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A THEOREM ON CONTINUOUS CONVERGENCE

In this note we prove the following
Theorem. Assume that X is a topological group, {xn} is a sequence in 

X, f for n e N  and f are functionals on X. If the following conditions 
hold:

1° |fn Cx+y)| ^  |fn Cx )| + Ifn (y)I for n e N  and x,y 6 Xt 

2° fn for n e N  are continuous functionals;

3° f is continuous;

4° f(o) * 0;

5° fn (x) — f i x )  for every x e X 

and

6° for each subsequence {up} of {xn} there is a subsequence {vn} of
{un} and v e x  such that

z
n»l

V ,

then

lim f„(x„) » 0 
n - ~  n n

In particular, if X is a complete metric group, f and f are con
tinuous quasi-norms on X, fn (x)— *-f(x) for x e x snd *n ~̂ - 0 ir> x > 
then ( f (x ) —► 0. Assullle that f  is a pointwise bounded family of semi- 
-norms on a Banach space X, pn 6 !T for n e N  and un — »-0 in X.

Let { * n} be a scalar sequence such that and ctnun~*’0* We note
that p_(u_) =* ¿C'S.Coc.u ) for n e N .  Assuming in the theoremn n n ' n n n ° n n rn
f»0 and xn = <*nun for n e N  we see that f (xn )-*-0 or • equivalently, 

p^ (un ) — 0. In other words, pointwise bounded families of semi-norms on 
Banach spaces are equicontinuous.
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The proof of the theorem presented in this note is bssed on some pro
perties of convergence of sequences in a topological group. This remark 
allow us to formulate a generalization of the theorem and the result in 
[V] which is given for convergence groups satisfying special conditions 
FLUSH. Other proof of the theorem based on topological properties in 
given in [ 2] .

Lemma 1. If ann for m, n are nonnegative numbers such that ann_*‘an
as m-»-oo for n 6 N and an ->- 0 as n , then for every positive
number 6 there exists a subsequence {pn} of {n} 3uch that for every

subsequence {qn} of {pn} v*e hsve /

m-1
V  a <  6
¿ i  qs,qn

for m 6 N.

Proof. Since an'_>‘0 » there exists s subsequence {aB} of {an} such that

2  a» t i  ° n»l

<  £

To avoid subscripts we assume that n.=n for n 6 N.n
Then we have

S  * n < * .
n«l

Assume Pi“!- Since arop— *■ ap as ■-*-08 end ap there exists an

index p0 such that. a„ „ < 6 .  Since a„„ + am„ — a„ + a„ and 
2 “ P2P1 P1 p2 P1 p2

a ♦ a_ <  6, there exists an index p7 such that p„ <  pT and
P1 p2 * o

_ ♦ a„ „ <  £ .
p3 1 P3P2

By induction we select a subsequence {pn} of {n} such that

ap p, .......  !p p , <  &KnKl KnKn-l

for n e N. Hence the lentaa follows.

Lemma 2 . If X is a topological group, f is a continuous functional 
on X and xn -»-0, then for every positive 6 there exists a subsequence



{ P n} of { n } such thBt for every subsequence |qn} of {pn} and for every 
finite subset M of N we have

I* < X  *n ) -  f(o)l <  & -
n&M qn 

Proof. Assume that

U  - {x : )f (x) - f (o)j <  £} .

Since f(xn )-f(o)->-0, there exists an index p1 such that xp e U .

Since f (x +x )-»-f(x ), f(x )-*-0 and | f (x )-f(o)|^ &, there is ann n p^
index p_ such that p.< p„, |f(x )—fCo)!-^ & and |f(x +x )-f(o)| <  6.

¿  i c. p 2 1 2
Consequently, x ,x ,x +x £ U  . By induction, we select a subsequence 

P1 p2 P1 2
{ p n} of ln }' such that

n£M pn

for every finite subset M of N. This implies that for every subsequence 
{qn} of {Pn} and for every finite subset M of N we have

E x .  e U  
neM "n

or, equivalently,

i f t y 1. x ) - fcoi <  &
neM %

which was to be proved.

Lemma 3. Assume that X is a topological group fn for n e N  are con
tinuous functionals pn X and xn->0 in X. Then there exists a subsequence 

{PrJ in } such that for every subsequence {qn} of { P n} • f°r svery n £N 
and for every finite subset M of N we have

A theorem on continuous convergence_________________________________________ 23

|f ( X I  * > -  f q (0)| < l / n .
keM qn*k %

Proof. By Lemma 2 there exists a subsequence {»ln} of { n } such that 

■ 1 and
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whenever M is a finite set of positive integers and rain M >1. Again, by 

Lemna 2 there exists a subsequence {®2n} °f {"in) 9Uch that ®2l'm 12 ant*

|f„ (2_i *. ) - f. (0)1 < 1/2 
21 keM 2k 21

whenever M is a finite subset of N and rain M > 1 .  By induction we select 
a sequence of sequences {"in) such that for every i £ N  n} is a

subsequence of {"in) » "i+i l“"i2 and

|f„ ( 2 H  ) - f. (0)| <  1/i (0)

whenever M is a finite subset of N and rain M >  1. We put for 1EN.
Let {qA} be a subsequence of {pj}. Assume that P^'P,- f°r i £ N  where

{r i s  a subsequence of {i}. We note that for every i £ N ,  {qi+k} ie 
a subsequence of {rar } with Pi+(t>  ®r i for k £N. Hence, by (o), we 
get i,k 1

lf (2 H  x„ ) -  f (0)1 <  1 /i
' k?M '’i+k 1i '

for i £ N  and every finite subset M of N. Replacing in the last inequa
lity 1 by n we get the lenna.

Proof of the Theorera. At first we note that if 6° holds, then xn~rO 
and -xn-*-0. Let { m ^  be a subsequence of {i} and let 6 be a positive 
number. In view of conditions 6°, 3° and 4° and Lemma 2 there is a sub
sequence {Pj} of { m ^  such that for every subsequence { n ^  of { p ^  we 
have

i  3
|f(-^> | xn ) | <  6/3 and 1f Q  ' xn )| <  6/3 for ] & N. (l)

k-1 k k.l k

From 6°, 1°, 5° and (l) it follows that there is a subsequence { q ^  of 
•[p^} such that for every subsequence {n^} of {q^} we have 

i-1
for i € N. (2)

1 k-1 k

By 2°, 6° and Lemma 3, there exists a subsequence {rjJ of { q ^  such that
for every subsequence {hjJ of { fj} we have

1

f_ (- y  I Xn ) - f (0)|<6/3 for i.J £ N. (3)
nl k-i+1 nk nl
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And finally, by 6°, there is a subsequence {nj} of {r±} and x e x  such
that

£  Xnj ■ x <*>
J-l

I

Thus we may assume that { n ^  is a subsequence of such that (l), (2),
(3) and (4 ) hold. From (4 ) we get

i- 1 OO
K - X - S  X - Xn, Z  1 n Z. 1 n

1 J-l J J-i+1 J

for i 6 N. Hence, by 1°, we can write

|fn Cxn ’I *  I V M  *
1 1  1 1 j-l J 1 J — 1+ 1 3 1 1

for i 6 N. Hence, by 5°, (2) and (3 ) we get

lim sup If (x )| <  |f (x ) | + 26/3, 
i-»<*> 1 ni ni

From (4 ) and the second part of (l) we get |f(x)| <  6/3.
Consequently, we can write

lim sup |f (x )j <  6, (6)
i_*-oo ni ni

In this way we have shown that every subsequence {fn (x^ )} and for every 
£ > 0 ,  there is a subsequence {fn (xn )} of{fn (*,)} ^such1 that (6) holds 
or, equivalently 1 1 1 1

l i m  f, (x,) » 0 
i-»oo 1

which was to be proved.

REFERENCES

fll Antosik, P.,Swartz, Ch.: Matrix Methods in Analysis, Lecture Notes in 
Mathematics, Springer-Verlag, V. 1113, 1985.

[2] Burzyk, 0.: On K-sequences: Czechoslovak Math, ( t o appear).


