DEDICATED TO PROFESSOR MIECZYSLAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Karol BARON

ON A PROBLEM OF Z. DARÓCZY

The problem concerns the functional equation

$$
\begin{equation*}
F(x)=F(x+1)+F(x(x+1)) \tag{1}
\end{equation*}
$$

and its solutions $F:(0,+\infty) \rightarrow \mathbf{R}$ and $F: \mathbf{N} \rightarrow \mathbf{R}$ ss well. Posing the problem Z. Daróczy was interested in finding a weak condition under which the solution $F:(0,+\infty) \rightarrow R$ is of the form

$$
\begin{equation*}
F(x)=\frac{c}{x} \tag{2}
\end{equation*}
$$

with a constant $c \in \mathbb{R}$ and he conjectured also that each solution $F: N \rightarrow(0,+\infty)$ has to be of this form (see [2]). This conjecture has been recently disproved by M. Laczkovich and R. Redheffer (see [7; PP. 115-117] and [5; Corollary 2]). Regarding conditions under which the solution $F:(0,+\infty) \rightarrow \boldsymbol{R}$ or $F: \mathbf{N} \rightarrow \mathbf{R}$ has the form (2) the following has been proposed in [1].

Proposition. If $F:(0,+\infty) \rightarrow \mathbf{R}$ or $F: \mathbf{N} \rightarrow \mathbf{R}$ is a solution of (1), and there exists a real constant C such thet

$$
\lim _{x \rightarrow+\infty} x F(x)=c,
$$

then F has form (2).
The proof given in [1] is based on a general theorem on functional equatione. It is the aim of the present note to give an elementary and direct proof of the proposition. I was looking for such a proof being stimulated by Professor Zoltán Darbczy to whon I thank for it cordially. We stert with the following lemma.

Lemma. Suppose $F:(0,+\infty) \rightarrow \mathbf{R}$ or $F: \mathbf{N} \rightarrow \mathbf{R}$ 18 a solution of (1). Let c be real number.

If there exist a positive number M such that

$$
F(x) \leqslant \frac{c}{x} \quad \text { for } \quad x>M
$$

then

$$
F(x) \leqslant \frac{c}{x} \text { for } x>0
$$

Proof. Replacing the solution F by $F(x)-\frac{c}{x}$ we may (and we do) assume that $c=0$. By induction and (1):

$$
\text { if } F(x) \leqslant 0 \text { for } x \geqslant n+1 \text {, then } F(x) \leqslant 0 \text { for } x \geqslant n
$$

Hence

$$
F(x) \leqslant 0 \text { for } x \geqslant 1
$$

This ends the proof of the lemas in the case where F is defined for positive integers only.

Assume the solution F is defined on ($0,+\infty$). Taking (4) and (1) into account we have

$$
\begin{equation*}
F(x) \leqslant F(x(x+1)) \text { for } x \in(0,+\infty) \tag{5}
\end{equation*}
$$

Define

$$
\begin{equation*}
a_{0}=1, a_{n}=\frac{\sqrt{4 a_{n-1}+1}-1}{2}, n \in N_{0} \tag{6}
\end{equation*}
$$

and observe that this sequence strictly decreases,

$$
\begin{equation*}
\underset{n \rightarrow+\infty}{\lim } \operatorname{an}_{n}=0 \tag{7}
\end{equation*}
$$

and, for every $n \in N$,

$$
\text { if } x \geqslant a_{n} \text {. then } x(x+1) \geqslant a_{n-1}
$$

Hence and from (5) we infer that, for every $n \in \mathbb{N}$.

$$
\text { If } F(x) \leqslant 0 \text { for } x \geqslant a_{n-1} \text {, then } F(x) \leqslant 0 \text { for } x \geqslant a_{n}
$$

This jointly with (4) and (6) shows that

$$
F(x) \leqslant 0 \text { for } x \geqslant a_{n-1} \text { and } n \in N_{1}
$$

which together with (7) gives

$$
F(x) \leqslant 0 \text { for } x>0
$$

and ends the proof of the lemma.
Using this leman we shall prove what follows.
Theoren. Suppose $F:(0,+\infty) \rightarrow \mathbf{R}$ or $F: N \rightarrow \mathbf{R}$ is a solution of (1). If there exists the limit

$$
\begin{equation*}
\lim x F(x) \tag{8}
\end{equation*}
$$

then it is necessarily finite and F has the form (2) with c being the limit (8).

Proof. Assume the limit (8) equals $-\infty$ and $f 1 x$ arbitrarily a real number c. Then there exists a positive number M such that

$$
x F(x) \leqslant c \quad \text { for } \quad x>M
$$

Hence and from the lenala we obtain

$$
\begin{equation*}
x F(x) \leqslant c \text { for } x>0 \tag{9}
\end{equation*}
$$

which is of course impossible es c was fixed arbitrarily. The case where the limit (B) equals $+\infty$ reduces to the previous one by coneidering the function $-F$.

Up to now we have proved that liait (B) is finite. Denote it by c and fix arbitrarily a positive number E. It follows frow (3) that there exiets a positive number M such that

$$
x F(x) \leqslant c+\varepsilon \quad \text { for } \quad x>M
$$

Hence and from the lema we obtain

$$
x F(x) \leqslant c+\varepsilon \text { for } x>0
$$

Consequently, as the positive number \mathcal{E} has been fixed arbitrarily, (9) holds. Applying it to the function $-F$ we shall obtein the reverse inequality which shows that F has form (2) and ends the proof.

The theorem, being e little more general than the proposition, allows us to etate immediately the following corollary, discovered on another way by W. Jarczyk (see [3; Theorem 1]).

Corollary. Suppose $F:(0,+\infty) \rightarrow \mathbf{R}$ or $F: \mathbf{N} \rightarrow \mathbf{R}$ is a solution of (1).

If the function $x F(x)$ is mononic in vicinity of infinity then F has fora (2).

Remark. If a real function f defined on a vicinity of infinity is convex then in a vicinity of infinity the function $\frac{f(x)}{x}$ is monotonic (see [4; Leme 2]). Hence, if $F:(0,+\infty) \rightarrow R$ is a solution of (1) such that $x^{2} F(x)$ is convex in a vicinity of infinity then F has the form (2). Similarly, if $F:(0,+\infty) \rightarrow R$ is a solution of (1) such that the function $\frac{1}{F(x)}$ is convex in a vicinity of infinity, then $\frac{1}{x F(x)}$ has a limit at infinity and, due to the fact that F has constant sign in a vicinity of infinity, there exists the limit (8): consequently, F has the form (2). These facts have been obtained by W. Jarczyk directly (see [3: Theorems 2 and 3]). In Jarczyk's paper the reader may find also further results connected with Daróczy's problem.

We end by the remark that equation (1) has many solutions $F:(0,+\infty) \rightarrow \mathbb{R}$, oven continuous ones, as Z. Moszner has shown in [6].

REFERENCES

[1] K. Baron: P283R2. Aequationes Mathematicae 35 (1988), 301-303.
[2] 2. Daróczy: P283. Aequationes Mathematicae 32 (1987), 136-137.
$3]$ w. Jarczyk: On a problem of Z. Daróczy. Annales Mathenaticae Silesianae (to appear).
[4] M. Kuczma: Un théorème d'unicité pour l'équation fonctionnelle de Böttcher. Mathematica (Cluj) 9 (32) (1967). 285-293.
[5] M. Leczkovich and R. Redheffer: Oacillating solutions of integrai equations and linear recursions. Manuscript.
[6] 2. Moszner: P283R1. Aequationes Mathematicae 32(1987). 146.
[7] Report of Meeting: The Twenty-sixth International Syaposium on Functional Equations, April 24 - May 3. 1988, Sant Feliu de Guixols, Catalonia, Spain. Aequationes Mathenaticae 37 (1989). 57-127.

