\ 2((m_{j}+1)^{2}, k) & \text{if } i = 2j, \end{cases}$$

and

$$n_{2i} = \begin{cases} 1 + n_{2i-1} & \text{if } i = 2j-1, \\ \\ n_{2i+1} - 1 & \text{if } i = 2j. \end{cases}$$

For the above sequence $\{n_i^{}\}$ we have

$$\begin{split} & \sum_{\mathbf{i} \in \mathbb{N}} (n_{2\mathbf{i}} - n_{2\mathbf{i} - 1}) f(n_{2\mathbf{i}}) \leq \sum_{\mathbf{i} \in \mathbb{N}} 1 n^{-1} n_{2\mathbf{i}} = \\ & = \sum_{\mathbf{j} \in \mathbb{N}} \{1 n^{-1} [2(m_{\mathbf{j}}^2, k) + 1] + 1 n^{-1} [2(m_{\mathbf{j} + 1}^2, k) - 1]\} \\ & \leq \sum_{\mathbf{j} \in \mathbb{N}} [m_{\mathbf{j}}^{-2} 1 n^{-1} 2 + (m_{\mathbf{j} + 1}^2 1 n 2 - 1)^{-1}] < \infty \ , \end{split}$$

i.e. condition (I) is fulfilled.

Before checking condition (III) notice that the following inequalities can be obtained by induction with respect to k:

$$2(\alpha+1,k) \ge [2(\alpha,k)]^2 \ge 4 \cdot 2(\alpha,k)$$

for $\alpha \ge 1$ and $k \in \mathbb{N} \setminus \{1\}$. Therefore

$$\sum_{i \in \mathbb{N}} (n_{2i+1} - n_{2i}) f(n_{2i}) =$$

$$= \sum_{j \in \mathbb{N}} [2((m_j+1)^2, k) - 2(m_j^2, k) - 1] f(2(m_j^2, k) + 1) \ge$$

$$\ge \sum_{j \in \mathbb{N}} 2(m_j^2 + 2m_j, k) [2(m_j^2, k) + 1]^{-1} 1 n^{-k} [2(m_j^2, k) + 1]$$

$$\geq \sum_{\mathbf{j} \in \mathbb{N}} 2(m_{\mathbf{j}}^2 + 2m_{\mathbf{j}}^{-1}, \mathbf{k}) \cdot 2(m_{\mathbf{j}}^2 + 2m_{\mathbf{j}}^{-1}, \mathbf{k}) \cdot [2(m_{\mathbf{j}}^2, \mathbf{k}) + 1]^{-1} [2(m_{\mathbf{j}}^2, \mathbf{k} - 1) \ln 3]^{-\mathbf{k}} = \infty.$$

This means that condition (III) is satisfied.

Now notice that

$$\sum_{i \in N} \sum_{n_{2i} \le n < n_{2i+1}}^{r_{1}} f(n) \le \sum_{i \in N} \int_{p_{i}}^{r_{i}} f(x) dx$$

$$\le \sum_{i \in N} \int_{R}^{r_{i}} x^{-1} (L_{1}x)^{-1} \dots (L_{k}x)^{-1} dx = \sum_{i \in N} \ln[(L_{k}r_{i}) \cdot (L_{k}^{-1}p_{i})],$$

where $p_i = n_{2i}-1$ and $r_i = n_{2i+1}-1$. On the other hand,

$$L_k(r_i+1) \cdot (L_k p_i)^{-1} = L_k 2((m_j+1)^2, k) \cdot (L_k 2(m_j^2, k))^{-1} = 1 + \gamma_j/m_j$$

for i = 2j-1, and

$$L_{k}(r_{i}+1) \cdot (L_{k}p_{i})^{-1} = L_{k}2(m_{j}^{2},k) \cdot (L_{k}(2(m_{j}^{2},k)-2)^{-1} = 1 + \delta_{j}/m_{j}^{2}$$

for i=2j-2, where $\{\gamma_j\}$ and $\{\delta_j\}$ are certain bounded sequences of positive reals. By (5) the above relations imply that

$$\sum_{i \in \mathbb{N}} \ln[(L_k r_i) \cdot (L_k p_i)^{-1}] < \omega ,$$

i.e. condition (II) holds.

The proof of Corollary 2 is thus completed.

Let us notice that Corollaries 1 and 2 deliver many concrete examples of sequences related to the question of p. Biler and A. Witkowski. Corollary 1 shows in particular, that the sequences of the form $\{n^{-1}\}$ does not satisfy

(1) for any $\{b_n\} \in d$. On the other hand, Corollary 2 gives a large class sequences $\{a_n\} \in d$ such that (1) holds for some $\{b_n\} \in d$. In a very special cases, we see that the sequences $\{a_n\}$ of the form

$$\left\{\frac{1}{n \cdot \ln(n)}\right\}, \quad \left\{\frac{1}{n \cdot \ln(n) \cdot \ln(\ln(n))}\right\}, \dots$$

belong to this class.

REFERENCE

[1] Biler Piotr, Witkowski Alfred: Zadania z gwiazdką z analizy, t. 2, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław 1986.

O ZBIEŻNOŚCI SZEREGÓW POSTACI $\sum \min\{a_n, b_n\}$.

Streszczenie

Biler P. i Witkowski A. stawiają w [1] problem zbieżności szeregów postaci $\sum\min\{a_n,b_n\}$, gdzie $\{a_n\}$ i $\{b_n\}$ należą do klasy d ciągów malejących do zera liczb dodatnich, dla których $\sum a_n=\sum b_n=\omega.$ W niniejszej pracy podajemy dla ustalonego ciągu $\{a_n\}\in d$ warunki konieczne i wystarczające na to, by $\min\{a_n,b_n\}<\omega$ dla pewnego $\{b_n\}\in d.$ Warunki te prowadzą do szerokich klas konkretnych przykładów ciągów $\{a_n\}\in d,$ odpowiednio mających powyższą własność i nie mających jej.

О СХОДИМОСТИ РЯДОВ ВИНА

Резюме

Биллер П. и Витковски А. спращивают в 1 о сходимости рядов вида $\sum \min \{a_n, b_n\}$ где $\{a_n\}$ and $\{b_n\}$ принадлежат классу d убивающихся последовательностей положительных чисел, таких что $\sum a_n = \sum b_n = \infty$. В следующей работе представлены необходимые и достаточные условия для фиксированной последовательности $\{a_n\}$ на то, что $\sum \min \{a_n, b_n\}$ для некоторой последовательности $\{b_n\}$ \in d. Эти условия определяют широкие классы примеров последовательностей $\{a_n\}$ \in d, таких что свойство имеет место не имеет места.