DEDICATED TO PROFESSOR MIECZYSLAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Siegfried GÄHLER
Zbigniew ZEKANOWSKI

SOME PROPERTIES OF ALMOST SYMPLECTIC PSEUDO-RIEMANNIAN MANIFOLDS

Let M be an m-dimensional smooth manifold and A be smooth tensor field on M of type $(1,1)$ such that for every $x \in M, A_{x}: T_{x} M \rightarrow T_{x} M$ is in isomorphism. Let

$$
P=\frac{1}{2}(\delta+A) \quad \text { and } \quad Q=\frac{1}{2}(\delta-A)
$$

where $\delta{ }_{x}=\left.\delta\right|_{T_{x} M}=1 d_{T_{x} M}$ every $x \in M$. Evidently $P+Q=\delta$ and $P-Q=A$.

Lemma 1. The following are true

1. $A P=P A, A Q=Q A$.
2. $P Q=Q P$.

For every $x \in M$, moreover:
3. $A_{x}\left[\operatorname{Ker} P_{x}\right]=\operatorname{Ker} P_{x}, A_{x}\left[\operatorname{Ker} Q_{x}\right]=\operatorname{Ker} Q_{x}$.
4. Ser $P_{x} \subseteq \operatorname{Im} Q_{x}$. Ser $Q_{x} \subseteq \operatorname{Im} P_{x}$.
5. $\operatorname{Ker} P_{x} \cap \operatorname{Ker} Q_{x}=\{0\}$.

Proof. Simple.
A 18 said to be an almost product structure on M if $A^{2}=0$.
Lemma 2. The following are equivalent:

1. A 28 an almost product structure.
2. $P^{2}=P$ (respectively $Q^{2}=Q$).
3. $A P=P A=P$ (respectively $A Q=Q A=Q$).
4. $P Q=Q P=0$.
5. For every $x \in M$, Kor $P_{x}=I^{m} Q_{x}$ (respectively Ger $Q_{x}=I^{m} P_{x}$). Proof. Simple.
Corollary. If A is an almost product structure, them $T_{x} M=\operatorname{Ker} P_{x} \oplus$ (4) In P_{x} for every $x \in M$.

Let us now specialize M and A. Take $m=2 n$ and assume that on M there is given an almost symplectic structure ω and moreover a pseudo-

Riamannian metric g with signature $(k, 2 n-k)$, where $k \in\{0, \ldots, n\}$ denotes the number of minus signs in the canonical form of.g. On M there exists exactly one smooth tensor field A of type (1,1) such that

$$
\begin{equation*}
\omega(u, v)=g\left(A_{x}(u), v\right) \tag{1}
\end{equation*}
$$

for every $x \in M$ and every $U, V \in T_{x} M$, where $A_{x}: T_{x} M \rightarrow T_{x} M$ is an isomorphia. From now on let A be this tensor field.

To get the explicite form of A. take for arbitrary $x \in M$ a canoncal basis $\left\{e_{1}, \ldots, \theta_{2 n}\right\}$ of $T_{x} M$ with respect to g such that

$$
g_{1 i}=g\left(e_{i}, e_{i}\right)=\left\{\begin{aligned}
-1 & \text { if } 1 \in\{1 \ldots . \ldots k\} \\
1 & \text { if } i \in\{k+1 \ldots, 2 n\} .
\end{aligned}\right.
$$

For every $i \in\{1 \ldots, 2 n]$ then we have $A_{x}\left(e_{1}\right)=\sum_{x=1}^{2 n} e_{i j} e_{j}$ with

$$
\alpha_{1 j}=\left\{\begin{array}{l}
-\omega\left(e_{1}, e_{j}\right) \text { if } j \in\{1, \ldots, k\} \\
\omega\left(e_{i}, e_{j}\right) \text { if } j \in\{k+1, \ldots, 2 n\} .
\end{array}\right.
$$

For every $x \in M$ obviously $A_{x}=\delta_{x},-\delta_{x}$, hence $P_{x} \neq 0$ and $Q_{x} \neq 0$. (1) is equivalent to every of the two relations

$$
\left\{\begin{array}{l}
\omega(u, v)=2 g\left(p_{x}(u), v\right)-g(u, v) \\
\omega(u, v)=-2 g\left(Q_{x}(u), v\right)+g(u, v)
\end{array}\right.
$$

(1) implies

$$
\begin{equation*}
g\left(A_{x}(u), v\right)=-g\left(u, A_{x}(v)\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega\left(A_{x}(u), v\right)=-\omega\left(u, A_{x}(v)\right) \tag{3}
\end{equation*}
$$

which respectively are equivalent to every of the two relations

$$
\left\{\begin{array}{l}
g(u, v)=p\left(p_{x}(u), v\right)+g\left(u, p_{x}(v)\right) \\
g(u, v)=g\left(Q_{x}(u), v\right)+g\left(u, Q_{x}(v)\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\omega(u, v)=\omega\left(P_{x}(u), v\right)+\omega\left(u, P_{x}(v)\right) \\
\omega(u, v)=\omega\left(Q_{x}(u), v\right)+\omega\left(u, Q_{x}(v)\right)
\end{array}\right.
$$

Because of (2^{\prime}) and (3^{\prime}) for every $x \in M$ the linear subspaces Kor P_{x} and Ger Q_{x} of M are ω - as well as g-isotropic.

Theorem. For every $x \in M$

$$
\text { dim Ker } P_{x}=\text { din Ger } Q_{x}
$$

and thus

$$
\text { din In } P_{x}=\operatorname{dim} \operatorname{Im} Q_{x}
$$

Proof. For arbitrary $x \in M$. let $\left\{0_{1} \ldots \ldots, \theta_{2 n}\right\}, g_{i 1}(1 \in\{1, \ldots, 2 n\})$ and $\alpha_{i j}(1, j \in\{1, \ldots .2 n\})$ be as above. (2) Laplies that $\alpha_{i j} g_{j j}=-\alpha_{j i} g_{i 1}$ for ovary $1 . j \in\{1, \ldots, 2 n\}$. Hence the matrix $O=\left(\alpha_{i j}\right)$ associated to A_{x} with respect to $\left\{\theta_{1} \ldots \ldots, \theta_{2 n}\right\}$ can be written as

E being +1 or -1 . or -1 . consider $a=a+\varepsilon \mathcal{E}$. with respect to $\left\{e_{1}, \ldots, e_{2 n}\right\}$ then a_{+1} is associated to $2 p_{x}$ and a_{-1} is associated to $2 Q_{x}$. To prove our theorem we have to show that a_{+1} and a_{-1} have the same rank. For this we transform a_{+1} into a_{-1} in for steps by procedures which always are such that the rank of the matrix is not changed.

1. We multiply the elements of the first k rowe of a_{+1} by -1 and get a matrix of the type

2. Transposition of this metrix gives

3. By multiplication (of all elements) with - 1 we get the matrix $\left(\begin{array}{ccc}1 & \infty \\ & & \\ & & -1\end{array}\right)$.
4. Multiplication of the first k rowe of this matrix by -1 leads to or_{1}.
This shows that really O_{+1} and O_{-1} have the same rank. Thus the theorem is proven.

By a standard procedure it becomes obvious that the common number $d=$ dim Ker $P_{x}=$ dim Ker Q_{x} is independent of x.

Corollary 1. There exist two \mathscr{C} - and g-isotropic d-dimensional smooth distributions D^{1} and D^{2} on M such that $D_{x}^{1} \cap D_{x}^{2}=\{0\}$ for every $x \in M$.

Proof. Define D^{1} and D^{2} by $D_{x}^{1}=\operatorname{Ker} P_{x}$ respectively $D_{x}^{2}=$ Ker Q_{x} for every $x \in M$.

Corollary 2. $d \leqslant k$.
Proof. For arbitrary $x \in M$, let $\left\{e_{1} \ldots \ldots, \theta_{2 n}\right\}$ and $g_{11}(i \in\{1, \ldots, 2 n\})$ be as above. Without difficulty we can find a basis $\left\{b_{1}, \ldots, b_{d}\right\}$ of Ker P_{x} such that for every $i \in\{1, \ldots, d\}$ we have

$$
b_{i}=\sum_{j=1}^{2 n} \beta_{1 j} \theta_{j}
$$

Under the assumption $d>k$ from $g\left(b_{d} \cdot b_{d}\right)=0$ we get $\sum_{j=d}^{2 n} \beta_{d j}^{2}=0$. hence $b_{d}=0$ which gives a contradiction. Thus we have $d \leqslant k$.

As a direct consequence of Corollary 2 we get
Corollary 3. If g is Riemannian, then $d=0$.
Corollary 4.If A is an almost product structure, then $d=k=n$.
Proof. By Lemma 2 and the Theorem we get dim Ker $P_{x}=\operatorname{dim} I \mathrm{Im}_{\mathrm{x}}$. Hence by means of $2 n=$ dim Ker $P_{x}+d i m$ Im P_{x} the assertion of the corollary becomes obvious.

We now give three examplies with $n=k=2$ illustrating what msy happen with respect to d. For this for arbitrary $x \in M$ let $\left\{e_{1} \ldots \ldots \theta_{4}\right\}$ be a basis of $\mathrm{T}_{x} \mathrm{M}^{\text {with }}$

$$
g\left(\theta_{i}, \theta_{j}\right)=\left\{\begin{aligned}
&-1 \text { if inj } \in\{1,2\} \\
& 1 \text { if i=j } \in\{3,4\} \\
& 0 \text { otherwise }
\end{aligned}\right.
$$

By $n \int^{\prime}$ we denote the matrix $\left(\omega\left(\theta_{i}, \theta_{j}\right)\right)$. It is easy to verify the following

1. If $\gamma \mathcal{H}=\left(\begin{array}{rrrr}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right)$, then $d=0$.
2. If $R \sim=\left(\begin{array}{rrrr}0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$, then $d=1$.
3. If $\mathscr{A}=\left(\begin{array}{rrrr}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$, then $d=2$

REFERENCES

[1] R. Abraham and J.E. Marsden: Foundations of Mechantes, Banjamin, London-Amsterdam-... 1967.
[2] V. Guillemin and S. Sternberg: Geometric asymptotics, Mathematical Surveys 14, Providence 1977.
[3] W. Sasin and Z. Zekanowski: Some relations between almost symplectic, pseudo-Riemannian and almost product structures on differential spaces, Demonstratio Math.

