ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

Seria MATEMATYKA-FIZYKA z. 64

DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 70TH BIRTHDAY

Piotr ANTOSIK Józef BURZYK

A THEOREM ON CONTINUOUS CONVERGENCE

```
In this note we prove the following
```

Theorem. Assume that X is a topological group, $\{x_n\}$ is a sequence in X, f_n for $n \in N$ and f are functionals on X. If the following conditions hold:

$$|f_n(x+y)| \leq |f_n(x)| + |f_n(y)|$$
 for $n \in \mathbb{N}$ and $x, y \in X$:

 2° f, for n \in N are continuous functionals;

3⁰ f is continuous;

 $4^{0} f(o) = 0;$

 $5^{\circ} f_{n}(x) \rightarrow f(x)$ for every x $\in X$

and

 5° for each subsequence $\{u_n\}$ of $\{x_n\}$ there is a subsequence $\{v_n\}$ of $\{u_n\}$ and $v \in X$ such that

$$\sum_{n=1}^{\infty} v_n = v_n$$

then

 $\lim_{n\to\infty}f_n(x_n)=0$

In particular, if X is a complete metric group, f_n and f are continuous quasi-norms on X, $f_n(x) \rightarrow f(x)$ for $x \in x$ and $x_n \rightarrow 0$ in X, then $f_n(x_n) \rightarrow 0$. Assume that \mathcal{F} is a pointwise bounded family of semi--norms on a Banach space X, $p_n \in \mathcal{F}$ for $n \in \mathbb{N}$ and $u_n \rightarrow 0$ in X. Let $\{\alpha_n\}$ be a scalar sequence such that $\alpha_n \rightarrow \infty$ and $\alpha_n u_n \rightarrow 0$. We note that $p_n(u_n) = \alpha_n^{-1} p_n(\alpha_n u_n)$ for $n \in \mathbb{N}$. Assuming in the theorem $f_n = \alpha_n^{-1} p_n$. f=0 and $x_n = \alpha_n u_n$ for $n \in \mathbb{N}$ we see that $f_n(x_n) \rightarrow 0$ or, equivalently, $p_n(u_n) \rightarrow 0$. In other words, pointwise bounded families of semi-norms on Banach spaces are equicontinuous.

1990

Nr kol. 1070

The proof of the theorem presented in this note is based on some properties of convergence of sequences in a topological group. This remark allow us to formulate a generalization of the theorem and the result in [1] which is given for convergence groups satisfying special conditions FLUSH. Other proof of the theorem based on topological properties in given in [2].

Lemma 1. If a_{mn} for m, n are nonnegative numbers such that $a_{mn} \rightarrow a_n$ as $m \rightarrow \infty$ for n $\in \mathbb{N}$ and $a_n \rightarrow 0$ as $n \rightarrow \infty$, then for every positive number & there exists a subsequence $\{p_n\}$ of $\{n\}$ such that for every subsequence $\{q_n\}$ of $\{p_n\}$ we have

$$\sum_{n=1}^{m-1} a_{q_m q_n} < \varepsilon$$

for m C N.

<u>Proof.</u> Since $a_n \rightarrow 0$, there exists a subsequence $\{a_n\}$ of $\{a_n\}$ such that

$$\sum_{n=1}^{\infty} a_m < 8$$

To avoid subscripts we assume that $m_n = n$ for $n \in \mathbb{N}$. Then we have

$$\sum_{n=1}^{\infty} a_n < \delta.$$

Assume $p_1=1$. Since $a_{mp_1} \rightarrow a_{p_1}$ as $m \rightarrow \infty$ and $a_{p_1} < \delta$, there exists an index p_2 such that $a_{p_2p_1} < \delta$. Since $a_{mp_1} + a_{mp_2} \rightarrow a_{p_1} + a_{p_2}$ and $a_{p_1} + a_{p_2} \rightarrow a_{p_1} + a_{p_2}$ and $a_{p_1} + a_{p_2} < \delta$, there exists an index p_3 such that $p_2 < p_3$ and

$$p_{3\bar{p}_{1}} + a_{p_{3}p_{2}} < \delta$$
.

By induction we select a subsequence $\{p_n\}$ of $\{n\}$ such that

$$a_{p_n p_1} + \dots + a_{p_n p_{n-1}} < 8$$

for $n \in N$. Hence the lemma follows.

Lemma 2. If X is a topological group, f is a continuous functional on X and $x_n \rightarrow 0$, then for every positive & there exists a subsequence

22

A theorem on continuous convergence

 $\left\{p_n\right\}$ of $\left\{n\right\}$ such that for every subsequence $\left\{q_n\right\}$ of $\left\{p_n\right\}$ and for every finite subset M of N we have

$$\left|f\left(\sum_{n\in M} x_{q_n}\right) - f(o)\right| < \varepsilon.$$

Proof. Assume that

$$U = \{x : |f(x) - f(o)| < \delta\}.$$

Since $f(x_n)-f(o) \rightarrow 0$, there exists an index p_1 such that $x_{p_1} \in U$. Since $f(x_{p_1} + x_n) \rightarrow f(x_{p_1})$, $f(x_n) \rightarrow 0$ and $|f(x_{p_1}) - f(o)| < \delta$, there is an index p_2 such that $p_1 < p_2$, $|f(x_{p_2}) - f(o)| < \delta$ and $|f(x_{p_1} + x_{p_1}) - f(o)| < \delta$. Consequently, $x_{p_1}, x_{p_2}, x_{p_1} + x_{p_2} \in U$. By induction, we select a subsequence $\{p_n\}$ of $\{n\}$, such that

for every finite subset M of N. This implies that for every subsequence $\{q_n\}$ of $\{P_n\}$ and for every finite subset M of N we have

or, equivalently,

$$\left|f\left(\sum_{n\in M}^{n} x_{q_n}\right) - f(0)\right| < \varepsilon$$

which was to be proved.

Lemme 3. Assume that X is a topological group f_n for $n \in N$ are continuous functionals on X and $x_n \rightarrow 0$ in X. Then there exists a subsequence $\{p_n\}$ of $\{n\}$ such that for every subsequence $\{q_n\}$ of $\{p_n\}$, for every $n \in N$ and for every finite subset M of N we have

$$|f_{q_n}(\sum_{k \in M} x_{q_{n+k}}) - f_{q_n}(0)| < 1/n.$$

<u>Proof</u>. By Lemma 2 there exists a subsequence $\{m_{ln}\}$ of $\{n\}$ such that $m_{l1} = 1$ and

$$|f_{m_{11}}(\sum_{k \in M} x_{m_{1k}}) - f_{m_{1}}(0)| < 1$$

whenever M is a finite set of positive integers and min $M \ge 1$. Again, by Lemma 2 there exists a subsequence $\{m_{2n}\}$ of $\{m_{1n}\}$ such that $m_{21}=m_{12}$ and

$$f_{m_{21}}(\sum_{k \in M} x_{m_{2k}}) - f_{m_{21}}(0) | < 1/2$$

whenever M is a finite subset of N and min M > 1. By induction we select a sequence of sequences $\{m_{in}\}$ such that for every $i \in N$ $\{m_{i+1,n}\}$ is a subsequence of $\{m_{in}\}$, $m_{i+1,1}=m_{i2}$ and

$$|f_{m_{1}}(\sum_{k\in M} x_{m_{1}k}) - f_{m_{1}}(0)| < 1/1$$
 (0)

whenever M is a finite subset of N and min M>1. We put $p_i = m_{i1}$ for i \in N. Let $\{q_i\}$ be a subsequence of $\{p_i\}$. Assume that $q_i = p_{r_i}$ for i \in N where $\{r_i\}$ is a subsequence of $\{i\}$. We note that for every i \in N, $\{q_{i+k}\}$ is a subsequence of $\{m_{r_i,k}\}$ with $q_{i+k} > m_{r_i}$ for k \in N. Hence, by (O), we get

 $|f_{q_{i}}(\sum_{k \in M} x_{q_{i+k}}) - f_{q_{i}}(0)| < 1/i$

1

for i $\in N$ and every finite subset M of N. Replacing in the last inequality i by n we get the lemma.

<u>Proof of the Theorem</u>. At first we note that if 6° holds, then $x_n \rightarrow 0$ and $-x_n \rightarrow 0$. Let $\{m_i\}$ be a subsequence of $\{i\}$ and let & be a positive number. In view of conditions 6° , 3° and 4° and Lemma 2 there is a subsequence $\{p_i\}$ of $\{m_i\}$ such that for every subsequence $\{n_i\}$ of $\{p_i\}$ we have

$$\left|f\left(-\sum_{k=1}^{j} x_{n_{k}}\right)\right| \leq \varepsilon/3 \quad \text{and} \quad \left|f\left(\sum_{k=1}^{j} x_{n_{k}}\right)\right| \leq \varepsilon/3 \quad \text{for } j \in \mathbb{N}.$$
 (1)

From 6°, 1°, 5° and (1) it follows that there is a subsequence $\{q_i\}$ of $\{p_i\}$ such that for every subsequence $\{n_i\}$ of $\{q_i\}$ we have

$$|f_{n_1}(-\sum_{k=1}^{n_1} x_{n_k})| < \delta/3$$
 for 16N. (2)

By 2°, 6° and Lemma 3, there exists a subsequence $\{r_i\}$ of $\{q_i\}$ such that for every subsequence $\{n_i\}$ of $\{r_i\}$ we have

$$|f_{n_{1}}(-\sum_{k=i+1} x_{n_{k}}) - f_{n_{1}}(0)| \le \delta/3 \text{ for } i, j \in \mathbb{N}.$$
 (3)

A theorem on continuous convergence

And finally, by 6°, there is a subsequence $\{n_i\}$ of $\{r_i\}$ and $x \in X$ such that

$$\sum_{j=1}^{\infty} x_{nj} = x$$
(4)

Thus we may assume that $\{n_i\}$ is a subsequence of $\{m_i\}$ such that (1), (2), (3) and (4) hold. From (4) we get

$$x_{n_{i}} = x - \sum_{j=1}^{i-1} x_{n_{j}} - \sum_{j=i+1}^{\infty} x_{n_{j}}$$

for i E N. Hence, by 1°, we can write

$$|f_{n_{1}}(x_{n_{1}})| \leq |f_{n_{1}}(x)| + |f_{n_{1}}(-\sum_{j=1}^{1-1} x_{n_{j}})| + |f_{n_{1}}((-\sum_{j=i+1}^{\infty} x_{n_{j}}) - f_{n_{1}}(0)| + |f_{n_{1}}(0)|$$

for 1 6 N. Hence, by 5°, (2) and (3) we get

$$\limsup_{i \to \infty} |f_{n_i}(x_{n_i})| \leq |f(x)| + 2\ell/3.$$

From (4) and the second part of (1) we get $|f(x)| < \mathcal{E}/3$. Consequently, we can write

$$\lim_{i \to \infty} \sup |f_{n_i}(x_{n_i})| < \varepsilon.$$
(6)

In this way we have shown that every subsequence $\{f_{m}(x_{m})\}$ and for every $\varepsilon > 0$, there is a subsequence $\{f_{n_{1}}(x_{n_{1}})\}$ of $\{f_{m_{1}}(x_{m})\}^{i}$ such that (6) holds or, equivalently

$$\lim_{i\to\infty} f_i(x_i) = 0$$

which was to be proved.

REFERENCES

- Antosik, P., Swartz, Ch.: Matrix Methods in Analysis, Lecture Notes in Mathematics, Springer-Verlag, V. 1113, 1985.
- 2] Burzyk, J.: On K-sequences: Czechoslovak Math. (to appear).