DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

János ACZÉL
Marek KUCZMA

ON TWO RELATED TYPES OF FUNCTIONAL
EQUATIONS DESCRIBING MEAN VALUE PROPERTIES

1. Introduction. The classical mean value theore of the differential calculus states that for every differentiable function fon realinterval I and for all pairs $x_{1} \neq x_{2}$ in I there exista an $\eta\left(x_{1}, x_{2}\right)$ between x_{1} and x_{2} auch that

$$
\begin{equation*}
\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}=f^{\prime}\left[\eta\left(x_{1}, x_{2}\right)\right] \tag{1}
\end{equation*}
$$

that 18, the tangent at $\eta\left(x_{1}, x_{2}\right)$ is parallel to the atraight line connecting the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$. D. Pompeiu (1946; cf., among others. Stamate 1959) observed the following counterpart. If $0 \& I$. then there exists also a $\xi\left(x_{1}, x_{2}\right)$ between x_{1} and x_{2} such that

$$
\begin{equation*}
\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{x_{1}-x_{2}}-f\left[\zeta\left(x_{1}, x_{2}\right)\right]-\zeta\left(x_{1}, x_{2}\right) f^{\prime}\left[\zeta\left(x_{1} \cdot x_{2}\right]\right. \tag{2}
\end{equation*}
$$

The geonetric meaning of this ie thet the tangent ot $\zeta\left(x_{1}, x_{2}\right)$ intersects on the $y-a x i s$ the streight 1 ine connecting the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$. For quadratic functions (parabolas)

$$
\eta\left(x_{1} \cdot x_{2}\right)=\frac{x_{1}+x_{2}}{2}, \quad \zeta\left(x_{1} \cdot x_{2}\right)=\left(x_{1} x_{2}\right)^{1 / 2}
$$

Equations (1) and (2) can be generalized into functional equations with two unknown functions

$$
\begin{equation*}
\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}=\varphi\left[\eta\left(x_{1}, x_{2}\right)\right] \quad\left(x_{1} \not x_{2}\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{x_{1}-x_{2}}-p\left[\zeta\left(x_{1}, x_{2}\right)\right] \quad\left(x_{1} \notin x_{2}\right) \tag{4}
\end{equation*}
$$

respectively. For (3) in the case $\eta\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) / 2$, see e.g. Haruki 1979. Aczél 1985. (Actually, there $\eta\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$, which gives equivalent equation on R, but in the present paper we intend to deal with local situstions, considering. for instance, (3) on intervals, and for these $\eta\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) / 2$ is more suitable). For (4) and its special cases, in particular the case $\zeta\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) / 2$, see e.g. Stamate 1959, Choczewski-Kuczma 1962. We refer the reader to these four papers also for the history of the subject.

Note that (2) need not be valid when $O \in] x_{1} \cdot x_{2}[$ (its is not valid, for instance, for quadratic functions, as may easily be seen from the geometric interpretation). But the generelization (4) makes perfect sense in this case too (and also when f is not supposed to be differentiable). In the peresent paper we deal with equations (3) and (4) on real intervals of positive length (proper real intervals for short) in the case when η and ζ are the arithmetic, geometric or harmonic mean. We deteraine the general real valued solutions of (3) and (4) in these cases. We touch also on the problem of solving (4) (with $\left.\zeta\left(x_{1}, x_{2}\right)=x_{1}+x_{2}\right)$ on fields. The results are stated in the next section; the details of the proofs will be published elsewhere, but we aake here some informal comments on them and give new proof of one of the results.

The result on (4) can be generalized from arithmetic means to quasierithmetic means:

$$
\begin{equation*}
\xi\left(x_{1} \cdot x_{2}\right)=F^{-1}\left(\frac{F\left(x_{1}\right)+F\left(x_{2}\right)}{2}\right) \tag{5}
\end{equation*}
$$

if F is defined ut 0 . The geometric and harmonic meane, however, are quasiarithmetic means with $F(x)=\log x$ or $F(x)=1 / x$, respectively. which are not defined at 0 . That is why we have to treat them separately.

Our examples of arithmetic, geometric and harmonic means are not so arbitrary as they may seem. The arithmetic mean averages the sum under which R is a group with 0 as neutral element. The geometric mean averages the product under which $\mathbf{R}_{+}=\left\{x \in \mathbf{R}^{\prime} x>0\right\}$ forms group with 1 as neutral element (and $0 \notin \mathbf{R}_{+}$is an annihilator). Finally, the harmonic mean averages the operation $1 /((1 / x)+(1 / y))$. for which 0 is again an annihilator in a sense and under which \mathbf{R}_{+}forme a semigroup without neutral element (∞ would be a neutral element, if included). Of course, the arithmetic, geometric and harmonic means are also the most often used mean values.
2. Results. We start with a general result on fields.

Proposition 1. Let F be a commutative field of characteristic different from 2 and 3 . The general solution of

$$
\begin{equation*}
\frac{x f(y)-y f(x)}{x-y}=\varphi(x+y) \quad(x, y \in F, \quad x \neq y) \tag{6}
\end{equation*}
$$

18 given by

$$
\begin{equation*}
f(x)=\alpha x+\beta, \quad \varphi(x)=\beta \quad(x \in F) \tag{7}
\end{equation*}
$$

where α and β are arbitrary constants in F.
The condition about the characteriatic cannot be dropped, as the following examples in Z_{2}, and Z_{3} (fields of integers modulo 2 or 3) show. They satisfy (6), but are not of the form (7) (φ is not constant):

$$
f(x)=\left\{\begin{array}{ll}
1 & (x=0) \\
0 & (x=1)
\end{array}, \quad \varphi(x)=\left\{\begin{array}{ll}
0 & (x=0) \\
1 & (x=1)
\end{array} \quad \text { on } \quad z_{2}\right.\right.
$$

and

$$
f(x)=\left\{\begin{array}{ll}
1 & (x=0,2) \\
2 & (x=1)
\end{array}, \quad \varphi(x)=\left\{\begin{array}{ll}
0 & (x=0) \\
1 & (x=1,2)
\end{array} \quad \text { on } \quad z_{3}\right.\right.
$$

Now we pass to the case of real intervals.
Theoree 2. Let I be a proper real interval. The general real valued solution of

$$
\begin{equation*}
\frac{x f(y)-y f(x)}{x-y}=\varphi\left(\frac{x+y}{2}\right) \quad(x, y \in I, x \neq y) \tag{8}
\end{equation*}
$$

is given by

$$
\begin{equation*}
f(x)=\alpha x+\beta \quad(x \in I), \quad \varphi(t)=\beta \quad(t \in \text { int } I) . \tag{9}
\end{equation*}
$$

where α and β are arbitrary real constants. (int I is the interior of I).

The proof of Proposition 1 and of Theorea 2 when $0 \in I$ (and of Proposition 4 below) consists of substitutions which are quite easy (if one knows what to substitute). Complications arise when $0 \notin I$ in Theorem 2.

Using a nice interaction between (3) and (4) (cf. the next section) one can deduce from the $0 \notin I$ case of Theorem 2 the following.

Corollary 3. Let I be a proper interval of positive numbers. The general real valued solution of

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y}=\varphi\left(\frac{2 x y}{x+y}\right) \quad\left(x, y \in I \subset R_{+}, x \not y\right) \tag{10}
\end{equation*}
$$

is given by

$$
\begin{equation*}
f(x)=\alpha+\beta x \quad(x \in I), \varphi(t)=\beta \quad(t \in \text { int } I) \tag{11}
\end{equation*}
$$

($\alpha, \beta \in \mathrm{R}$ arbitrary constants).
If $0 \in I$, then the argunent used to prove Theoren 2 (with only slight modification) may be applied to treat equation (4) for quasiarithmetic meane (5), where F is a continuous, strictly monotonic function, that is. the equation

$$
\begin{equation*}
\frac{x f(y)-y f(x)}{x-y}=\varphi\left(F^{-1}\left(\frac{F(x)+F(y)}{2}\right)\right) \quad(x, y \in I, x \not y) . \tag{12}
\end{equation*}
$$

In this way we arrive at the following result.
Proposition 4. Let I be a proper real interval containing 0 and F a continuous and strictly monotonic real valued function on I. Then the general solution of (12) is given by (9) where and β are arbitrary real constants.

While Proposition 4 applies, for instance, to the root-aean-powers with positive exponents

$$
\begin{equation*}
\zeta\left(x_{1} \cdot x_{2}\right)=\left(\frac{x_{1}^{p}+x_{2}^{p}}{2}\right)^{1 / p}(p>0) \tag{13}
\end{equation*}
$$

$\left(F(x)=x^{p}, I=[0, b]\right.$ or $[0, b[0<b \leqslant \infty ;$ or, extending (13) by taking (5) with $F(x)=|x|^{P_{s g n}} x, I$ can also be $[a, b]$. $[a, b[0] a, b]$,]a,b[with $-\infty \leq a \leqslant 0 \leqslant b \leqslant \infty, a, b)$. the disadvantage of Proposition 4 1s that the eupposition that F is defined at 0 still severely restricts the quasiarithmetic means (5) to which it applies. In particular. it does not apply to the two quasiarithmetic means "most popular" after the arithmetic mean: the geometric mean and the harmonic mean

$$
\zeta\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{1 / 2} \quad \text { and } \quad \zeta\left(x_{1}, x_{2}\right)=\frac{2 x_{1} x_{2}}{x_{1}+x_{2}}
$$

for which $F(x)=\log x$ and $F(x)=1 / x$ (or their affine transforme), respectively. And indeed, in these cases equation (12) does have solutions different from (9) (cf. Corollaries 6 and 8 below).

Equation (3) with $\eta\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) / 2$ has been solved for $x_{1}, x_{2} \in R\left(x_{1} \not x_{2}\right)$ - and oven for arbitrary (comnutative) fiolds of characteristic different fron 2 - in Aczél 1985. By modifying the proof given there, we can solve the same equation on arbitrary real intervals, and also equation (3) with $\eta\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{1 / 2}$. In this way we get the following results.

Theorem 5. Let I CR be a proper interval. Then the general real valued solution of

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y}=\varphi\left(\frac{x+y}{2}\right) \quad(x, y \in I, x \neq y) \tag{14}
\end{equation*}
$$

is given by

$$
f(x)=\alpha x^{2}+\beta x+\gamma \quad(x \in I) \ldots \quad \varphi(t)=2 \alpha t+\beta \quad(t \in \text { int } I),(15)
$$

where α, β, γ are arbitrary real constants.
Corollary 6. Let I be proper interval of positive numbers. The general real valued solution of the equation

$$
\begin{equation*}
\frac{x f(y)-y f(x)}{x-y}=\varphi\left(\frac{2 x y}{x+y}\right) \quad\left(x, y \in I \subset \mathbb{R}_{+}, \quad x \neq y\right) \tag{16}
\end{equation*}
$$

is given by

$$
f(x)=\alpha \frac{1}{x}+\beta+\gamma x \quad(x \in I) . \quad \varphi(t)=2 \alpha \frac{1}{t}+\beta \quad(t \in \text { int } I)(17)
$$

($\alpha, \beta, \gamma \in R$ arbitrary constants).
Theorem 7. Let I be a proper interval of positive numbers. The generail real valued solution of the equation

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y}=\varphi\left((x y)^{1 / 2}\right) \quad\left(x, y \in I \subset \mathbf{R}_{+}, \quad x \neq y\right) \tag{18}
\end{equation*}
$$

is given by

$$
\begin{equation*}
f(x)=o \frac{1}{x}+\beta+\gamma^{\psi} x(x \in I), \quad \varphi(t)=\gamma-\frac{\alpha}{t^{2}}(t \in \operatorname{Int} I) \tag{19}
\end{equation*}
$$

where α, β, γ are arbitrary real constants.
Corollary 8. Let I be e proper interval of positive numbers. The general real valued solution of the equation

$$
\begin{equation*}
\frac{x f(y)-y f(x)}{x-y}=\varphi\left((x y)^{1 / 2}\right)\left(x, y \in I \subset \mathbf{R}_{+}, \quad x \neq y\right) \tag{20}
\end{equation*}
$$

18 given by

$$
\begin{equation*}
f(x)=\alpha x^{2}+\beta x+\gamma \quad(x \in I), \quad \rho(t)=\gamma-\alpha t^{2} \quad(t \in \text { int } I) \tag{21}
\end{equation*}
$$

($\alpha, \beta, \gamma \in \mathbf{R}$ arbitrary constants).

Corollaries 6 and 8 are obtained from Theorens 5 and 7, respectively, by virtue of the duality between (3) and (4) (cf. the next section).

Corollaries 3 and 6 (but not Theorem 7 nor Corollary 8) remain valid if instead of interval $I \subset \mathbf{R}_{+}$we take interval $I \subset R_{-}=\left\{x \in R_{:}: x<0\right\}$. We could permit $x=0$ or $y=0$ in (16) and (20) (that is, to take $0 \in I \subset \bar{R}_{+}=\{x \in R: x \geqslant 0\}$). That would give only $f(0)=\varphi(0)$, and indeed, (17) or (21) for $x \in I \backslash\{0\}$ with $f(0)=\rho(0)=\delta$ (arbitrary) actually satisfies (16) or (20). respectively, on the whole interval I containing 0 .

Finally, note that in Corsllary 3 . Theorems 5 and $7 \varphi(t)=f^{\prime}(t)$, while in Theorem 2, Proposition 4, Corollaries 6 and $日 \varphi(t)=f(t)$ -- t $f^{\prime}(t)$. in accordance with (1) and (2).
3. About the proofs. As it was said already in the Introduction, detailed proofs of the results listed in the preceding section will be published elsewhere. They are all - more or less - based on similar ideas and are - sometimes essential - modifications of the argument used in Aczél 1985 to solve equation (14) on R. Roughly speaking, this method consiats in preacribing the values of the unknown functions at certain points (without loss of generality) and in deriving from the equation which we consider another equation containing only one unknown function φ. This equation is then solved, and once φ is known, f can be determined from the original aquation. (Cf. also our reaark after Theorem 2).

As an example we give belaw an alternative, direct proof of Corollary 8 (without appealing to Theorea 7). Then Theoren 7 can be obtained from Corollary 8 using the mice interaction between (3) and (4)" mentioned earlier in this paper. To explain this "nice interaction" we will call equations (3) and (4) dual whenever one of $\eta\left(x_{1}, x_{2}\right)$ and $\zeta\left(x_{1}, x_{2}\right)$ is the arithmetic mean and the other is the harmonic mean, or when both are the
geometric mean. Let I be proper real interval such that $O \& I$, and let f, φ be real valued functions on I. Write $\hat{I}=I^{-1}=\left\{t=\frac{1}{x}: x \in I\right\}$. and define functions $\hat{f}, \hat{\varphi}$ on \hat{I} by

$$
\begin{equation*}
\hat{f}(t)=t f(1 / t) . \quad \hat{\varphi}(t)=\varphi(1 / t) \quad(t \in \hat{I}) . \tag{22}
\end{equation*}
$$

Then f, φ satisfy one of the equations (8), (10), (14), (16), (18), (20) for $x, y \in I, x \neq y, i f$ and only if the functions $\hat{f}, \hat{\varphi}$ satisfy for $x, y \in \hat{I}$, $x \not y$, the duel equation. Thus formulas (11), (17) and (21) result from (9). (15) and (29), respectively, according to relation (22).

Observe that the operation \wedge is an involution; we have

$$
\hat{\hat{I}}=I, \quad \hat{\hat{f}}=f, \quad \hat{\hat{\rho}}=\varphi .
$$

In other words, the transformation (22) is ite own inverse.

And now we pegs to the announced direct

Proof of Corollary 8. Straightforward substitution shows that for arbitrary $\alpha, \beta, \gamma \in R$ the functions (21) satisfy equation (20). To prove the converse observe that, since I 18 proper (of positive length), there exists a c in its interior. But, if f and ρ satisfy (20) then, with $\tilde{x}=x / c, \tilde{y}=y / c$ and $\tilde{f}(t)=f(c t), \tilde{\varphi}(t)=\varphi(c t)$ we get

$$
\begin{aligned}
\frac{\tilde{x} \tilde{f}(\tilde{y})-\tilde{y} \tilde{f}(\tilde{x})}{\tilde{x}-\tilde{y}}=\varphi\left((\tilde{x} \tilde{y})^{1 / 2}\right) \text { for all } & \tilde{x}, \tilde{y} \in \tilde{I}=\frac{1}{c} I= \\
& =\left\{\tilde{x}-\frac{x}{c}: x \in I\right\} \quad(\tilde{x} \neq \tilde{y}) .
\end{aligned}
$$

This equation 18 of the same form (20). but now \tilde{I} contains 1 in its interior. So without loss of generality we may assume in the sequel that $1 \in$ int I (since $x \rightarrow c x, t \rightarrow c t$ does not change the form of (21), the result is unchanged). Thus there exists a $b>1$ such that $]^{-2}, b^{2}[C I$.

Now take arbitrary $u, v \in] b^{-1}, b[, u \neq 1, v, u \not v$, and put in (20) in turn $x=u v, y=u / v ; x=u v, y=v / u ; x=u / v, y=v / u$ (in all these cases $x, y \in] b^{-2}, b^{2}[$. This yields

$$
\begin{align*}
& v^{2} f\left(\frac{u}{v}\right)-f(u v)=\varphi(u)\left(v^{2}-1\right) \tag{23}\\
& u^{2} f\left(\frac{v}{u}\right)-f(u v)-\varphi(v)\left(u^{2}-1\right) \tag{24}\\
& u^{2} f\left(\frac{v}{u}\right)-v^{2} f\left(\frac{u}{v}\right)=\varphi(1)\left(u^{2}-v^{2}\right) \tag{25}
\end{align*}
$$

Subtracting (23) from (24) and comparing the resulting equation with (25) gives

$$
\begin{equation*}
p(v)\left(u^{2}-1\right)-p(u)\left(v^{2}-1\right)-p(1)\left[\left(u^{2}-1\right)-\left(v^{2}-1\right)\right] \tag{26}
\end{equation*}
$$

This 18 valid for all $u, v \in] b^{-1}, b[(f o r \quad u=1$ or $v=1$ or $u=v$ equation (26) is trivially fulfilled). Fixing a $\left.v_{0} \in\right] b^{-1}, b\left[v_{0}, 1\right.$, and writing t instead of u, we get with or $\quad\left[p(1)-\varphi\left(v_{0}\right)\right] /\left(v_{0}-1\right)$. $\gamma=\varphi(1)+\alpha$

$$
\begin{equation*}
\varphi(t)=\gamma^{2}-a t^{2}(t \in] b^{-1}, b[) \tag{27}
\end{equation*}
$$

With

$$
\begin{equation*}
\beta=f(1)-\alpha-\gamma \tag{28}
\end{equation*}
$$

we obtain from (20) and (27), on setting $y=1$,

$$
\begin{equation*}
f(x)=\alpha x^{2}+\beta x+\gamma \quad(x \in] b^{-2} \cdot b^{2}[) \tag{29}
\end{equation*}
$$

(really for $x \in] b^{-2}, b^{2}[\backslash\{1\}$. but for $x=1$ (29) results from (28)). Putting this back into (20) we see that

$$
\begin{equation*}
\varphi(t)=\gamma-\alpha t^{2} \quad(t \epsilon] b^{-2} \cdot b^{2}[) \tag{30}
\end{equation*}
$$

Now we define the increseing sequence of numbers $\left\{b_{n}\right\}$ and the increasing sequence of intervale $\left\{I_{n}\right\}$ by

$$
\left.b_{1}=b^{2}, b_{n+1}=b_{n}^{2}, I_{n}=\right] b_{n}^{-1}, b_{n}[n I \quad(n=1,2 \ldots)
$$

and prove that for $n=1,2 \ldots$

$$
f(x)=\alpha x^{2}+\beta x+\gamma \quad\left(x \in I_{n}\right), \varphi(t)=\gamma-\alpha t^{2} \quad\left(t \in \text { int } I_{n}\right) \cdot \text { (31) }
$$

For $n=1$ (31) is true in viaw of (29) and (30). Assuming (31) true for an $n \geqslant 1$, we have for $x \in I_{n+1}$
$\sqrt{x} \in \operatorname{int} I_{n}$.
whence by (20) with $y=1$ and by (28) and (31) (assumed valid for n)

$$
\begin{equation*}
f(x)=\alpha x^{2}+\beta x+\gamma \quad\left(x \in I_{n+1}\right) \tag{32}
\end{equation*}
$$

($x \neq 1$, but for $x=1$ (32) results from (28)). Letting then $x \not y$ run through I_{n+1} in (20), we have also $\varphi(t)=\gamma^{t}-\operatorname{ot}^{2}$ for all $t \in$ int I_{n+1}, which together with (32) yields (31) with n repleced by $n+1$. Thus (31) holds true for all $n=1,2 \ldots .$. and we obtain (21) in view of the relations

$$
I=\bigcup_{n=1}^{\infty} I_{n} \text {, int } I=\bigcup_{n=1}^{\infty} \text { int } I_{n} \text {. }
$$

Acknowledgement. The first author's research has been supported in part by a Nationas Science and Engineering Research Council of Canada grant.

REFERENCES

[1] J. Aczél (1985), A mean value property of the derivative of quadratic polynomisls - without wean values and derivatives. Math. Mag. 58(1985) 41-44.
[2] B. Choczewski and M. Kuczara (1962). Sur certaines équationa fonctionnelles considéríes par I. Stamate. Mathematica (Cluj) 4 (27) (1962), 225-233.
[3] Sh. Haruki (1979), A property of quadratic polynomials. Amer, Math. Monthly 86(1979). 577-579.
[4] D. Pompeiu (1946), Sur une proposition analogue au théorème des accroissements finis. Mathematica (Cluj) 22(1946), 143-146.
[5] I. Stamate (1959), A property of the parabola and the integration of a functional equation (Roumanian). Inet. Politehn. Cluj. Lucrärí şti. 1959, 101-106.

