DEDICATED TO PROFESSOR MIECZYSLAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Piotr ANTOSIK

Józef BURZYK

A THEOREM ON CONTINUOUS CONVERGENCE

In this note we prove the following
Theorem. Assume that X is a topological group, $\left\{x_{n}\right\}$ is a sequence in X. f_{n} for $n \in N$ and f are functionals on X. If the following conditions hold:
$1^{0}\left|f_{n}(x+y)\right| \leqslant\left|f_{n}(x)\right|+\left|f_{n}(y)\right|$ for $n \in N$ and $x, y \in x_{\text {: }}$
$2^{0}{ }^{\circ}$ for $n \in N$ are continuous functionals;
$3^{\circ} f$ is continuous:
$4^{0} f(0)=0$;
$5^{0} f_{n}(x) \rightarrow f(x)$ for every $x \in x$
and
6^{0} for each subsequence $\left\{u_{n}\right\}$ of $\left\{x_{n}\right\}$ there is a subsequence $\left\{v_{n}\right\}$ of $\left\{u_{n}\right\}$ and $v \in X$ such that

$$
\sum_{n=1}^{\infty} v_{n}=v_{0}
$$

then

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=0
$$

In particular. if x is a complete metric group. f_{n} and f are continuous quasi-norms on $x, f_{n}(x) \rightarrow f(x)$ for $x \in x$ and $x_{n} \rightarrow 0$ in x, then, $f_{n}\left(x_{n}\right) \rightarrow 0$. Assume that \tilde{f} is a pointwise bounded family of semi-- norms on a Banach space $x, p_{n} \in \mathscr{F}$ for $n \in N$ and $u_{n} \rightarrow 0$ in x. Let $\left\{\alpha_{n}\right\}$ be a scalar sequence such that $\alpha_{n} \rightarrow \infty$ and $\alpha_{n} u_{n} \rightarrow 0$. We note that $p_{n}\left(u_{n}\right)=\alpha_{n}^{-1} p_{n}\left(\alpha_{n} u_{n}\right)$ for $n \in N$. Assuming in the theorem $f_{n}=\alpha_{n}^{-1} p_{n}$, $f=0$ and $x_{n}=\alpha_{n} u_{n}$ for $n \in N$ we see that $f_{n}\left(x_{n}\right) \rightarrow 0$ or equivalently, $p_{n}\left(u_{n}\right) \rightarrow 0$. In other words, pointwise bounded families of semi-norms on Banach spaces are equicontinuous.

The proof of the theorem presented in this note is based on some proparties of convergence of sequences in a topological group. This remark allow us to formulate a generalization of the theorem and the result in [1] which is given for convergence groups satisfying special conditions FLUSH. Other proof of the theorem based on topological properties in given in [2].

Lemma 1. If $a_{m n}$ for $m_{\text {a }}, n$ are nonnegative numbers such that $a_{m n} \rightarrow a_{n}$ as $m \rightarrow \infty$ for $n \in N$ and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then for every positive number \mathcal{E} there exists a subsequence $\left\{p_{n}\right\}$ of $\{n\}$ such that for every subsequence $\left\{q_{n}\right\}$ of $\left\{p_{n}\right\}$ we have

$$
\sum_{n=1}^{m-1} a_{a_{m} a_{n}}<\varepsilon
$$

for $m \in N$.
Proof. Since $a_{n} \rightarrow 0$, there exists subsequence $\left\{a_{m}\right\}$ of $\left\{\theta_{n}\right\}$ such that

$$
\sum_{n=1}^{\infty} a_{n}<\varepsilon
$$

To avoid subscript e we assume that $m_{n}=n$ for $n \in N$.
Then we have

$$
\sum_{n=1}^{\infty} a_{n}<\varepsilon .
$$

Assume $p_{1}=1$. Since $a_{m p_{1}} \rightarrow a_{p_{1}}$ as $m \rightarrow \infty$ and $a_{p_{1}}<\varepsilon$, there exists an index p_{2} such that $a_{p_{2} p_{1}}<E$. Since $a_{m p_{1}}+a_{m p_{2}} \rightarrow a_{p_{1}}+a_{p_{2}}$ and ${ }^{a_{p_{1}}}+{ }_{a_{p_{2}}}<\mathcal{E}$, there exists an index p_{3} such that $p_{2}<p_{3}$ and

$$
a_{p_{3} p_{1}}+a_{p_{3} p_{2}}<\varepsilon
$$

By Induction we select a subsequence $\left\{p_{n}\right\}$ of $\{n\}$ such that

$$
a_{p_{n} p_{1}}+\ldots+a_{p_{n} p_{n-1}}<\varepsilon
$$

for $n \in N$. Hence the lemma follows.

Lemma 2. If X is a topological group, f is a continuous functional on x and $x_{n} \rightarrow 0$, then for every positive \mathcal{E} there exists subsequence
$\left\{p_{n}\right\}$ of $\{n\}$ such that for every subsequence $\left\{q_{n}\right\}$ of $\left\{p_{n}\right\}$ and for every finite subset M of N we have

$$
\left|f\left(\sum_{n \in M} x_{a_{n}}\right)-f(0)\right|<\varepsilon .
$$

Proof. Assume that

$$
u=\{x:|f(x)-f(0)|<\varepsilon\} .
$$

Since $f\left(x_{n}\right)-f(0) \rightarrow 0$, there exists an index p_{1} such that $x_{p_{1}} \in U$. Since $f\left(x_{p_{1}}+x_{n}\right) \rightarrow f\left(x_{p_{1}}\right), f\left(x_{n}\right) \rightarrow 0$ and $\left|f\left(x_{p_{1}}\right)-f(0)\right|<\varepsilon$, there is an index p_{2} such that $p_{1}<p_{2},\left|f\left(x_{p_{2}}\right)-f(0)\right|<E$ and $\left|f\left(x_{p_{1}}+x_{p_{2}}\right)-f(0)\right|<\varepsilon$. Consequently, $x_{p_{1}} \cdot x_{p_{2}} \cdot x_{p_{1}}+x_{p_{2}} \in U$. By induction, we select a subsequence $\left\{p_{n}\right\}$ of $\{n\}$, such that

$$
\sum_{n \in M} x_{p_{n}} \in u
$$

for every finite subset M of N. This implies that for every subsequence $\left\{a_{n}\right\}$ of $\left\{p_{n}\right\}$ and for every finite subset M of N we have

$$
\sum_{n \in M} x_{a_{n}} \in u
$$

or. equivalently.

$$
\left|f\left(\frac{\sum_{n \in M}}{} x_{a_{n}}\right)-f(0)\right|<\varepsilon
$$

which was to be proved.
Lemma 3. Assume that x is a topological group for for $n \in N$ are continuous functionals on x and $x_{n} \rightarrow 0$ in x. Then there exists a subsequence $\left\{p_{n}\right\}$ of $\{n\}$ such that for every subsequence $\left\{q_{n}\right\}$ of $\left\{p_{n}\right\}$, for every $n \in N$ and for every finite subset M of N we have

$$
\left|f_{q_{n}}\left(\sum_{k \in M} x_{q_{n+k}}\right)-f_{q_{n}}(0)\right|<1 / n
$$

Proof. By Lem wa 2 there exists a subsequence $\left\{\right.$ min $\left.^{n}\right\}$ of $\{n\}$ such that ${ }^{m} 11-1$ and

$$
\left|f_{m_{11}}\left(\sum_{k \in M} x_{m_{1 k}}\right)-f_{m_{1}}(0)\right|<1
$$

whenever M is a finite set of positive integers and min $M>1$. Again, by Lemma 2 there exists a subsequence $\left\{a_{2 n}\right\}$ of $\left\{\mathrm{m}_{1 n}\right\}$ such that $m_{21}{ }^{\text {mm }} 12$ and

$$
\left|f_{m_{21}}\left(\sum_{k \in M} x_{m_{2 k}}\right)-f_{m_{21}}(0)\right|<1 / 2
$$

whenever M is a finite subset of N and $m i n M>1$. By induction we select a sequence of sequences $\left\{\operatorname{m}_{1 n}\right\}$ such that for every $i \in N\left\{m_{1+1, n}\right\}$ is a subsequence of $\left\{m_{1 n}\right\}$. $m_{i+1,1}=m_{12}$ and

$$
\begin{equation*}
\left|f_{m_{i 1}}\left(\sum_{k \in M} x_{m_{i k}}\right)-f_{m_{i 1}}(0)\right|<1 / 1 \tag{0}
\end{equation*}
$$

whenever M is a finite subset of N and min $M>1$. We put $p_{1}=m_{11}$ for, $\mathcal{L} \in N$. Let $\left\{q_{1}\right\}$ be a subsequence of $\left\{p_{1}\right\}$. Assume that $q_{i}=p_{r_{1}}$ for $i \in N$ where $\left\{r_{i}\right\}$ is a subsequence of $\{i\}$. We note that for every $i \in N,\left\{q_{i+k}\right\}$ is a subsequence of $\left\{m_{r_{1}}\right\}$ with $a_{i+k}>a_{r_{i}} 1$ for $k \in N$. Hence, by (0), we get

$$
\left|f_{q_{i}}\left(\sum_{k \in M} x_{q_{i+k}}\right)-f_{q_{i}}(0)\right|<1 / i
$$

for $I \in N$ and every finite subset M of N. Replacing in the last inequality i by n we get the lea.

Proof of the Theorem. At first we note that $1 f 6^{\circ}$ holds, then $x_{n} \rightarrow 0$ and $-x_{n} \rightarrow 0$. Let $\left\{\mathrm{m}_{1}\right\}$ be a subsequence of $\{i\}$ and let \mathcal{E} be positive number. In view of conditions $6^{\circ}, 3^{\circ}$ and 4° and Lemma 2 there is a subsequence $\left\{p_{i}\right\}$ of $\left\{m_{1}\right\}$ such that for every subsequence $\left\{n_{i}\right\}$ of $\left\{p_{1}\right\}$ we have

$$
\begin{equation*}
\left|f\left(-\sum_{k=1}^{j} x_{n_{k}}\right)\right|<\varepsilon / 3 \text { and }\left|f\left(\sum_{k=1}^{j} x_{n_{k}}\right)\right|<\varepsilon / 3 \text { for } \quad j \in N_{\text {. }} \tag{1}
\end{equation*}
$$

Frow $6^{\circ}, 1^{\circ}, 5^{\circ}$ and (1) it follows that there is a subsequence $\left\{q_{1}\right\}$ of $\left\{p_{i}\right\}$ such that for every subsequence $\left\{n_{1}\right\}$ of $\left\{q_{1}\right\}$ we have

$$
\begin{equation*}
\left|f_{n_{1}}\left(-\sum_{k=1}^{1-1} x_{n_{k}}\right)\right|<\varepsilon / 3 \quad \text { for } \quad i \in N \text {. } \tag{2}
\end{equation*}
$$

By 2°. 6° and Lemme 3, there exists a subsequence $\left\{r_{i}\right\}$ of $\left\{q_{1}\right\}$ such that for every subsequence $\left\{n_{1}\right\}$ of $\left\{r_{1}\right\}$ we have

$$
\begin{equation*}
\left|f_{n_{i}}\left(-\sum_{k=1+1}^{j} x_{n_{k}}\right)-f_{n_{i}}(0)\right|<\varepsilon / 3 \quad \text { for } \quad i, j \in N \text {. } \tag{3}
\end{equation*}
$$

And finally, by 6°. there 18 a subsequence $\left\{n_{1}\right\}$ of $\left\{r_{1}\right\}$ and $x \in x$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty} x_{n j}=x \tag{4}
\end{equation*}
$$

Thus we may assume that $\left\{n_{1}\right\}$ is subsequence of $\left\{m_{i}\right\}$ such that (1). (2). (3) and (4) hold. From (4) we get

$$
x_{n_{1}}=x-\sum_{j=1}^{1-1} x_{n_{j}}-\sum_{j=1+1}^{\infty} x_{n_{j}}
$$

for $1 \in N$. Hence, by 1°, we can write

$$
\left|f_{n_{1}}\left(x_{n_{1}}\right)\right| \leqslant\left|f_{n_{1}}(x)\right|+\left|f_{n_{1}}\left(-\sum_{j=1}^{1-1} x_{n_{j}}\right)\right|+\mid f_{n_{1}}\left(\left(-\sum_{j=1+1}^{\infty} x_{n_{j}}\right)-f_{n_{1}}(0)\left|+\left|f_{n_{1}}(0)\right|\right.\right.
$$

for 1 EN. Hence, by 5°. (2) and (3) we get

$$
\lim _{i \rightarrow \infty} \sup \left|f_{n_{1}}\left(x_{n_{1}}\right)\right| \leqslant|f(x)|+2 \varepsilon / 3 .
$$

From (4) and the second part of (1) we get $|f(x)|<E / 3$. Consequently, we can write

$$
\begin{equation*}
\lim _{1 \rightarrow \infty} \sup \left|f_{n_{1}}\left(x_{n_{1}}\right)\right|<\varepsilon . \tag{6}
\end{equation*}
$$

In this way we have shown that every subsequence $\left\{f_{n_{1}}\left(x_{n_{1}}\right)\right\}$ and for every $\mathcal{E}>0$, there 18 a subsequence $\left\{f_{n_{1}}\left(x_{n_{1}}\right)\right\}$ of $\left\{f_{m_{1}}\left(x_{n_{1}}\right)\right\}^{1} \operatorname{such}^{i}$ that (6) holds or, equivalently

$$
\lim _{1 \rightarrow \infty} f_{i}\left(x_{i}\right)=0
$$

which was to be proved.

REFERENCES

[1] Antosik, P.. Swartz, Ch.: Matrix Methods in Analysis, Lecture Notes in Mathematics, Springer-Verlag, V. 1113, 1985.
[2] Burzyk, J.: On K-sequences: Czechoslovak Math. (to appear).

