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1. Introduction. The classical mean value theorem of the differential 
calculus states that for every differentiable function f on a real in
terval I and for all pairs xi  f  Xg in I there exists an T^ix^Xg) 
between and Xg such that

f (x ) - f (x„)
f'frUj.Xg)]. - (1)

that is, the tangent at ^(xj.Xg) is parallel to the straight line con
necting the points (Xj.fCxj)) and (xg,f(xg)). 0. Pompeiu (1946; cf., 
among others, Stamate 1959) observed the following counterpart. If 0 ^ 1 ,  
then there exists also a ^(x^.Xg) between x1 and Xg such that

x,f(x_) - x_f(x, ) _ n
 — —   —  - f *x20 - fe(xl'x2l- (2)

The geometric meaning of this le that the tangent at £(x1(Xg) intersects 
on the y-axis the straight line connecting the points (x^.fix^)) and 
(xg.f(xg)). For quadratic functions (parabolas)

x , + x_ .
IjCXj.Xg) -  g , ę ( x 1 , Xg) - ( X j X g ) 1' .

Equations (l) and (2) can be generalized into functional equations 
with two unknown functions

f ( x ) - f ( x _ )
 - x-  -V’[’?(X1 >X2 )J (*! f* x2 } (3)

X f ( x „ )  - x , f ( x  )

- -  - * 1 - X g    ■ <x ! ^  x 2 >
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respectively. For (3 ) in the case r^ixj.Xg) » (xj+x2 )/2, see e.g. Haruki
1979, Aczél 1985. (Actually, there ^(xj.Xg) ■ x^+Xg, which gives equi
valent equation on R, but in the present paper we intend to deal with 
local situations, considering, for instance, (3 ) on intervals, and for
these ^(x1#x2 ) = (Xj+x2 )/2 is more suitable). For (4 ) and its special
cases, in particular the case ÇCx^.Xg) = (xj+Xg)/^, see e.g. Stamate 
1959, Choczewski-Kuczma 1962. We refer the reader to these four papers 
also for the history of the subject.

Note that (2 ) need not be valid when O e j x ^ x ^  (its is not valid, 
for instance, for quadratic functions, as nay easily be seen fron the 
geonetric interpretation). But the generalization (4 ) nakes perfect sen
se in this case too (and aleo when f is not supposed to be differen
tiable). In the pere8ent paper we deal with equations (3) and (4 ) on real 
intervals of positive length (proper real intervals for short) in the 
case when rj and Ç are the arithnetlc, geonetric or harsonic nean. We 
deternine the general real valued solutions of (3 ) and (4 ) in these 
cases. We touch also on the problen of solving (4 ) (with Çix^x,,) = *1+x2 ) 
on fields. The reaults are stated in the next section; the details of the 
proofs will be published elsewhere, but we sake here sone informal com
ments on them and give a new proof of one of the results.

The result on (4 ) can be generalized fron arithmetic means to quesi- 
arithmetic means:

. F(x, ) ♦ F (x_ )
ÇÎXj.Xg) = F (---!— ^-----£-) (5)

if F is defined at 0. The geometric and harmonic means, however, are 
quasiarithmetic means with F(x) - log x or F(x) - 1/x, respectlvely, 
which are not defined at 0. That is why we have to treat them separa
tely.

Our examples of arithnetlc, geometric and harmonic means are not so 
arbitrary as they nay seen. The arithmetic mean averages the sum under 
which R is a group with 0 as neutral element. The geometric mean ave
rages the product under which R+ ■ | x 6  R: x >  o| forms e group with 1 
as neutral element (and 0 ̂  R+ is an annihllator). Finally, the harmo
nic mean averages the operation l/((l/x) ♦ (l/y)), for which 0 is 
again an annihllator in a sense and under which R forms a semigroup
without neutral element (00 would be a neutral element, if included).
Of course, the arithmetic, geometric and harmonic means are also the most 
often used mean values.

2. Results. We start with a general result on fields.

Proposition 1 . Let F be a commutative field of characteristic diffe
rent from 2 and 3. The general solution of
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xf(y) - yf(x) 
x - y <p(x * y) (x,y e F, x / y) (6)

is given by

f(x) «ocx + p , ^pCx) - |3 (x e F), (7)

where oe and |J are arbitrary constants in F.
The condition about the characteristic cannot be dropped, as the fol

lowing examples in Zg and Z3 (fields of integers modulo 2 or 3) 
show. They satisfy (6), but are not of the form (7) (<p is not constant):

\ fl (x-0) (x=0) ,
f(x) " \ 0  (x-l)' ? (x) \l (x-1) c

1 f l  (x-O,2) w  fo (x-0 )
f(x) " | 2  (x-15 ' ^  } |l (x-1,2) 3*

Now we pass to the case of real intervals.

Theorem 2 . Let I be a proper real interval. The general real valued 
solution of

-■ y.fi.xi  . r ( 2 - L J C )  (X .y e I, xy y) (8)
x y ^

is given by

f(x) -ocx ♦ (x 6 I). «p(t) = jj (t e int I), (9)

where <* and ji are arbitrary real constants, (int I is the interior 

of X). /
The proof of Proposition 1 and of Theorem 2 when 0 e I (and of Pro

position 4 below) consists of substitutions which are quite easy (if one 
knows what to substitute). Complications arise when 0 f  I in Theorea 2.

Using a nice Interaction between (3) and (4 ) (cf. the next section) one 
can deduce from the 0 $ I  case of Theorem 2 the following.

Corollary 3. Let I be a proper interval of positive numbers. The ge
neral real valued solution of

f(Xx I y ^ "  ~ ( x . y e l c R + . x > y) (10)
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is given by

f(x) =oC+ |Jx (x 6 I), <p(t) <= jj (t e int I) (ll)

(<*.£ 6 R a rb it ra ry  constants).
If 0 e l ,  then the argument used to prove Theorem 2 (with only slight

modification) may be applied to treat equation (4 ) for quasiarithmetic 
means (5), where F is a continuous, strictly monotonie function, that 
is, the equation

- - 4  ï y ^ ^  ° ■■y ) ) ) < M 6 I ,  X  ft y). (l2) ’

In this way we arrive at the following result.

Proposition 4 . Let I be a proper real interval containing 0 and F
a continuous and strictly monotonie real valued function on I. Then the 
general solution of (1 2 ) is given by (9) where at and |5 are arbitrary 
real constants.

While Proposition 4 applies, for instance, to the root-mean-powers 
with positive exponents

/ x P ♦ x ^ /P
i^(x1 .x 2 ) • ( -i-2— (p >  0) (13)

(f(x) » xP. I » [0 ,b] or [o,b[, 0 <  °r , extending (i3) by
taking (5 ) with F(x) » |x|psgn x, I can also be [a.b], [a ,b ]] a ,b] ,
Ja,b[^ with - » é a  b é »  , a ft b), the disadvantage of Proposition
4 is that the supposition that F is defined at 0 still severely re
stricts the quasiarithmetic means (5) to which it applies. In particular, 
it does not apply to the two quasiarithmetic means "most popular" after
the arithmetic mean: the geometric mean and the harmonic mean

£(*j ,Xg) = (XjXg)1/2 and ÇiXj.Xg) - ^ " T T J ,

for which F(x) » log x and F(x) « 1/x (or their affine transforms), 
respectively. And indeed, in these cases equation (12) does have solutions 
different from (9) (cf. Corollaries 6 and 8 below).

Equation (3 ) with T j i x ^ . x ^  = (xj + Xg)/2 has been solved for 
Xj.Xgfe R  (Xĵ  /  x2 ) - and even for arbitrary (commutative) fields of 
characteristic different from 2 - in Aczél 1985. By modifying the proof 
given there, we can solve the same equation on arbitrary real intervals, 
and also equation (3 ) with r j i x ^ . x ^ )  « (.x^x^)1^2 . in this way we get the 
following resuite.
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Theorem 5 .Let I c  R  be a proper interval. Then the general real 
valued solution of

(x.y 6 1. x / y )  (l4)

i3 given by

f(x)-ctx2 + p x + t f '  (x 6 I),- f ( t ) -  2ctt + p (t e int I ), ' (l5)

where are arbitrary real constants.

Corollary 6 . Let I be a proper interval of positive numbers. The ge
neral real valued solution of the equation

is given by

f( x) «< *i + |J + ‘j|'x (x e I). <p(t) = 2cti+fb (t e int I ) (17)

(cfi.|i,■jf G R  arbitrary constants).

Theorem 7. Let I be a proper interval of positive numbers. The gene
ral real valued solution of the equation

„ y( (xy)1/2) ( x , y e I C R + , x / y )  (18)

is given by

fix) ■otj + p + ^x (x e l)i ( t e i n t l ) ,  (19)

where oC,(b, •¡f" are arbitrary real constants.

Corollary 8 . Let I be a proper interval of positive numbers. The ge
neral real valued solution of the equation

. y U x y ) 1/2 ) (x.y £ I C  R  . x / y )  (20)x — y ♦

is given by

f (x) = cCx2 + |Jx + '¡f ( x G l ) ,  ^>(t)="^-ott2 ( t e  int I) (21) 

(ot.jl.^'eR arbitrary constants).
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Corollaries 6 and 8 are obtained from Theorems 5 and 7, respectively,
by virtue of the duality between (3 ) and (4 ) (cf. the next section).

Corollaries 3 and 6 (but not Theorem 7 nor Corollary 8) remain valid 
if instead of interval I C R + we take interval I C R_ = {x e R  : x <  o}.

We could permit x = 0 or y = 0 in (16) and (20) (that is, to take
0 e l c R  = { x e B  : x >  That would give only f(0) = 'p(O), and
indeed, (17) or (2l) for x e A { o }  with f(o) « <p(o) = 6 (arbitrary) 
actually satisfies (16) or (20)., respectively, on the whole interval I 
containing 0.

Finally, note that in Corollary 3, Theorems 5 and 7 y(t) = ff(t), 
while in Theorem 2, Proposition 4, Corollaries 6 and 8 <p(t) = f(t) - 
- tf'(t), in accordance with (l) and (2).

3. About the proofs. As it was said already in the Introduction, de
tailed proofs of the results listed in the preceding section will be 
published elsewhere. They are all - more or less - baaed on similar ideas 
and are - sometimes essential - modifications of the argument used in 
Aczél 1985 to solve equation (14 ) on R. Roughly speaking, this method 
consists in prescribing the values of the unknown functions at certain 
points (without loss of generality) and in deriving from the equation 
which we consider another equation containing only one unknown function

This equation is then solved, and once «p is known, f can be determi
ned from the original aquation. (Cf. also our remark after Theorem 2).

As an example we give below an alternative, direct proof of Corollary 8 
(without appealing to Theorem 7). Then Theorem 7 can be obtained from Co
rollary 8 using the "nice interaction between (3 ) and (4 )" mentioned 
earlier in this paper. To explain this "nice interaction" we will call 

equations (3 ) and (4 ) dual whenever one of and ^Xj.Xg) ie the
arithmetic mean and the other is the harmonic mean, or when both are the 
geometric mean. Let I be a proper real interval such that 0 ^ 1 ,  and

Then f , v> satisfy one of the equations (8), (10), (14), (16), (18), (20)
_• A  a  A

for x,y e l »  x/y, if and only if the functions f , satisfy for x,yel. 
x / y, the duel equation. Thus formulas (ll), (17) and (21) result from 
(9), (15) and (19), respectively, according to relation (22).

Observe that the operation a  is an involutions we have

let f , «p be real valued functions on I. Write
and define functions f.'P on I by

f(t) « tf(l/t), <p(t) » <p(l/t) (t e Í). (2 2 )

In other words, the transformation (22) is its own Inverse.
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And now we pass to the announced direct

Proof of Corollary 8. Straightforward substitution shows that for 
arbitrary at.Jb.^eR. the functions (2l) satisfy equation (20). To prove 
the converse observe that, since I is proper (of positive length), there 
exists a c in its interior. But, if f and <p satisfy (20) then, with
X » x/c, y = y/c and ?(t) = f(ct), ^(t) = <p(cf) we get

(y) . <p((Scy)1/2) for all x, y e I - f  I ■
x - y

” {x - |  : x e i} (x y y).

This equation is of the same for« (20), but now 1 contains 1 in its
interior. So without loss of generality we «ay assume in the sequel that
1 6 int I (since x _»-cx, t — ct does not change the form of (2l), the

”1 -2 2 r~result is unchanged). Thus there exists a b >  1 such that J b ,b [_cl.
Now take arbitrary u,v e]] b_ 1 ,b[, u 1 v, u /  v, and put in (20) 

in turn x » uv, y » u/vj x «= uv, y ■ v/u; x *■ u/v, y «• v/u (in all 

these cases x,y e^] b~2 ,b2[). This yields

v2 f ( H )  _ f(u v ) - <p(u)(v2 - l), (23)

u2 f(£) - f(uv) - <p(v)(u2 - 1). (24)

u2 f()L) _ v2f(H) - <p(l)(u2 - v2 ). (25)

Subtracting (23) from (24) and comparing the resulting equation with (25) 

gives

<p(v)(u2 - l) - <p(u)(v2 - l) -<p(l)[(u2 - l) - (v2 - l)]. (26)

This is valid for all u,ve[] b- 1 , b [(for u ■> 1 or v = 1 or u » v
equation (26) is trivially fulfilled). Fixing a Vq e] b 1 ,b [, vQ /  1,
and writing t instead of u, we get with c£■ - ['p(l) ■'P('/o^J/^vo ' *
f  ® <f(l) + oC.

<p(t) = f  - ott2 (t e ]  b_ 1 ,b[). (27)

With

P - f ( l )  - cC - f (28)
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we obtain from (20) and (27), on setting y = 1,

f (x ) « OCX2  + (Jx + f  <* fcj b- 2 ,b2£) (29)

(really for x e ]  l>*2 ib2 [\{l)i but for x = 1 (29) results from (28)).
Putting this back into (20) we see that

<p(t) .  f - <<t2 ( t  e ]  b "2 ,b2 [ ) .  (3 0 )

Now we define the increasing sequence of numbers {bn} and the incre
asing sequence of intervals {ln} by

bl ’ fa2- bn+l ' bn ' *n “ ] ^ - » n t "  1 <"-1.2..••)

and prove that for n * 1,2,...
*

f(x) » rfx2 + (ix + f  (x 6 In ). <p(t) - f  - ott2 (t e int In ). (31)

For n«l (31) is true in view of (29) and (30). Assuming (31) true for
an n ^ 1 ,  we have for x € In+1

^ fx ' 6 int In ,

whence by (20) with y « 1 and by (28) and (31) (assumed valid for n)

f (x ) . rfx2 + p x  + 7  (x 6 In+1) (32)

(x j i 1, but for x = 1 (32) results from (28)). Letting then x ¡1 y run
through *n+1 1" (20), we have also tp(t) = -  cct for all te int In+i*
which together with (32) yields (3l) with n replaced by n+1. Thus (3l)
holds true for all n ■ 1,2,..., and we obtain (2l) in view of the rela
tions

OO CO

1 * u  v  int 1 ■ U  int v
n«l n«l
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