DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Antony JAKUBOWICZ

ON HOMOMORPHISM CONNECTED WITH DERIVATION
§ 1. Homomorphisms of modules of tensor fields

Let x_{n} be n-dimensional space. By F, B, B^{*}, T_{q}^{p} we shall denote the ring of functions on X_{n}, the module of vector fields on X_{n}, the module of covector fields on x_{n} and the modules of tensor fields of type (p, q) on X_{n} respectively. Now let A, T, U be given tensor fields of type $(q+r+t, p+s+w),(p, q),(t+r, w+s)$ respectively, that is:

$$
A \in T_{W+B+p}^{t+r+q}, \quad T \in T_{q^{\prime}}^{P}, \quad U \in T_{W+s}^{t+r} .
$$

Then A acts homomorphism on the module T_{q}^{P} following:

$$
\begin{align*}
& T_{q}^{p} \rightarrow T_{w+\theta^{\circ}}^{t+r} \quad T_{q}^{p} \ni T=\left(T_{\mu_{1} \cdots \mu_{q}}^{\lambda_{1} \cdots \lambda_{p}}\right) \longrightarrow \\
& \rightarrow A T=U=\left(U_{\omega_{1} \ldots \nu_{t} \lambda_{1} \quad \lambda_{r}}^{\omega_{1}} \mu_{1} \cdots \omega_{s}\right) \in T_{w+8}^{t+r}, \tag{1.1}
\end{align*}
$$

where for

$$
A=\left(A_{1}^{\nu_{1} \ldots \nu_{t} \lambda_{1} \ldots \lambda_{r}} \begin{array}{l}
\beta_{1} \ldots \beta_{q} \\
\omega_{1} \ldots \omega_{w} \mu_{1} \ldots \mu_{\mathrm{s}}
\end{array} \alpha_{1} \ldots \alpha_{p}\right)
$$

we have

$$
\begin{align*}
& \nu_{1} \ldots \nu_{t} \lambda_{1} \ldots \lambda_{r} \beta_{1} \cdots \beta_{q} \tag{1,2}\\
& \omega_{1} \ldots \omega_{w} \mu_{1} \cdots \mu_{s} \alpha_{1} \cdots \alpha_{p}
\end{align*}{ }^{\alpha_{1}}{ }^{\alpha_{1}} \beta_{1} \cdots \beta_{q}=\alpha_{\omega_{1}}^{\nu_{1} \ldots \nu_{t} \lambda_{1} \ldots \lambda_{r}}{ }_{\omega_{1}}^{\nu_{1}} \mu_{1} \ldots \mu_{s} .
$$

Dor $t=w=0, r=p, \quad=q$ we have in (1.1) endomorphism of module of tensor fields T_{q}^{p} of type (p, q). Tensor field A of type $(t+r+q$, $w+s+p$) in (1.1) is the metric of homomorphism in (1.1), where in (1.2) the indices $\left(\lambda_{1} \ldots \ldots, \lambda_{r}, \mu_{1} \ldots, \mu_{s}\right)$ and $\left(\alpha_{1} \ldots \ldots, \alpha_{p}, \beta_{1} \ldots \ldots, \beta_{q}\right)$ are rows and columns respectively for each square blocks of ($\nu_{1} \ldots \ldots \nu_{t}$), $\omega_{1}, \ldots \omega_{w}$).

For endomorphism, therefore for $t=w=0, r=P, \quad q^{\prime}$ we have only one square matrix.

When dim Der $A=0$, then homomorphism (1.1) is iniection. For $t=w=0$, $r=p, s=q$ for endomorphism for $\operatorname{dim} \operatorname{Ker} A=0 \Longleftrightarrow \operatorname{det} A \neq O$ we have automorphism.

With homomorphism (1.1) is associated for $t=w=0$ following homomorphism

$$
\left.\begin{array}{rl}
\Gamma: T_{p+s}^{q+r} \rightarrow T_{s}^{r} \cdot T_{p+s}^{q+r} \ni A & =\left(\begin{array}{c}
\lambda_{1} \cdots \lambda_{r} \\
\beta_{1} \cdots \beta_{q} \\
\mu_{1} \cdots \mu_{s}
\end{array} \alpha_{1} \cdots \alpha_{p}\right. \tag{1.3}
\end{array}\right) \rightarrow \Gamma(A)=U=
$$

where $U=A T$ in (1.1) for $t=w=0$.
To be made a problem to give the necessary and sufficient conditions for existence of the solution of system of linear equations $A T=U$, in which T, U are given and A is unknown.
§ 2. Derivation and homomorphism connected with derivation

A linear endomorphism D is called a derivation if it satisfies the following conditions [1]:

$$
\begin{align*}
& \text { [a) D is type proserving, i.e. } \\
& D \text { End (} T_{q}^{p} \text {), where } T_{q}^{p} \text { is a mqdule of tensor fields } \\
& \text { of type (} p, q \text {) } \tag{2.1}\\
& \text { b) } D(K \times L)=D K \times L+K \times D L \text { for all tensor fields } K \text { and } L \\
& \text { c) D comates with every contraction. } \\
& \text { Let } D \text { be a tensor field of type (1.1): } D \in T_{1}^{1} \text {. Then } D \text { ects as deriva- } \\
& \text { tion on the module } T_{q}^{p} \text { as following: }
\end{align*}
$$

$$
\begin{align*}
& O K=\sum_{i=1}^{P} D_{\alpha_{i}}^{\lambda_{1}} \cdot k_{\mu_{1} \cdots \mu_{q}}^{\lambda_{1} \ldots \lambda_{1-1} \alpha_{1} \lambda_{1+1} \cdots \lambda_{p} .} \\
& -\sum_{j=1}^{q} o_{\mu_{j}}^{\beta_{j}} \cdot k_{\mu_{2} \cdots \mu_{j-1} \beta_{j} \mu_{j+1} \cdots \lambda_{p}}^{\lambda_{1}} \\
& =D_{\mu_{1} \ldots \lambda_{p} \beta_{1} \cdots \beta_{q}}^{\lambda_{1}} \cdot k^{c_{1} \cdots c_{1} \cdots \alpha_{p}} \tag{2.2}
\end{align*}
$$

where $k=\left(k_{\mu_{1} \cdots \mu_{q}}^{\lambda_{1} \cdots \lambda_{p}}\right) \in T_{q}^{p}$ and

$$
\begin{aligned}
& D_{\mu_{1} \cdots \mu_{q} \alpha_{q} \cdots \alpha_{p}}^{\lambda_{1} \ldots b_{p} \beta_{1} \cdots \beta_{q}}=\sum_{i=1}^{p} \delta_{c_{1}}^{\lambda_{1}} \cdots \delta_{\alpha_{1-1}}^{\lambda_{i-1}} \cdot D_{\alpha_{i}}^{\lambda_{1}} \cdot \delta_{\alpha_{1+1}}^{\lambda_{1+1}} \ldots \delta_{\alpha_{p}}^{\lambda_{p}} \cdot \delta_{\mu_{1}}^{\beta_{1}} \cdots \delta_{\mu_{q}}^{\beta_{q}}- \\
& -\sum_{j=1}^{q} \delta^{\lambda_{1}} \ldots \delta_{\alpha_{p}}^{\lambda_{p}} \cdot \delta_{\mu_{1}}^{\beta_{1}} \ldots \delta_{\mu_{j-1}}^{\beta_{j}-1} \cdot o_{\mu_{j}}^{\beta_{j}} \cdot \delta_{\mu_{y}+1}^{\beta_{j}+1} \ldots \delta_{\mu_{q}}^{\beta_{q}} . \\
& M_{D}={ }_{0}^{\lambda_{1} \cdots \lambda_{p} \beta_{1} \cdots \beta_{q}} \quad \text { is the tensor }
\end{aligned}
$$

field of type $(p+q, p+q): M_{D} \in T_{p+q}^{p+q} ; M_{D}$ is the matrix too, where , $\left(\lambda_{1}, \ldots, \lambda_{p}, \mu_{1} \ldots \ldots, \mu_{q}\right)$ and ($\left.\alpha_{1} \ldots, \alpha_{p}, \beta_{1} \ldots \ldots, \beta_{q}\right)$ are rows and columns respectively; it is the matrix of derivation by means of a tensor field O of type (1,1) es endomorphism of module of tensor fields T_{q}^{P} in (3.2).

To be made a problem to give a necessary and sufficient conditions for the derivation acting in a module of tensor fields T_{q}^{P} by means of a tensor field D ot type $(1,1)$ be the automorphism. We shall give them in a effective form by giving the traces and the determinant of the matrix of tensor field $D=\left(D_{\mu}^{2}\right)$:

$$
\begin{align*}
& \sigma_{1}:=0_{\alpha}^{\alpha}, \sigma_{i}:=11 D_{[}^{\alpha_{1}}\left[\alpha_{1} \cdot D_{\alpha_{2}}^{\alpha_{2}} \ldots 0_{\alpha_{1}}^{\alpha_{1}}\right] \\
& (i=1 \ldots, n-1): \text { not sum over } \tag{2.4}\\
& \alpha_{1}<\alpha_{2}<\ldots<\alpha_{i} ; \sigma_{n}:=\operatorname{det}\left(D_{\mu}^{\lambda}\right) .
\end{align*}
$$

Theorem ([2]). The necessary and sufficient condition that the derivation acting in the module of tensor fields $T_{q}^{p}(p \notin q)$ by means of a tensor field D of type (1.1) be the automorphism, is

$$
\begin{equation*}
\operatorname{det} M_{D}=\oint\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right) \neq 0 \tag{2.5}
\end{equation*}
$$

where \oint is functions of variables $\sigma_{1}, 6_{2}, \ldots, \sigma_{n}$ and M_{D} is the matrix of derivation.

Effective form of the function \oint for any $p, q(p \neq q$) and any $n(n \geqslant 2)$ is not found. For T_{o}^{P} (or T_{p}^{O}) over 2-dimensional space X_{2} the function \oint is following [2]:

$$
\begin{aligned}
\operatorname{det} M_{D} & =\oint \\
& =\prod_{k=0}^{s}\left(k(p-k) 6^{2}+(2 k-p)^{2} . \Omega\right) \\
& =\frac{1}{2}(p-1) \text { for } p \text { odd } \\
s & =\frac{1}{2} p \text { for } p \text { oven; } \\
6 & :=D_{\alpha}^{\alpha} \quad \Omega:=\operatorname{det}\left(D_{\mu}^{\lambda}\right) .
\end{aligned}
$$

Theorem ([2]). A derivation acting in the module T_{p}^{P} of type (p, p) by mesne of a tensor field D of type (1,1) can never be the automorphism, Homomorphise acting by help of tensor field $H \in T_{w+1}^{t+1}$ on the module T_{q}^{p} as derivation is following:
where for A in (1.1) and in (1.2) we have $r=p, s=q$ and

$$
-\sum_{j=1}^{q} \delta_{\alpha_{1}}^{\lambda_{1}} \ldots \delta_{\mu_{p}}^{\lambda_{p}} \cdot \delta_{\mu_{1}}^{\beta_{1}} \ldots \delta_{\mu_{j-1}}^{\beta_{i-1}} \cdot{ }_{\mu_{1}}^{\nu_{1} \ldots \omega_{t} \beta_{j}} \cdot \delta_{w_{1}}^{\mu_{j}}{ }_{\mu_{j+1}}^{\beta_{j+1}} \ldots \delta_{\mu_{q}}^{\beta_{q}} .
$$

For $t=w=0$ we have endomorphism as derivation.

$$
\begin{aligned}
& { }^{\nu_{1} \ldots \nu_{t} \lambda_{1} \ldots \lambda_{p} \beta_{1} \ldots \beta_{q}}{ }_{\omega_{1} \ldots \omega_{w} \mu_{1} \ldots \mu_{q} \alpha_{1} \ldots \alpha_{p}}= \\
& :=\sum_{i=1}^{p} \delta_{\alpha_{1}}^{\lambda_{1}} \ldots \delta_{\alpha_{1-1}}^{\lambda_{1-1}},{ }_{\omega_{1}}^{\nu_{1} \ldots \nu_{1} \lambda_{1}}, \delta_{w \alpha_{1}}^{\lambda_{1+1}} \ldots \delta_{\alpha_{1+1}}^{\lambda_{p}}, \delta_{\alpha_{p}}^{\beta_{1}} \ldots \delta_{\mu_{1}}^{\beta_{q}}
\end{aligned}
$$

$$
\begin{align*}
& T_{q}^{P} \longrightarrow T_{w+q}^{t+P} \cdot T_{q}^{P} э T \longrightarrow H T=U \in T_{w+q^{*}}^{t+P} \\
& H T=\sum_{i=1}^{P} H_{\omega_{1} \cdots \omega_{w} \alpha_{1}}^{\nu_{1} \cdots \lambda_{t} \lambda_{1}} \cdot T_{\mu_{1} \cdots \mu_{q}}^{\lambda_{1} \cdots \lambda_{1-1} \alpha_{i} \lambda_{1}+1 \cdots \lambda_{p_{2}}} \\
& -\sum_{j=1}^{q} H_{\omega_{1} \ldots \omega_{w} \mu_{y}}^{\nu_{1} \ldots \nu_{t} \beta_{j}} \cdot{ }^{\lambda_{\mu_{1}} \ldots \lambda_{1} \ldots \mu_{y-1} \beta_{j} \mu_{y+1} \cdots \mu_{q}}{ }^{\lambda_{1}} \tag{2.7}\\
& u=\left(U_{\omega_{1}}^{\nu_{1} \ldots \nu_{t} \lambda_{1} \ldots \lambda_{p}} \omega_{1} \cdots \mu_{q}\right) \in T_{w+q}^{t+p}{ }^{\omega_{1}}
\end{align*}
$$

For $t=0, w=1$, for $U_{\sigma \mu_{1} \cdots \mu_{q}}^{\lambda_{1} \cdots \lambda_{p}}=\nabla_{\sigma} T_{6 \mu_{1} \cdots \mu_{q}}^{\lambda_{1} \cdots \lambda_{p}}-\partial_{6} T_{\mu_{1} \cdots \mu_{q}}^{\lambda_{1} \cdots \lambda_{p}}$ and for $H_{6 \beta}^{\alpha}=\Gamma_{6 \beta}^{\alpha}$ we have covariant derivative $\nabla_{6}{ }^{\top}$ of tensor field T by help connection $\left(\Gamma_{\sigma \beta}^{\alpha}\right)$.

To be made problem to give necessary and eufficient conditions for homomorphiem acting by help of tensor field $H \in T_{w+1}^{t+1}$ on the oodule $T_{2 p}^{0}$ ae derivation for

$$
\begin{equation*}
\text { Ker } a \neq 0, \operatorname{det}(T) \neq 0 \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
m: & T_{2 p}^{0} \rightarrow T_{w+2 p}^{t} \cdot T_{2 p}^{0} \ni T=\left(T_{\lambda_{1} \ldots \lambda_{p} \mu_{1} \ldots \mu_{p}}\right) \rightarrow H T \cdot u= \\
& =\left(u_{\omega_{1} \ldots \omega_{w} \lambda_{1} \ldots \lambda_{p} \mu_{1} \ldots \mu_{p}}^{\nu_{1} \ldots \nu_{1}}\right) \in T_{w 2+p^{\prime}}^{t}
\end{aligned}
$$

where

$$
\begin{align*}
& H T=-\sum_{i=1}^{p} H{ }_{\omega_{1}}^{\nu_{1} \ldots \nu_{i} \alpha_{1}} \cdot \omega_{w}{ }_{\lambda_{1}} \lambda_{1} \ldots \lambda_{1-1} \alpha_{1} \lambda_{1+1} \cdots \lambda_{p} \mu_{q} \cdots \mu_{p} \tag{2.10}\\
& -\sum_{j=1}^{p}{ }_{H_{1}}^{\nu_{1} \cdots v_{t} \beta_{j}} . T_{\omega_{1}} \mu_{\lambda_{j}} \ldots \lambda_{p} \mu_{1} \cdots \mu_{y-1} \beta_{j} \mu_{j+1} \cdots \mu_{p} . \\
& \operatorname{det}(T)=\operatorname{det}\left(T_{\lambda_{1}} \ldots \lambda_{p \mu_{2}} \cdots \mu_{p}^{\mu_{p}}\right) \text {. } \tag{2.11}
\end{align*}
$$

where in the matrix $\left(T_{\lambda_{1}} \ldots \lambda_{p} \mu_{1} \ldots \mu_{p}\right)$ the indices $\left(\lambda_{1} \ldots, \lambda_{p}\right),\left(\mu_{1}, \ldots, \mu_{p}\right)$ are rowe and columns respectively.

Anslogously problem is for the module T_{p}^{P} of tensor fields of type (p, p).

5 3. Homomorphiam aseociated with derivation

With derivation (2.7) is aseocieted for $t=m=0$ the following homomorphism:

$$
\begin{equation*}
\Gamma: T_{1}^{1} \rightarrow T_{q}^{p}, T_{1}^{1}, T_{1}^{1} \quad g \quad 0 \rightarrow \Gamma(D)=D T=U \in T_{q}^{p} \text {. } \tag{4.1}
\end{equation*}
$$

where $D T$ is defined in (2.7) for $D=H$ and for $T=w=0$. The matrix of this homomorphism is following:

$$
\begin{align*}
\lambda_{A_{1}}^{\lambda_{1} \cdots \lambda_{p}} \propto & =\sum_{q \beta}^{p} \delta_{\beta=1}^{\lambda_{i}} \cdot T_{\mu_{1} \cdots \mu_{q}}^{\lambda_{1} \cdots \lambda_{i-1} \alpha \lambda_{i+1} \cdots \lambda_{p}} \\
& -\sum_{j=1}^{q} \delta_{\mu_{j}}^{\alpha} \cdot{ }^{T} \mu_{\mu_{1}} \cdots \mu_{p-1} \cdots \mu_{j+1} \cdots \mu_{q} \tag{3.2}
\end{align*}
$$

where $\left(\lambda_{1} \ldots, \lambda_{p} \cdot \mu_{1} \ldots, \mu_{q}\right)$ and (α, β) are rows and columns respectively.
To be made a problem to give the necessary and aufficient conditions for existence of the solution of systen of linear equations DT $=U$. in which T.U are given and D are unknown. The general solution for all tensor fielde T.U is in [2].

With derivation (2.7) is associate for $t=0, w=1$ following syametrical homomorphise:

$$
\begin{align*}
& \Gamma: T_{2}^{(s)_{1}} T_{p+1}^{p} \cdot T_{2}^{(s)_{1}} \ni s=\left(s_{\beta \gamma}^{\alpha}\right) \rightarrow \Gamma(s)=S T= \\
& =\binom{\lambda_{1} \cdots \lambda_{p}}{{ }_{6} \mu_{1} \cdots \cdot \mu_{q}}=u \in T_{q+1}^{p} . \tag{3.3}
\end{align*}
$$

where ST is defined in (2.7) for $S=H$ and for $t=0, w=1$ and where S is symmetrical tensor field of type (1.2). i.e. $S_{\beta \gamma}^{\alpha}=S_{\gamma}^{\alpha} \beta^{\alpha}$. The matrix of this homomorphism is following:

$$
\begin{align*}
& { }_{2 A_{1}}^{\lambda_{1} \ldots \lambda_{p}(\beta \gamma)}=2 \sum_{q}^{p} \delta_{i=1}^{p} \delta_{\sigma}^{(\gamma} \delta_{\alpha}^{\mid \lambda_{i}} \cdot{ }_{\mu_{\mu}}^{\left.\lambda_{1} \ldots \lambda_{i-1} \mid \beta\right) \lambda_{i+1} \ldots \mu_{p}} \\
& -2 \sum_{j=1}^{q} \delta_{6}^{\left(\gamma{ }_{\gamma} \delta_{\mu}^{\beta)}{ }_{T}{ }_{\mu_{1}}^{\lambda_{1} \cdots \lambda_{p} \cdots \mu_{j-1}} \alpha_{\mu_{j+1}} \cdots \mu_{q}\right.} \tag{3.4}
\end{align*}
$$

where $\left(\lambda_{1}, \ldots, \lambda_{p}, \mu_{1} \ldots, \mu_{q}, 6\right)$ and $(\alpha, \beta, \gamma ; \beta \leqslant \gamma)$ are rowe and columns respectively.
Tensor field
and for $s_{\beta \gamma}^{\alpha}=\Gamma_{\hat{\beta \gamma}}^{\alpha}\left(s_{\hat{p} \gamma}^{\alpha}=s_{\gamma \beta}^{\alpha} \cdot \Gamma_{\beta \gamma}^{\alpha, \alpha}=\Gamma_{\gamma \beta}^{\alpha \mathcal{L}}\right)$ we have coveriant derivative ∇_{6}^{T} of tensor field T by help of symmetricsl connection $\Gamma_{6 \lambda}^{\mu}\left(\Gamma_{6 \lambda}^{\mu}=\Gamma_{\lambda 6}^{\mu}\right)$.

To be mede a problen to give the necessary and sufficient conditions for existence of the solution of system of linear equations $S T=U$, in which T, U are given and S are unknown. The genral solution for all tensor fields T,U is not known.

With derivation (2.7) is associated for $t=0, w=1$ and for T_{3}^{0} following non-symmetrical homomorphise:

$$
\begin{equation*}
A: T_{2}^{1} \rightarrow T_{3}^{0} \cdot T_{2}^{1} \ni H=\left(H_{\beta \gamma}^{\alpha}\right) \rightarrow A(H)=A\left(H_{\beta \gamma}^{\alpha}\right)=U=\left(U_{6 \lambda_{\%} \mu}\right) \in T_{3}^{0} \tag{3.5}
\end{equation*}
$$

where H is non-symmetricsi: $H_{\beta \gamma}^{\alpha} \neq H_{\gamma \beta}^{\alpha}$ and where $A\left(H_{\beta \gamma}^{\alpha}\right)$ is defined es following:

$$
\begin{equation*}
{ }^{A_{6 \lambda \mu}}:=-H_{6 \lambda}^{\alpha} \cdot g_{\alpha \mu}-H_{\mu \sigma}^{\alpha} \cdot g_{\lambda \alpha} \text {. } \tag{3.6}
\end{equation*}
$$

 have Einstein derivative $E_{6} g_{\lambda \mu} \mu$ of tensor field $g=\left(g_{\lambda, \mu}\right)$ by help of non-symmetrical connection $\Gamma_{\sigma}^{\mu} \lambda^{\mu}$.

To be made a problem to give the necessary and sufficient conditions for existence of the solution of system of linear equations $A(H)=U$, in which A, H are given and H is unknown. The general solution for all tensor fields T, U is not known, as well bs for Einstein derivative for $\operatorname{det}\left(g_{\lambda \mu}\right) \neq 0$ or for rank $\left(g_{\lambda \mu}\right)=1,2, \ldots, n-1$ and for arbitrary dimension n.

§ 4. Norden-, Otsuki-, and spinor - homomorphism connected with derivation

Norned-homomorphism acting by help of $p+q$ tensor fields (h) $N \in T_{w+1}^{t+1}$ ($h=1,2 \ldots, p+q$) on the module of tensor fields T_{q}^{p} of type $(p, q$) as derivation is following:

$$
\begin{equation*}
T_{q}^{P} \rightarrow T_{W+q}^{t+P} \cdot T_{q}^{P} \ni T \longrightarrow A T=U \quad T_{W+q}^{t+p} . \tag{4.1}
\end{equation*}
$$

where for A in (1.1) and in (1.2) we have $r=p, s=q$ and

$$
\begin{aligned}
& \begin{array}{l}
\nu_{1} \ldots \nu_{t} \lambda_{1} \ldots \lambda_{p} \beta_{1} \cdots \beta_{q} \\
\omega_{1} \ldots \omega_{w} \omega_{1} \cdots \mu_{q} \alpha_{1} \cdots \alpha_{p}
\end{array} \\
& \sum_{i=1}^{p} \delta_{\alpha_{1}}^{\lambda_{1}} \ldots \delta_{\alpha_{1-1}}^{\lambda_{1-1}},{ }_{N_{\omega_{1}}}^{(1)} \ldots \nu_{1} \ldots \omega_{w} \lambda_{1}, \delta_{\alpha_{1}}^{\lambda_{i+1}} \ldots \delta_{\alpha_{i+1}}^{\lambda_{p}} \ldots \delta_{\mu_{1}}^{\beta_{1}} \ldots \delta_{\mu_{q}}^{\beta_{q}}-
\end{aligned}
$$

$$
-\sum_{j=1}^{q} \delta_{\alpha_{1}}^{\lambda_{1}} \cdots \delta_{\alpha_{p}}^{\lambda_{p}} \cdot \delta_{\mu_{2}}^{\beta_{1}} \cdots \delta_{\mu_{j-1}}^{\beta_{j-1}} \cdot N_{(j)^{\omega_{1}} \cdots \omega_{w} \mu_{j}}^{\nu_{1} \ldots \nu_{t} \beta_{y}} \cdot \delta_{\mu_{j+1}}^{\beta_{j+1}} \cdots \delta_{\mu_{q}}^{\beta_{q}}
$$

For $t=w=0$ we have Nornde-endomorphism.
$(1)=(2) \quad(p)$

morphis. and for t = w - 0 we have Otsuki-endomorphism.

$(1) \quad(1)(2) \quad(2) \quad(p) \quad(p) \quad(p+1)$
 $(p+r)$
$S$$(q=p+r)$ we have spinor-homomorphiem. For $t=w=0$ we $\stackrel{N}{(p+r)}$
have epinor-andomorphism.
We investigate the problem to find necesaery and sufficient conditions by means of the tencor fields of type (1.1) for $t=w=0$ for the derivetion, or O-endomorphism or S-endomorphiem or N-endomorphian acting in T_{q}^{P} to be an automorphien. We shall give them in an effective form by giving the trmces, determinants and mixed invariants of tensor fields of type (1,1).

In case of derivation the traces and the determinante of tensor field of type (1.1) are needed only. In cese of an O-endomorphism for teneor fields of type (p, p) the traces and determinante of two tensor fields of type (1,1) are only needed as well. For others cases the problea 1s open.

Example. For 0 -endomorphisi for $n=2$ and for $K \in T_{2}^{1}$ the funktion of two traces and two determinante is following:

$$
\text { det } \begin{aligned}
M_{o-\text { end }} & =\left(\beta+\tau^{2}-6 \tau\right)\left((\alpha+4 \beta)^{2}-5 \beta(\alpha+4 \beta)+\right. \\
& \left.+4 \alpha \tau^{2}+4 \beta 6^{2}-16 \sigma^{2}\right)
\end{aligned}
$$

where $\sigma=P_{\omega}^{\omega}, \tau=Q_{\omega}^{\omega}, \alpha=\operatorname{det}\left(P_{\mu}^{\lambda}\right), \beta=\operatorname{det}\left(Q_{\mu}^{\lambda}\right)$ and where $M_{0-e n d}$ is the matrix of \mathbf{O}-endomorphism.

For derivation, i.e. $P=Q=D \quad(80 \tau=6, \beta=\alpha)$ we obtain:

$$
\operatorname{det} M_{D}=\alpha^{2} \cdot\left(6^{2}-2 \alpha\right)
$$

Exagole. For 0-andomorphisw for $n=2$ ond for $K \in T_{1}^{1}$ we have:

$$
\text { det } M_{o-\text { end }}=\beta 6^{2}+\alpha \tau^{2}-(\alpha+\beta) 6 \tau+(\alpha-\beta)^{2}
$$

for derivation D we get det $M_{D}=0$ and derivation acting in the aodule of tensor fielde of type (1,1) can never be an automorphien, whet 1e true with theoren in § 3.

With Norden-, Oteuk1-, spinor-endomorph1sm in (4.1). (4.2) for t=w=0 1s associated following homonorphise:

$$
\stackrel{(T)}{\Gamma}: \underset{h=1}{p+q} T_{1}^{1} \rightarrow T_{q}^{p},\left(\begin{array}{c}
p+q \tag{4.3}\\
x \\
h=1
\end{array} T_{1}^{i}\right) \ni N=\stackrel{(1)(2)}{N, N, \ldots, N, N(1)} \underset{(2)}{N}, \ldots .
$$

$$
\stackrel{N}{N}(q) \rightarrow \stackrel{(T)}{\Gamma}(N)=U \in T_{p}^{p} \text { where } U \text { ie defined in }(5.2) \text {. }
$$

For $p+q=2$ and for $\begin{gathered}(1)(2) \\ N\end{gathered}=\ldots \ldots\binom{(p)}{(1)}(2)=\ldots$ we have
Otsuki-homomorphism. For $p=q+r$ or $q=p+r$ we have opinor-homomorphisa.

To be made problen to give the necessary and sufficient conditions for existence of the solution of systex of ilnear equations $\Gamma^{(T)}(N)=U$, in which T, U are given and N are unknown. The general solution for ell tensor fields T,U is not known.
§5. Homonorphisa acting by help of curvature tensor as derivation
Let $R=\left(R_{\alpha \beta \lambda}^{\mu}\right)$ be the curvature tensor field and let $\left(g_{\lambda \mu}\right) \in T_{2}^{0}$. $\left(G_{\alpha \beta}, \mu_{\mu}\right) \in T_{4}^{0}$, where T_{2}^{0}, ${ }^{\text {a }}$ the module of tenser fielde of type $(0,2)$ of symotrical tensor fields. Then R acts as derivation on the module
T_{2}^{0} as following:

$$
\begin{equation*}
-\mathrm{T}_{2}^{0} \rightarrow T_{4}^{0}, \quad \stackrel{B}{T}_{0}^{0} \ni\left(g_{\lambda \mu}\right) \rightarrow \square\left(g_{\lambda \mu}\right)=\left(G_{\alpha \beta \lambda \mu}\right) \in T_{4}^{0}, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\alpha \beta \lambda \mu \mu}:=R_{\alpha \beta \lambda^{\prime}}{ }^{6}{ }_{\sigma \mu}+R_{\alpha \beta \mu}{ }^{6} g_{\lambda 6^{\circ}} \tag{5.2}
\end{equation*}
$$

Theoren (L. P. Eisenhart and D. Voblen).
The necessary condition for the metrizability of space with symetric effine connection A_{n} is following:

$$
\left(g_{\lambda \mu \mu}\right) \in \operatorname{Ker}(m) \text { and } \operatorname{det}\left(g_{\lambda \mu \mu}\right) \ngtr 0 .
$$

where is homonorphisa in (5.1), (5.2).

The condition (5.3) depends on invariante a,b,c, the are following:
e: $=n$-dim Ker R, where R is following homomorphism $[3] R: T_{0}^{1} \longrightarrow T_{2}^{1}$, $T_{0}^{1} \ni\left(v^{\lambda}\right) \longrightarrow R\left(v^{\lambda}\right)=R_{\alpha \beta \alpha v^{\alpha}}^{\lambda_{0}} \in \frac{\mathrm{~B}_{2}^{1}}{2}$,
where T_{0}^{1} ie the module of contravariant vector fields and T_{2} is the module of tensor fields of type $(1,2)$ antisymmetrical.
$\mathrm{b}:=\binom{n}{2}$ - dim Kar \mathbf{R}^{2}, where $\mathrm{R}_{\mathrm{R}}^{2}$ is following homonorphiam [3]

 module of skew-symatrical tensor fields of type (2,2).
c: $=\binom{n}{2}$ - dim Ker \tilde{R}, where \widetilde{R} is following coupled endomorfiem [3]
$\tilde{R}: \stackrel{(a)}{T_{0}^{2}} \rightarrow \stackrel{(a)}{T_{2}}{ }_{0}^{\left({ }_{0}^{(0)} r_{0}^{2}\right.} \ni\left(w^{\rho}\right) \longrightarrow \tilde{R}\left(w^{\rho}\right)=R_{\alpha \beta \rho 6^{w}}{ }^{\rho \sigma} \in{ }^{(a)} T_{2}^{0}$.
where $\tilde{R}=\left(R_{\alpha \beta \lambda \mu}\right) \cdot R_{\alpha \beta \lambda \mu}:=R_{\alpha \beta \lambda}{ }^{6} g_{6 \mu} ;{ }^{(Q)}{ }^{\top}{ }_{2}^{0}$ is the module of skew-symmetrical tensor fields of type (0,2).

For A_{3} and A_{4}, 1.e. for 3 -and 4 -dimensional space with symmetrical affine connaction, the condition (5.3) depend only on invariante a,b,c and the cases of values of invariants a,b, in the vetrizability of A_{3} and A_{4} gives for (5.3) the classification of Riemann spaces V_{3} and V_{4} with respect to the inveriants a,b,c. This classification gives exact solutions of field of Riemann spaces V_{3} and V_{4} or Riemann space-times.

The classification of Riemann space-times is following:

$$
\begin{equation*}
\left(v_{466}, v_{465}, v_{464}, v_{463}, v_{462}, v_{442}, v_{363}, v_{362}, v_{343}, v_{241}, v_{000}\right) \tag{5,4}
\end{equation*}
$$

where $V_{\text {abc }}$ denotes the Riemann space-times, for which the curveture tensor has the values of the invariants equal e,b,c.

The classivication of Einstein space-times with respect to the invariants a,b,c and Petrov-Penrose types is following

where $\#_{i}, T_{i}(1=1,2,3)$ ere the Petrow types, I, D,O, II, III, N, M are the Pentose types and Gab are the types with respect to the algebraical invariants a, b, c.

Example. Let us take Petrov spacetime from his monography: $H=G_{4}$ III. providet with the following metric tensor:

$$
\left.\begin{array}{l}
g_{11}=a(t) \cdot g_{22}=b(t) \cdot g_{23}=x \cdot b(t) \tag{5.6}\\
g_{33}=a+x^{2} \cdot b \cdot g_{44}=c=\text { constr } \cdot \neq 0 \\
\text { remaining } g_{\lambda \mu}=0 ;(x, y, z, t)=\left(x^{1}, x^{2}, x^{3}, x^{4}\right) .
\end{array}\right\}
$$

Exact solutions of the field (5.6) with respect to the invariants e,b,c are following

1) f or H_{466}
a $\neq K_{2}\left(t+K_{1}\right)^{2}, \quad b \neq K_{3}\left(t+K_{1}\right)^{2}$

$$
K_{1}, K_{2}, K_{3}=\text { canst: }
$$

2) for H_{363}

$$
\begin{equation*}
a=K_{2}\left(t+K_{1}\right)^{2}, b=K_{3}\left(t+K_{1}\right)^{2}: K_{3} \nmid \frac{4 K_{2}^{2}}{C} \tag{5.7}
\end{equation*}
$$

3) for H_{241}

$$
a K_{2}\left(t+k_{1}\right)^{2}, b=\frac{4 k^{2}}{C}\left(t+k_{1}\right)^{2}
$$

Robertson-Walker space-times. The Robertson Walker space-times has a following metric tensor:

$$
\left.\begin{array}{l}
\left.\left(g_{\lambda \mu}\right)=\operatorname{diag}\left(1-\frac{R^{2}}{1-k r^{2}}\right)-r^{2} R^{2}-r^{2} R^{2} \sin ^{2} 0\right) \tag{5.8}\\
\text { where } R=R(t),(t, r \cdot \theta, \varphi)=\left(x^{1} \cdot x^{2} \cdot x^{3} \cdot x^{4}\right)
\end{array}\right\}
$$

Theoren. Exact solutions of the field (5.8) with respect to the invariants a,b,c are following:

for $k=-1$

1) for $\mathrm{RN}_{466}: R \notin \mathrm{Ct}+\mathrm{D} ; \mathrm{C}, \mathrm{D}=$ const
2) for $\mathrm{RN}_{363}: \mathrm{R}=\mathrm{Ct}+\mathrm{D}, \mathrm{C} \neq \pm 1$
3) for $M=R N_{000}(M=$ Minkowski space-time): $R= \pm t+D$)
for $k=0$
$\left.\begin{array}{l}\text { 1) for } \mathrm{RN}_{466}: R \neq \mathrm{Ct}+\mathrm{D} \\ \text { 2) for } R N_{363}: R=C t+D, C \neq D \\ \text { 3) for } M: R=D\end{array}\right\}$
for $k=1$
$\left.\begin{array}{l}\text { 1) for } \mathrm{RN}_{466}: R \neq C t+D \\ \text { 2) for } \mathrm{RN}_{363}: R=C t+D .\end{array}\right\}$
For Robertson-walker space-time of type RN_{466} the Friedmann solutions are non-aingular and they are the following [9], [10]:
4) for $K=-1: R=\frac{1}{2} A^{2}(\cosh \Psi-1)$. $t=\frac{1}{2} A(\sinh \Psi-\Psi)$
5) for $K=0:\left(\frac{3 A}{2}\right)^{\frac{2}{3}} \cdot t^{\frac{2}{3}}$

For the type RN_{363} the Friedmann solutions are singular and they are on the base of $(5.9),(5.10),(5.11)$ the following
$\left.\begin{array}{l}\text { 1) for } k=-1: R=C t+D, C \neq \pm 1 \\ \text { 2) for } k=0: R=C t+D, C \neq 0 \\ \text { 3) for } k=1: R=C t+D, C, D \text { arbitrary }\end{array}\right\}$

Corollary. In each Friedmann model there existe a singular model, hence a closed model (for $k=1$) can become an open one:

§ 6. Reissner-Nordstrom space times

The Reissner-Nordstron space-times hae following metric tensor:

$$
\begin{equation*}
\left(g_{\lambda, \mu}\right)=\operatorname{diag}\left(-A, \frac{1}{A}, r^{2}, r^{2} \sin ^{2} \theta\right) \tag{6.1}
\end{equation*}
$$

where $A=1-\frac{\tilde{r}_{0}}{r}+\frac{H}{r^{2}} ; \quad r_{0}, H=$ const: $\tilde{r}_{0}=a r_{0}(t, r, \Theta, \varphi)=\left(x^{2}, x^{2}, x^{3}, x^{4}\right)$. Calculeting the coordinates of curvature tensor for metric tensor field in (6.1) we obtain following non vanishing components for $K=\frac{\mathrm{H}}{\mathrm{r}_{0}^{2}}$:

$$
\left.\begin{array}{l}
R_{121}^{2}=\frac{A \tilde{r}_{0}}{r^{4}}\left(r-3 K \tilde{r}_{0}\right) \cdot R_{122}^{1}=-\frac{\tilde{r}_{0}}{A r^{4}}\left(r-3 K \tilde{r}_{0}\right) \\
R_{131}^{3}=-\frac{A \tilde{r}_{0}}{2 r^{4}}\left(r-2 K \tilde{r}_{0}\right), R_{133}^{1}=-\frac{\tilde{r}_{0}}{2 r^{2}}\left(r-2 K \tilde{r}_{0}\right) \\
R_{141}^{4}=R_{131}^{3} \cdot R_{144}^{1}=-\frac{\tilde{r}_{0} s^{2} n^{2} 0}{2 r^{2}}\left(r-2 K \tilde{r}_{0}\right) \\
R_{232}^{3}=\frac{\tilde{r}_{0}}{2 A r^{4}}\left(r-2 K \tilde{r}_{0}\right) \cdot R_{233}^{2}=-\frac{\tilde{r}_{0}}{2 r^{2}}\left(r-2 K \tilde{r}_{0}\right) \tag{6.2}\\
R_{242}^{4}=R_{232}^{3} \cdot R_{244}^{2}=R_{144}^{1} \\
R_{343}^{4}=-\frac{\tilde{r}_{0}}{r^{2}}\left(r-K \tilde{r}_{0}\right), R_{344}^{3}=\frac{\tilde{r}_{0} s_{i n^{2} 0}^{r^{2}}\left(r-K \tilde{r}_{0}\right)}{}
\end{array}\right\}
$$

Theorien; (on classification of, RN space-times, main result). We have the follfoing exsct solutions of field of Reisener-Nordstron RN space- iimes:

1) for $R N_{466}: r \neq 3 K \tilde{r}_{0}$ and $r \neq 2 K \tilde{r}_{0}$ and $r \neq K \tilde{r}_{0}$
2) for $R N_{465}: r=3 K \tilde{r}_{0}$ or $r=K \tilde{r}_{0}$
3) for $R N_{442}: r=2 K \tilde{r}_{0}$
4) for $R N_{000} \approx M: r>5 K \tilde{r}_{0}$.

Proof. The curvature tensor in (6.2) for type RN_{466} has.all the ix block non-vautshing: ($R_{\alpha \beta} \mu_{\beta \gamma}$) $\mu 0$ and is called rogular: for the type RN_{465} has five block nonvanishing and one which is vanishing, namely for $r=3 K \tilde{r}_{0}$ the vanishing block is the firat block: $\left(R_{12} \mu_{\lambda}^{\mu}\right)=0$ and for $r=K \tilde{r}_{0}$ the vanishing block is the axte block: $\left(R_{34} \mu_{\lambda}\right)=0$; for the type RN_{442} for $r=2 K \tilde{r}_{0}$ we have two blocks nonvanishing, namely the first and the sixth one: $\left(R_{12}^{\mu}\right) \neq 0,\left(R_{34}^{\mu}\right) \neq 0$ and four blocks are
 for $r>5 K F_{0}^{\prime}$ the curvature tensor tends to the null curvature tensor. 1.e. Minkowaki space-time M.

As we observe in (6.3), the type of RN space-times changes for $r=K \tilde{r}_{0}$. $2 K \tilde{r}_{0}, 3 K \tilde{r}_{0}, r>5 K \tilde{r}_{0}$ and it has for these values of the radine r the following properties:

Corollary. For RN_{465} for $r=3 K \tilde{r}_{0}$ the space-time is flat in bidirections $\left.\left(v^{[i} w^{2}\right],[0,4], 0,0,0\right)$ and for $r=k \tilde{r}_{0}$ in bidirections (0, 0, 0, 0, 0, $v^{[3,4]}$); for RN_{442} for $r=2 K \tilde{r}_{0}$ the space-time is flat in bidirections ($\left.\left.\left.0, v^{[1} w^{3}\right]^{442}, v^{[1} w^{4}\right], v^{[2} w^{3}\right], v^{2} w^{4}, 0_{i}$) for $r>5 K \hat{r}_{0}^{\prime}$ we have $R N \approx M$ and the space-time becomes the Minkowski space-time.

$$
\begin{aligned}
& \text { For } \mathrm{RN}_{422} \text { we hove following formulas: die Ker }{ }_{\mathrm{R}}^{\mathrm{R}}=2 \Longleftrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.v\left[1_{w} 2\right], v\left[3_{w}^{4}\right], v\left[1_{w}^{3}\right], v^{[1} w^{4}\right], v^{2} w^{3}\right], v\left[2 w^{4}\right],
\end{aligned}
$$

Proof. Proof results imedietely from proof of theorem on the classificetion of RN epace times.

Let us take $K=\frac{P}{4}, P>1 \quad\left(P=1+\varepsilon, E\right.$ swall); therefore $K>\frac{1}{4}$, then $A \neq 0$ and $\frac{1}{A} \notinfty$.

On the base of classification in (6.3) we have following diagram:

In monography [11] Professor Wichmann writes and reasons as follows: a treatment of the photon (quant) as a point particle is unfounded. from this it follows that it is reasonable to treat the photon as a non-point particle. Further. from this it follows that the photon (quant) has a radius $r_{0} \neq 0$.

In the present paper I have based on the above atatenent of Professor Wichaann and I have introduced a theory of the photon (quant) arising fron the wave in view of the space-time of Generalized Reissner-Nordstron.

In monography [12] Professor Piekara writes as follows: how from the wave arises quant (photon)?? It is question, on which we expect the answer. When we this receive, then the precipice between classical physics and quantum physics will have covered.

In the paper [13] I have introduced a theory of the quant arising from the wave in view of the space-time of Reissner-Nordstrom. I have this delivered in Seminar on Differential Geometry at Institute of Matematics of Technical University of Szczecin $16^{\text {th }}$ December 1988. During the discussion Professor Kucharzewski and Professor Zekanowski have said, that very important are properties of scalar curvature. Because scalar curvature for the space-time ef Reissner-Nordstron vanishes identically, therefore in the present paper I have introduced the space-time of Generalized Reissner-Nordstrom and I have given application of the space-time of p-Generalized Reissner-Nordstrom to the theary of the quant arising, as
example of the application in the microscopic gravitational theory with gravitational field of $p-G R N$ for microscopic particle (planckeon).

The metric of p- Generalized Reisener-Nordstrom epace-times (in short $p-G R N$) is following:

$$
\begin{aligned}
& d E^{2}=-A^{p} d t^{2}+A^{p-2} d r^{2}+r^{2}\left(d G^{2}+\sin n^{2} O d \varphi^{2}\right) ; A=1-\frac{r_{o}}{r}+\frac{K \tilde{r}_{o}^{2}}{r^{2}} \\
& \tilde{r}_{0}=d \tilde{r}_{0} .
\end{aligned}
$$

The scalar curvature is following:

$$
R=\frac{(p-1) r^{2} A^{\prime \prime}+2-2 A^{P-1}}{r^{2} A^{p-1}}
$$

Theorem (on the classification of P - GR, P \mathcal{L}, with respect to the algebraical invariants a, b, c of curvature tensor)

1) typ $p-\operatorname{GRN}_{466}$ for $r \neq K \tilde{f}_{0}, r \neq 2 K \tilde{r}_{0}, r \neq 3 K \tilde{r}_{0}$
2) typ $p-\operatorname{GRN}_{465}$ for $r=K \tilde{r}_{0}$ or $r=3 K \tilde{r}_{0}$
3) typ $p-\operatorname{GRN}_{442}$ for $r=2 K \tilde{r}_{0}$
4) typ $p-G R N_{000}=M$ for $r>5 K \tilde{r}_{0}$ (p -GRN abc are these $p-G R N$, which have the invariants a, b, c).

Theorem

where $\delta\left(\frac{\tilde{r}_{0}}{2}\right)$ is Schwartz distribution of Dirac delta in $\frac{\tilde{r}_{0}}{2}$:

$$
\delta\left(\frac{\tilde{r}_{0}}{2}\right)=\left\{\begin{array}{ccc}
0 & \text { for } & r \neq \frac{\tilde{r}_{0}}{2} \\
+\infty & \text { for } & r=\frac{\tilde{r}_{0}}{2}
\end{array}\right.
$$

My proposition of application of p- GRN in the theory of the quant arising, as example in the microscopic gravitational theory with gravitational field of $p-$ GRN 18 following: (on the base of the above two theorems and principle 1 of Prof. Wichmann):

Principles. 1) The quant (the photon) has the radius $r_{0} \neq 0, \tilde{r}_{0}=0 \cdot r_{0}$ 2) The neighbourhood of the wave is the space-time provided with suitable metric tensor for which the curvature tensor is of two types at least (in the classification with respect to the invariants a, b, c of curvature tensor), this apace-tine tends to the space-time of Reissner-Nordstron and in the neighbourhood inside the radius \tilde{r}_{0} of photon the space-tine has properties of the above two theoreas and in the neighbourhood outeide the radius \tilde{r}_{0} of photon the space-time 10 of Minkowaki one (nearly). 3) The quant (the photon) arises in consequency of the change of the space--time in this way, that on the inside of radius r_{0} of quant tha space--time has properties of the above two theorese and on the outaide of radius \tilde{r}_{0} of quant tha space-time becomes tha space-tiee of Minkowski (nearly).

Stetement. The space-tioe p- GRN satisfies the conditions given in principles 1, 2, 3.

Remark. 1-GRN = RN and RN is Reissner-Nordstron space-time for which have for scalar curvature R = 0 .

REFERENCES

[1] S. Kobayashi. K. Nomizm: Foundations of differential geometry, Vol. 1, Nem York-London (1963).
[2] A. Jakubowicz: On derivation of tensor space. Tensor N.S.. vol. 38 (1982). 89-92.
[3] M. Kucharzawaki: wzasnoici przeetrzeni Kleina. I, II, Politechnika Sleaka. Gliwice 1985. 1986.
[4] L.P. Eisenhart, 0 , Veblen: The Riemannian geometry and its generalization. Prac. Nat. Acad. Sc., 8, (1922), 19-23.
[5] A. Jakubowicz: On certain classification of the Riemann spaces and f-dimensional Einstein space-times. Periodice Mathematica Hungarica, Vol. 9, (1978), 49-53.
[6] A. Jakubowicz: On certain concoaitante of tha curvatura tensor of the apace with an affine connection of bivectors, Teneor N.S.. Vol. 24, (1972). 211-216.
[7] M. Kucharzewski: Über die Tensorübertragung, Annali di Mat. pura ed appl., IV, 54, 1961. 65-84.
[8] A. Jakubowicz: Matrizability of apace with syanetric affine connection and classification of Riamann spaces with respect to the algebraic ranks of curvature tensor, Zeszyty Naukowe P.S.
[9] J. Foeter. J.D. Nightingale: A Short course in General Relativity. Longaan, London and New York, 1979 (polish edition, PWN Warszawa 1985).
[10] A. Friedaann: Über die Krümang des Raumes, Z. Phys., 10, 1922, 377-386.
[11] E.H. Wichmann: Quantua Physice, New York 1971 (polish translation PWN. Warsaw 1975).
[12] A.H. Piekara: Elektryczność, materia 1 promieniowanie, PWN, Warazawa 1986.
[13] A. Jakubowicz: Classificetions of the space-times with respect to the algebraic ranks of curvature tensor and their application. International Conference on Differential Geometry end Applications. Beograd 1988, Yugoslavia, P. 27-28.

