DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH 日EST WISHES ON HIS 7OTH BIRTHDAY

Jacek GANCARZEWICZ

PROLONGATIONS OF CONJUGATE CONNECTIONS

O. Introduction

Let M be a manifold. We denote by $T^{P,} r_{M}=J_{o}^{r}\left(R^{p}, M\right)$ the bundle of $r-j e t s$ at O of mappings $R^{P} \rightarrow M$. In Section 1 we introduce notations and we recall fundemental properties of this functor. If G is a Lie group, then $T^{P, r_{G}}$ has a natural Lie group structure and an action of G on a manifold M can be prolongated to an action of $T^{p, r} G$ on $T^{P,} r_{M}$. If $P(M, G)$ is a principal fibre bundle, then $T^{P, r} P\left({ }^{P}, P_{M,} T^{P}, r_{G}\right)$ is also a principel fibre bundle. If ω is a connection in $P(M, G)$. then A. Morimoto $[7]$. [8$]$ defined its prolongetion to $T^{p, r_{P}\left(T^{p}, r_{M,} T^{p}, r_{G}\right) \text {. } . ~ . ~}$

In Section 2 we define a natural Lie algebra isomorphism

$$
\Omega_{G}: T^{P, r}(\mathcal{L}(G)) \rightarrow \mathcal{L}\left(T^{P}, r_{G}\right) .
$$

where $\mathcal{L}(G)$ denotes the Lie algebra of a Lie group G.
In Section 3 we modify the definition of prolongetion of connections from $P(M, G)$ to $\left.T^{P,} r_{P(} T^{P}, r_{M,} T^{P,} r_{G}\right)$ using the natural isomorphism Ω_{G}. Next we prove that if ω_{1} and ω_{2} are p-conjugate connections in a principal fibre bunde $P(M, G)$, where p is a given endomorphism of the structural group G, then the prolongations of ω_{1} and ω_{2} are TP, P conjugate in $T^{P,} r_{P}\left(T^{P,} r_{M}, T^{P, r_{G}}\right)$, where $T^{P, r} \varphi$ is the induced endomorphism of $T^{P, r}{ }_{G}$.

In this paper all manifolds are always differentiable manifolde of class C^{∞} and sll objects on manifolds (as functions, vector dields etc.) are also of class C^{∞}.

1. The functor $T^{p, r}$

Let M be a manifold. We denote by $T^{P,} r_{M}=J_{0}^{r}\left(R^{P}, M\right)$ the manifold of r-jets at 0 of mappings $R^{P} \longrightarrow M$. If $\varphi: M \longrightarrow N$ is a differentiable mapping, then we define the induced mapping $T^{P, r_{e}}: T^{p, r_{M}} \rightarrow T^{P,} r_{N}$ by the formula

$$
\begin{equation*}
\left(T^{P}, r^{r} \varphi\right)\left(j_{0}^{r} \gamma^{\gamma}\right)=j_{0}^{r}(\varphi \circ \gamma) \tag{1.1}
\end{equation*}
$$

T^{P}, r_{M} is e fibre bundle with the projection $\pi: T^{P, r} M \rightarrow M$ given by $\pi\left(j_{0}^{r} \gamma^{*}\right)=\gamma^{\prime}(0)$.

If G is a Lie group, then we define a Lie group structure on T^{P}, r_{G} by

$$
\begin{equation*}
j_{0}^{r} \xi \cdot j_{0}^{r} \eta=j_{0}^{r}(\xi \eta) \tag{1.2}
\end{equation*}
$$

where for mappings $\xi \cdot \eta: R^{P} \rightarrow G, \xi \eta: R^{P} \rightarrow G$ is given by $(\xi \eta)(u)=$ $\xi(u) \eta(u)$ for $u \in \mathbb{R}^{p}$.

If $P(M, G)$ is a principal fibre bundle, then $T^{P,} r_{P}\left(T^{P}, r_{M,} T^{P,} r_{G}\right)$ is also a principal fibre bundle, where the action of $T^{P, r_{G}}$ on $T^{P, r_{P}}$ is defined by the formula:

$$
j_{0}^{r} \gamma \cdot j_{0}^{r} \xi=j_{0}^{r}(\gamma \xi)
$$

for $j_{0}^{r} \gamma^{\prime} \in T^{p, r} p$ and $\int_{0}^{r} \xi \in T^{p, r} G$ (see A. Morimoto [7], [8]).
Let $P_{0}(M, H)$ be a reduced fibre bundle in a principal fibre bundle $P(M, G)$. The inclusions $1: P_{0} \rightarrow P$ and $1: H \rightarrow G$ induce the inclusions $T^{P, r_{i}}$ or $T^{P, r_{P}}$ and $T^{P, r_{H}^{O}}$ into $T^{P, r_{P}}$ and $T^{P, r_{G}}$ respectively. The action of $T^{P,} r_{H}$ on $T^{P,} r_{P_{0}}$ is the restriction of the action of $T^{P, r}$ on $T^{p, r} P_{P}$ to the submanifold $T^{P, r_{P}}$. Thus we have

Proposition 1.1. If $P_{0}(M, N)$ is a reduced fibre bundle in a principal fibre bundle $P(M, G)$, then $T^{P,} r_{P_{0}}\left(T^{P}, r_{M}, T^{P,} r_{H}\right)$ is a reduced fibre bundle in $T^{P, r_{P}\left(T^{P}, r_{M}, T^{P}, r_{G}\right) \text {. } . ~ . ~ . ~}$

Let V be a vector space. Then $T^{P, r} V$ is also a vector space with the linear combination of elements defined by

$$
a j_{0}^{r} k+a^{\prime} j_{0}^{r} k^{\prime}=j_{0}^{r}\left(a k+a^{\prime} k^{\prime}\right)
$$

If A ia Lie algebra, then we define

$$
\begin{equation*}
\left[j_{0}^{r} k, j{ }_{0}^{r} k^{\prime}\right]=j_{0}^{r}\left[k, k^{\prime}\right] . \tag{1.3}
\end{equation*}
$$

where for mappings $k, k^{\prime}=R^{P} \rightarrow A,\left[k, k^{\prime}\right]: R^{P} \rightarrow A$ is given by $\left[k, k^{\prime}\right](u)=$ $=\left[k(u), k^{\prime}(u)\right]$.

If M is a manifold, then for every p, q, r, s there exist a natural diffeomorphism

$$
\propto_{M}^{q s, p r}: T^{p, r}\left(T^{q, s_{M}}\right) \rightarrow T^{q, s}\left(T^{p, r_{M}}\right)
$$

(see A. Morimoto [7],[8]). To define this diffaomorphism we need the following lemma:

Lemma 1.2. (Lemma 1.1 in [8]). If $\varphi: R^{p} \rightarrow T^{q} s_{M}$ is a differentiable napping, then there exist a napping $\Psi: R^{p} \times R^{q} \rightarrow M$ and a positive number ε such that for $u \in R^{p},\|u\|<\varepsilon$ we have

$$
\begin{equation*}
\varphi(u)=j_{0}^{s} \Psi_{u} \tag{1.5}
\end{equation*}
$$

where $\Psi_{u}: R^{q} \rightarrow M$ is given by $\Psi_{u}(v)=\Psi(u, v)$.
Now we define the mapping of $\mathrm{pr}_{\mathrm{M}} \mathrm{qs}$ as follows. If $j_{0}^{r} \varphi$ is an element of $T^{p, r}\left(T^{q}, s_{M}\right)$, then Lenma 1.2 implies that there is a mapping $\Psi^{R}: R^{P} \times R^{q} \rightarrow M$ such that the quality (1.5) holds. We set

$$
\begin{equation*}
\alpha_{M}^{p r, q s}\left(j_{0}^{r}\right)=j_{0}^{s} \bar{\varphi} \tag{1.6}
\end{equation*}
$$

where $\bar{\varphi}: R^{q} \rightarrow T^{p}, r_{M}$ is given by

$$
\begin{equation*}
\bar{\varphi}(v)=1_{0}^{r} v^{v} \Psi^{r} \tag{1.7}
\end{equation*}
$$

and for $u \in R^{p}, v \in R^{q}$

$$
\begin{equation*}
\Psi^{v}(u)=\Psi_{u}(v)=\Psi(u, v) \tag{1.3}
\end{equation*}
$$

The mapping $\alpha_{M}^{p r, q s}$ is a diffeomorphism such that for any mapping $\varphi: M \rightarrow N$ the following diagram

$$
\begin{align*}
& T^{p, r}\left(T^{q, s} s_{M}\right) \xrightarrow[T^{p, r}\left(T^{q, s} \varphi\right)]{T_{M}^{p, r}\left(T^{q, s} N\right)} \\
& \left.\left.\alpha_{M}^{p r, q s}\right|_{T}\right|_{T} ^{q, s}\left(T ^ { p , r _ { M }) } \xrightarrow { T ^ { q , s } (T ^ { p , r _ { \varphi }) } } T ^ { q , s } \left(T^{\left.p, r_{N}\right)}\right.\right. \tag{1.9}
\end{align*}
$$

commutes (see Proposition 1.6 in [8]).
For the inverse mapping we have the following formula (see Corollary 1.4 in [8]):

$$
\begin{equation*}
\left(\alpha_{M} p_{M}^{r}, q^{s}\right)^{-1}=\alpha_{M}^{q s} \cdot p r . \tag{1.10}
\end{equation*}
$$

Let N be a submanifold of M and $i: N \longrightarrow M$ be the natural inclu-
 into $T^{p,} r_{M}$ and the commutativity of the diagram (2.9) implies

$$
\begin{equation*}
\alpha_{N}^{p r, q s}=\alpha_{M}^{p r} \cdot q s \mid T^{p}, r_{N} . \tag{1.11}
\end{equation*}
$$

2. A natural isomorphism between $T^{p, r}(L(G))$ and $\mathcal{L}\left(T^{\left.p, r_{G}\right)}\right.$

Let G be a Lie group. We will construct a natural isomorphism between two Lie algebras $T^{p, r}(\mathcal{L}(G))$ and $\mathcal{L}\left(T^{p, r} G\right)$. This isomorphism is also used in [4].

Let $x=j_{0}^{r} k$ be an element of $T^{p, r}(\mathcal{L}(G))$, where $k: R^{p} \rightarrow \mathcal{L}(G)$ is a mapping. It means that for every $u \in R^{P}, k(u)$ is a left invariant vector field on G. We consider the mapping

$$
\begin{equation*}
\bar{k}: R P_{\times R} \ni(u, t) \longrightarrow \exp _{G} \varepsilon k(u) \in G \tag{2.1}
\end{equation*}
$$

and we define $k^{u}: R \longrightarrow G$ and $k_{t}: R^{P} \longrightarrow G$ by the following formulae

$$
\begin{equation*}
\bar{k}^{u}(t)=\bar{k}_{t}(u)=\bar{k}(u, t) \tag{2.2}
\end{equation*}
$$

From (2.1) we obtain

$$
\begin{equation*}
\left(\frac{d}{d t} \bar{k}^{u}\right)(0)=k_{e}(u) \tag{2,3}
\end{equation*}
$$

where e is the neutral element of G. Since $k(0, u)=0$, thus $j_{0} r_{0}=\bar{\theta}$ is the neutral element of the group $T^{p, r_{G}}$. Let $\Omega_{G}(x)$ be the left invariant vector field on $\mathrm{T}^{\mathrm{P}, \mathrm{r}_{\mathrm{G}}}$ such that

$$
\begin{equation*}
\left(\Omega_{G}(x)\right)_{-}=\left.\frac{d}{d t}\left(j_{0}^{r_{i}} \bar{k}_{t}\right)\right|_{t=0} \in T_{e}\left(T^{p} \cdot r_{G}\right) . \tag{2.4}
\end{equation*}
$$

where \bar{k} and \bar{k}_{t} are given by (2.1) and (2.2).

Proposition 2.1. The mapping

$$
\Omega_{G}: T^{p \cdot r}(\mathcal{L}(G)) \rightarrow \mathcal{L}\left(T^{p} \cdot r_{G}\right)
$$

is linear.

Proof. Ω_{G} is a mapping of class C^{∞} between two finite dimensional vector spaces. If X is an element of $T^{p, r}(\mathcal{L}(G))$ and a is a real number, then we denote by \bar{k} and $\overline{\bar{k}}$ the mappings defined by (2.1) for x and $a x$ respectively. Since $a x=j_{0}^{r}(a k)$, thus

$$
\overline{\bar{k}}(u, t)=\exp _{G}(t a x)=\bar{k}(a t, u) .
$$

It implies that $\overrightarrow{\bar{k}}_{t}=\overline{\mathbf{k}}_{\text {at }}$ and now we have

$$
\left(\Omega_{G}(a x)\right)_{\bar{e}}=\left.\frac{d}{d t}\left(j_{0}^{r} \overline{\bar{k}}_{t}\right)\right|_{t=0}=\left.a \frac{d}{d t}\left(j_{0}^{r} \bar{k}_{t}\right)\right|_{t=0}=a\left(\Omega_{G}(x)\right)_{\bar{e}}
$$

that is, $\Omega_{G}(a x)=a \Omega_{G}(X)$. Since Ω_{G} is of class c^{∞}, thus Ω_{G} Is lInear.
Proposition 2.2. Let $x=j_{0}^{r} k$ be an element of $T^{p, r}(\mathscr{L}(G))$. If \bar{k} and \bar{k}_{t} are given by formulas (2.1) and (2.2), then $A_{t}=j_{0}^{r} \bar{k}_{t}$ is the 1-parameter subgroup of $\Omega_{G}(x)$.

Proof. For a fixed element $u \in R^{p}, k_{t}(u)$ is the 1-paraneter subgroup of $k(u) \in \mathcal{L}(G)$. It implies that $k_{t}(u) k_{g}(u)-k_{t+8}(u)$ and $k_{0}(u)=e$. From this we obtain

$$
A_{t} A_{B}=A_{t+8} \cdot A_{0}-\overline{-}
$$

that 18. A_{t} is an 1-paraneter subgroup of T^{P}, F_{G}. According to (2.4). A_{t} induces $\Omega_{G}(X)$.

Proposition 2.3. The following diagram

commutes.
Proof. Let $x=\int_{0}^{r} k \in T^{p, r}(L(G))$ and $\bar{k}_{k} \bar{k}_{t}$, A_{t} be such as in Proposition 2.2. Now

$$
\left(\exp _{T} P_{,} r_{G}^{0} \Omega_{G}\right)(x)=A_{1}-j_{0}^{r}\left(\exp _{G} \circ k\right)=T^{p \cdot r}\left(\exp _{G}\right)(x)
$$

Proposition 2.4. Ω_{G} is a linear isonorphisin.
Proof. Let $x=\int_{0}^{r} k$ be on element of $T^{P, r}(\mathcal{L}(G))$ such that $\Omega_{G}(x)=0$ and let $\vec{k}_{\mathrm{k}}, \bar{k}_{t}, A_{t}$ be och as in Proposition 2.2. The condition $\Omega_{G}(x)=0$ implies that $A_{t}-\bar{\sigma}$ for all t According to Proposition 2.3 we obtain

$$
\left(T^{P, r_{e x p}}\right)(t x)=\left(\exp T^{p, r_{G}} 0 \Omega_{G}\right)(t x)=A_{t}=\bar{\theta}
$$

Since $T^{P, r_{\text {exp }}}$ is a diffeoforphian of some neighborhood V of zero onto a neighborhood of $\bar{\sigma}$ and $t x$ belongs to V for a sufficient small t, thus $t x=0$, and hence, $x=0$.

In this way we proved that Ω_{G} is infective. Ω_{G} is now a in ear isoa orphism beacause

$$
\begin{aligned}
& \left.\operatorname{dim} T^{P}, r^{(\mathcal{L}}(G)\right)=\left(P_{r}^{P+r}\right) d i m \mathcal{L}(G)=\left(P_{r}^{P+r}\right) d i m G \\
& \operatorname{dim} \mathcal{L}\left(T^{P}, r_{G}\right)=\operatorname{dim} T^{P} \cdot r_{G}=\left(\begin{array}{r}
p+r
\end{array}\right) d i m G
\end{aligned}
$$

Proposition 2.5. If $j_{0}^{r} \xi$ is an element of T^{P}, r_{G}, then the mapping $\overline{A d}_{j_{0 \xi}}=\Omega_{G}^{-1} \circ A d_{j} r_{0} \circ \Omega_{G}$ is given by the formula

$$
\overline{A d}{ }_{j}^{r_{j}}(x)=x^{\prime}
$$

where $x=j_{0}^{r} k, x^{\prime}=\int_{0}^{r} k^{\prime}$ and $k^{\prime}(u)=A d \xi(u)(k(u))$ and Ad denotes the adjoint representation of a Lie group on its Lie algebra.

Proof. Let \bar{k}, \bar{k}_{t} be defined by $(2,1)$ and (2.2) for an element $X=j_{o}^{r_{k}}$ of $T^{P, r}(\mathcal{L}(G))$. Now

$$
\begin{equation*}
\overline{A d}_{j_{0} r_{k}}(x)=\Omega_{G}^{-1} \frac{d}{d t}\left(\left.j_{0}^{r}\left(\xi \bar{k}_{t} \xi^{-1}\right)\right|_{t=0}\right) \tag{2.6}
\end{equation*}
$$

Let $\bar{k}^{1}(u, t)=(u) \bar{k}_{t}(u) \xi^{-1}(u)$ and $\bar{k}_{t}^{1}(u)=k^{1}(u, t)$. For a fixed element $u \in R^{P}, \bar{k}_{t}^{1}(u)$ is an 1-parameter subgroup of G which induces on G a left invariant vector field

$$
k^{\prime}(u)=\operatorname{Ad}_{\xi(u)^{(k(u))}}
$$

Now, from (2.6) and (2.4) we obtain (2.5)
Proposition 2.6. Ω_{G} is a Lie algebra isomorphism.
Proof. Let $X=j_{0}^{r} k$ and $Y=j_{0}^{r} I$ be two elements of $T^{P, r}(\mathcal{L}(G))$. According to Proposition 2.4 we need to show only

$$
\Omega_{G}[X, Y]=\left[\Omega_{G}(X) \Omega_{G}(Y)\right]
$$

Let $\bar{k}_{,} \bar{k}_{t}$ be mappings defined by (2.1) and (2.2) for $x=j_{0}^{r} k$. According to Proposition 2.2, $A_{t} \cdot j_{0}^{r} \bar{k}_{t}$ is the 1-parameter subgroup of $\Omega_{G}(x)$ and now

$$
-\left[\Omega_{G}(x), \Omega_{G}(y)\right]=\frac{d}{d t}\left(\left.A d_{A}\left(\Omega_{G}(y)\right)\right|_{t=0}=\Omega_{G}\left(\left.\frac{d}{d t}\left(\Omega_{G}^{-1} \circ A d_{A_{t}} \circ \Omega_{G}\right)(r)\right|_{t=0}\right)\right.
$$

(in the last equality we used the linerarity of Ω_{G}). Next using Propoedition 2.5 we have.

$$
\left[\Omega_{G}(x) \Omega_{G}(r)\right]=\left.\Omega_{G}\left(\frac{d}{d t} j_{0}^{r} \bar{l}_{t}\right)\right|_{t=0}
$$

where

$$
\bar{l}_{t}(u)=A d_{k_{t}}(u)(1(u))
$$

Since $\bar{k}_{t}(u)$ is the 1-parameter subgroup of $k(u)$, thus

$$
\left.\frac{d}{d t} \bar{I}_{t}(u)\right|_{t=0}=[k(u), 1(u)]
$$

and hence

$$
\left[\Omega_{G}(x) \Omega_{G}(y)\right]=\Omega_{G}\left(j_{0}^{r}[k, 1]\right)=\Omega_{G}[x, y],
$$

that is, the proof is finished.
Proposition 2.7. If $f: G \rightarrow G^{\prime} 18$. Lie group homomorphism, then the diagram

$$
\mathcal{L}\left(T^{p}, r_{G}\right) \xrightarrow[L]{\mathcal{L}\left(T^{p,} r_{f}\right)} \mathcal{L}\left(T^{p, r_{G}}\right)
$$

commutes.
Proof. Let $X=j_{0} r_{k}$ be an element of $T^{p, r}(\mathcal{L}(G))$ and \bar{k}, \bar{k}_{t} be defined by (2.1) and (2.2). We define

$$
\bar{k}^{\prime}(u, t)=f\left(\bar{k}^{\prime}(u, t): \quad \bar{k}_{t}^{\prime}(u)=f\left(\bar{k}_{t}(u)\right)\right.
$$

Now $\bar{k}_{t}^{\prime}(u)$ is the 1-parameter group of $\mathcal{L}(f) k(u)$. According to (2.4) it implies that

$$
\begin{aligned}
& \left(\left(\Omega_{G^{\prime}} \circ T^{p, r}(\mathcal{L} f)\right)(x)\right)_{\bar{e}^{\prime}}=\left.\frac{d}{d t}\left(j_{0}^{r} \bar{k}_{t}^{\prime}\right)\right|_{t=0}=\frac{d}{d t}\left(\left.j_{0}^{r}\left(f \circ \bar{k}_{t}\right)\right|_{t=0}=\right. \\
& \left.=\left(\left.\mathcal{L}\left(T^{p}, r_{f}\right)\left(\frac{d}{d t} \int_{0}^{r} k_{t}\right)\right|_{t=0}\right)\right)_{\bar{e}^{\prime}}=\left(\left(\mathcal{L}\left(T^{p}, r_{f}\right) \circ \Omega_{G}\right)(x)\right)_{\bar{e}^{\prime t}}
\end{aligned}
$$

where \boldsymbol{e}^{\prime} is the neutral element of $T^{P, r} G^{\prime}$.

Propositions 2.1 - 2.7 prove the following main theorem of this sectron

Theorem 2.8. Ω_{G} is a natural Lie algebra isomorphism. This theorem implies:

Proposition 2.9. If H is a Lie subgroup of a Lie group G, then

$$
\Omega_{H}=\Omega_{G} \mid T^{P, r}(\mathcal{L}(H)
$$

Proof. The inclusion $1: H \longrightarrow-G$ induces the inclusions $T^{P, r}(\mathcal{L}(1))$ and $\mathcal{L}\left(T^{p, r_{i}}\right)$ of $T^{P, r}(\mathcal{L}(H))$ and $\mathcal{L}\left(T^{\left.P, r_{H}\right)}\right.$ into $T^{P, r}(\mathcal{L}(G))$ and $\mathcal{L}\left(T^{p,} r_{G}\right)$ respectively. Now, the commutativity of the diagram in Proposition 2.7 implies this proposition.

To finish this section we prove
Proposition 2.10. Let $x=j_{0}^{r} k n r$ en element of $T^{p, r}(\mathcal{L}(G))$ and $j_{0}^{r} \xi$ be an element of $T^{P, r_{G}}$. If $k_{\xi}: R^{p} \rightarrow T G$ is given by

$$
k_{\xi}(u)=d L_{\xi(u)}\left(k_{\theta}(u)\right)
$$

then $\hat{x}: T^{p, r} G \rightarrow T^{p, r}(T G)$ defined by

$$
\hat{x}_{j_{0}}^{r_{\xi}}=j_{0}^{r}\left(k_{\xi}\right)
$$

is a section of $T^{P, r}(T G) \xrightarrow{T^{P, r}(T \kappa)} T^{P, r_{G}}$, where $\pi: T G \rightarrow G$ is the tangent bundle projection, and we have

$$
\Omega_{G}(x)=\alpha_{G}^{11}, \operatorname{pr} \circ \hat{x}
$$

Proof. Since

$$
\left(T^{P}, r_{\pi}\right)\left(\hat{x}_{1_{0}}^{r_{\xi}}\right)=f_{0}^{r}\left(\pi \circ k_{\xi}\right)=j_{0}^{r} \xi_{0} .
$$

thus \hat{x} is a section and $\alpha_{G}^{11, p r} 0 \hat{x}$ is a vector field on $T^{P, r} r_{\text {. For }}$ the neutral element \bar{e} of $T^{D,} r_{G}$ we have $\hat{x}_{\bar{e}}-x$ because $k_{\bar{e}}=k_{-}$. According to (2.1) we can used \bar{k} given by (2.1) to calculate $\alpha_{G}^{11, p r}$. we obtain

$$
\left(\Omega_{G}(x)\right)_{-}=\left(\alpha_{G}^{11 \cdot p r} \circ \hat{x}\right)_{\bar{G}}
$$

Hence, to verify (2.7) we need only to show that $\alpha_{G}^{11, p r} 0 \hat{x}$ is a left invariant vector field, that, is, we need to show that for every $j_{0}{ }_{0} \xi$, $j_{0}^{r} \eta \in T^{p, r}{ }_{G}$ we have

$$
\begin{equation*}
\left(d L_{j} r_{\xi}^{\circ} \alpha_{G}^{11, p r}\right)\left(\hat{x}_{j}^{r_{\eta}}\right)=\alpha_{G}^{11, p r}\left(\hat{x}_{j_{0}}{ }_{(\xi \eta)}\right. \tag{2;8}
\end{equation*}
$$

where $\mathrm{dL}_{\mathrm{J}_{\mathrm{f}}}$ is the tangent mapping.
Let $\bar{k}_{\mathrm{f}} \bar{k}_{\mathrm{t}}$ be defined by (2.1) and (2.2) for $\mathrm{x}=\mathrm{j}_{0}^{r} \mathrm{k}$. We denote

$$
\begin{aligned}
& \bar{k}_{\xi}(u, t)=\xi(u)(\bar{k}(u, t)) \\
& \left(\bar{k}_{\xi}\right)_{u}(t)=\left(\bar{k}_{\xi}\right)^{t}(u)=\bar{k}_{\xi}(u, t) .
\end{aligned}
$$

Now

$$
\left.\left.\left(\frac{d}{d t}\left(\bar{k}_{\xi}\right)_{u}\right)\right|_{t=0}=d L_{\xi}(u)^{\left(k_{\theta}\right.}(u)\right)=k_{\xi}(u) .
$$

Thus frow (1.6) - (1.7) we obtain

$$
\begin{aligned}
& \left(d L L_{0}^{r_{\xi}^{0}} \alpha_{G}^{11, p r}\right)\left(\hat{x}_{j}^{r} \eta_{\eta}\right)=d L_{j}^{r_{\xi}}\left(\left.\frac{d}{d t}\left(j_{0}^{r}\left(\bar{k}_{\eta}\right)^{t}\right)\right|_{t=0}\right) \\
& =\frac{d}{d t}\left(\left.j_{0}^{r}\left(\xi k_{\eta}^{t}\right)\right|_{t=0}\right)=\alpha_{G}^{11, p r}\left(j_{0}^{r} k_{\xi \eta}\right)=\hat{x}_{j}^{r}(\xi \eta)
\end{aligned}
$$

because $\xi(u) \bar{k}_{\eta}^{t}(u)=\xi(u) \eta(u) \bar{k}(u, t)=k_{\xi}^{t}(u)$. Thus the equality (2.8) holds and the proof is finished.

3. Prolongations of conjugate connections

Let $P(M, G)$ be a principal fibre bundle and ω be a connection form on $P(M, G)$. We consider ω as a mapping

$$
\omega: T P \rightarrow \mathscr{L}(G)=T_{e} G \subset T G
$$

of $T P$ into $T G$, and we define

$$
\begin{equation*}
\omega^{p r}=\alpha_{p}^{11, p r} \circ T^{p, r_{\omega}} \circ \alpha_{p}^{p r, 11}: T\left(T^{p, r_{P}}\right) \longrightarrow T\left(T^{\left.p, r_{G}\right)}\right. \tag{3.1}
\end{equation*}
$$

$\omega^{p r}$ is a mapping such that
$\omega^{p r}\left(T^{p}\left(T^{p, r_{P}}\right)\right) \subset T_{-}\left(T^{p, r_{G}}\right)$,
where \bar{e} dst the neutral element of T^{P}, r_{G}, and for every point p of $T^{p, r_{P}}, \omega^{p r}$ transforms zero of $T_{p}\left(T^{p, r} P\right)$ into zero of $T_{e}\left(T^{\left.p, r_{G}\right)}\right.$. This allows us to calculate the linear part of $\omega^{p r}$. We denote by

$$
\begin{equation*}
\omega_{p r}=\left(\omega^{p r}\right)^{(0)} \tag{3.2}
\end{equation*}
$$

this linear part of $\omega^{p r}$. $\omega_{p r}$ determines a connection form in $T^{P, r_{P}}$ called prolongation of (for details, see A. Morimoto [7]. [8]).

Using the natural isomorphism Ω_{G} we can define the prolongation $\omega_{p r}$ in the following way. We consider ω as mapping

$$
\omega: T P \rightarrow \mathcal{L}(G) .
$$

Now from (3.1), (3.2). Proposition 2.10 wo obtain immediately

$$
\omega_{p r}=\Omega_{G} \cdot\left(T^{p, r} \omega \cdot \alpha_{p}^{p r, 11}\right)(0)
$$

(We need to verify that T^{P}, r_{ω} • $\alpha_{P}^{p r, 11}$ transforms zero of $T_{p}\left(T^{p,} r_{P}\right)$ into zero of $\mathrm{T}^{\mathrm{P}, \mathrm{r}}(\mathcal{L}(G))$.).

We recall now the definition of conjugate connection e ($[3],[9]$):
Definition 3.1. Let $\omega, \bar{\omega}: T P \rightarrow \mathcal{L}(G)$ be two connection format in a principal fibre bundle $P(M, G)$ and $P: G \rightarrow G$ be an endomorphism of the structural group G. We denote

$$
\begin{equation*}
H_{\varphi}=\{\xi \in G: \varphi(\xi)=\xi\} . \tag{3.4}
\end{equation*}
$$

ω ie celled φ-conjugate with $\bar{\omega}$ if there exists e reduced fibre bundle $P_{0}\left(M, H_{\varphi}\right)$ in $P(M, G)$ such that for every local section $6: U \rightarrow P_{0}$ of $P_{0}\left(M, H_{\varphi}\right)$ wo have

$$
\sigma^{*} \bar{\omega}=\mathcal{L} \varphi \cdot \sigma^{\#} \omega
$$

where. $6^{*} \omega$ denotes the pull-back of ω by 6.
It is esse to how the following proposition (see [3]):

Proposition 3.2. ω is φ-conjugate with \bar{w} if there exist a reduced fibre bundle $P_{0}\left(M, H_{P}\right)$ and family of local sections $\sigma_{a}: U_{a}-P_{a}, \in A$, of $P(M, G)$ such that $\left\{U_{a}\right\}_{e} \in A$ is en open covering of M and for every e $\in A$ we have $\sigma_{a}\left(U_{0}\right) \subset P_{0}$ and

$$
\begin{equation*}
\sigma_{e}^{*} \bar{\omega}=\mathcal{L} \varphi \circ \sigma_{s}^{*} \omega \tag{3.5}
\end{equation*}
$$

We have the following theorem:

Theorem 3.3. Let $\omega, \bar{\omega}$ be connections in a principal fibre bundle $P(M, G)$ and $\varphi: G \rightarrow G$ be an endomorphism of G. If ω is φ-conjugate with $\bar{\omega}$, then $\omega_{p r}$ is $T^{P, r} \varphi$-conjugate with $\omega_{p r}$.

Proof. If a connection ω is considered as a aping ω : $\mathbb{T P} \rightarrow \mathcal{L}(G)$, then the pull-back $\sigma^{*} \omega$ is defined by

$$
\begin{equation*}
\sigma^{*} \omega=\omega \circ d \sigma \tag{3.6}
\end{equation*}
$$

Since ω is φ-conjugate with $\bar{\omega}$, thus there exist a reduced fibre bundle $P_{0}\left(M, H_{e f}\right)$, where H_{p} is given by (3.4), and family, of local sections $\mathcal{G}_{a}: U_{a} \rightarrow P$ of $P(M, G)$ such that $\left\{U_{a}\right\}$ is an open covering of M and for every a $\in A$

$$
\begin{align*}
& 6_{a}\left(U_{a}\right) \subset P_{0} \tag{3.7}\\
& \sigma_{a}^{*} \bar{\omega}=\mathcal{L} \varphi \circ \sigma_{a}^{*} \omega_{0}
\end{align*}
$$

define

$$
\begin{align*}
& \bar{U}_{a}=T^{p, r} U_{a}=T^{p, r_{M} \mid U_{a}} \tag{3.9}\\
& \bar{\sigma}_{a}=T^{p, r_{\sigma_{a}}: \bar{U}_{a} \rightarrow T^{p, r_{P}} .} \tag{3.10}
\end{align*}
$$

The family $\left\{\bar{U}_{a}\right\}$, is an open covering of $T^{p, r} \mathrm{M}_{\text {. }}$ According to Provoaction 1.1. $T^{p},_{P_{0}}^{a}\left(T^{p,} r_{M}, T^{\left.p, r_{H_{\varphi}}\right)}\right.$ is a reduced fibre bundle in $T^{p, r_{p}}$ $\left(T^{p}, r_{M}, T^{p, r_{G}}\right)$. If $j_{0}^{r} \xi \in T^{p, r_{H}}$, then $\xi: R^{p} \rightarrow H_{\varphi}$, that in $\varphi \cdot \xi=\xi$. It implies that

$$
\left(T^{p}, r_{\varphi}\right)\left(j_{0}^{r} \xi\right)=j_{0}^{r}(\varphi \circ \xi)=j_{0}^{r} \xi .
$$

Thus, we have

Now, using standard methods $([5],[6]$) , we obtain that there exists a reduced fibre bundle $\bar{P}_{0}\left(T^{p, r_{M}} \bar{H}\right)$ in $T^{p}, r_{P}\left(T^{P}, \Gamma_{M}, T^{P}, r_{G}\right)$ such that

$$
\begin{equation*}
T^{p, r_{p_{0}} \subset \bar{p}_{0}} . \tag{3.11}
\end{equation*}
$$

From (3.7) , (3.10) and (3.11) wo obtain $\overline{\boldsymbol{\sigma}}_{a}\left(\bar{U}_{a}\right) \in \overline{\mathrm{P}}_{0}$ for every $\in A$.

From (3.6) and (3.8) we have

$$
\bar{\omega} \circ d \sigma_{a}=\mathcal{L} \rho \circ \omega \circ d \sigma_{a}
$$

and it implies

$$
\begin{equation*}
T^{p, r} \bar{\omega} \circ T^{p, r}\left(d \sigma_{a}\right)=T^{p, r}(\mathcal{L} \varphi) \circ T^{P, r} \omega \circ T^{p, r}\left(d \sigma_{0}\right) \tag{3.12}
\end{equation*}
$$

According to the general notations for tangent mapping we have $d \sigma_{a}=T^{1}, 1_{6}$ and now from the commutativity of the diagram (1.9) and the formula (2.10) we obtain

$$
\begin{equation*}
r^{p, r}\left(d \sigma_{a}\right)=\left(\alpha_{p}^{11, p r}\right)^{-1} \circ d \bar{\sigma}_{a} \alpha_{a}^{11, p r}=\alpha_{p}^{p r .11} \circ d \bar{\sigma}_{a} \circ \alpha_{U_{a}^{11}}^{11, p r} \tag{3.13}
\end{equation*}
$$

Now, from (3.12), (3.13) and Proposition 2.7 we have

$$
\begin{aligned}
& \Omega_{G} \circ T^{p, r_{\omega}} \circ \alpha_{p}^{p r, 11} \circ d \bar{\sigma}_{a} \circ \alpha_{U_{a}}^{11}, p r \\
&=\Omega_{G} \circ T^{p, r} \bar{\omega} \circ T^{p, r}\left(d \sigma_{a}\right)= \\
&=T^{p, r}(\mathcal{L} \varphi) \circ T^{p, r} \omega \circ \alpha_{p}^{p r, 11} d \bar{\sigma}_{a} \circ \alpha_{U_{a}}^{11}, p r \\
&\left.p, r_{\varphi}\right) \circ \Omega_{G} \circ T^{p, r_{\omega}} \circ \alpha_{\frac{p}{p r}, 11}^{p} d \bar{\sigma}_{a} \circ \alpha_{U}^{11, p r}
\end{aligned}
$$

Since $\alpha_{U_{a}}^{11, p r}$ is a diffeomorphism, thus

$$
\Omega_{G} \circ T^{p, r} \bar{\omega} \circ \alpha_{p}^{11}, p r \circ d \bar{\sigma}_{a}=\mathcal{L}\left(T^{p, r} \varphi\right) \circ \Omega_{G} \circ T^{p, r} \omega \circ \alpha_{p}^{11, p r} \circ d \bar{\sigma}_{a} .
$$

Since Ω_{G} and $\mathcal{L}\left(T^{p, r} \varphi\right)$ are linear and restrictions of $d \bar{\sigma}_{a}$ to every fibre are linear, thus the last equality implies

$$
\begin{aligned}
\Omega_{G} & \circ\left(T^{p, r} \bar{\omega} \circ \alpha_{p}^{11, p r}\right)(0) \circ d \bar{\sigma}_{a}= \\
& =\mathcal{L}\left(T^{p, r} \varphi\right) \circ \Omega_{G} \circ\left(T^{p} \cdot r_{\omega} \circ \alpha_{p}^{11, p r}\right)^{(0)} \circ d \sigma_{a}
\end{aligned}
$$

and using (3.3) and (3.6) we obtain

$$
\bar{\sigma}_{a}^{*} \bar{\omega}_{p r}=\mathcal{L}\left(T^{p}, r_{e p}\right) \circ \sigma_{a}^{*} \omega_{p r}
$$

According to Proposition 3.2 , the last egality means that $\vec{\omega}_{p r}$ is $T^{p} \cdot r_{\varphi}$ -conjugate with $\omega_{p r}$. The proof is finished.

REFERENCES

[1] F. Adame: Lectures on Lie groups, W.A. Benjamin INC.. New York - Amm sterdam 1969.
[2] C. Chevalley: Theory of Lie groups, Princeton University Press 1946.
[3] J. Gancarzewicz: Conjugate connections, Coll. Math. 26(1972), 193-206.
[4] J. Gancarzewicz: Geometria rózniczkowa, PWN, Warszawa 1987.
[5] J. Gancarzewicz and M. Salgado: The bundle of p^{r}-jets over homogenous spaces, Preprint University of Santiago de Compostele, Octobre 1987.
[6] S. Kobayashi and K. Nomizu: Foundations of differential geometry, vol. I. New York - London 1963.
[7] A. Morimoto: Prolongations of geonetric structures. Lect. Nagoya Univ. 1968.
[8] A. Morimoto: Prolongations of connections to the tangent bundle of pr-velocities. Nagoya Math. J. 1969, 101-115.
[9] В.П. Ведерников, Симметрические пространства и сопрлженные связности, Труды кафедри геометри, Казань 1965, 7-59.

