Ser£a: MATEMATYKA-FIZYKA z. 64
Nr kol. 1070

DEDICATED TO PROFESSOR MIECZYSLAW KUCHARZEWSKI
WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Ivan KOLÁR̉

NATURAL OPERATORS TRANSFORMING VECTOR FIELDS AND EXTERIOR FORMS INTO EXTERIOR FORMS

Summary. We determine all natural bilinear operators transforming vector fields and exterior p-forms into exterior q-forms.

The classical theory of differential geometric objects, several important contributions to which have been presented by the eninent Polish geometric school, was revisited by A. Nijenhuis in the form of the natural bundles. [5]. His general approach to this fundamental concept of differential geometry iniciated a new wave of research. In particular, such a point of view underlined the role of the natural operators in several differential geometric problens.

In the present paper we study the natural operators transforining vector fields and exterior p-forms into exterior q-forms. In order to get the results interesting geometrically, we restrict ourselves to the bilinear operators. Using our general method from [3], we determine all of then. We find it remarkable that our Proposition 1 gives a new look to the well-known relation between the Lie derivatives and the exterior derivatives of exterior forms. - All manifolds and maps are assumed to be infinitely differentiable.

1. Let $T M$ or $\wedge^{P_{T}}{ }^{*} M$ be the tangent bundle or the p-th exterior power of the cotangent bundle of an m-dimensional manifold M, respectively. Hence both T and $\wedge^{P^{*}}{ }^{*}$ are natural bundles over m-manifolds in the sense of A. Nijenhuis, [5]. Let $C^{\infty} T M$ or $C^{\infty} \wedge^{\rho} T M$ denote the space of all smooth sections of $T M$ or $\Lambda^{P} T^{*} M$.

Definition. A natural operator $A: T \oplus \Lambda^{p} T^{*} \rightarrow \Lambda^{q} T^{*}$ is a system of maps

$$
A_{M}: C^{\infty} T M \times C^{\infty} \wedge^{p} T^{*} M \rightarrow C^{\infty} \wedge^{q} T^{*} M
$$

for every m-manifold M such that
a) for every diffeomorphism $f: M \longrightarrow N$, it holds

$$
A_{N}\left(T f \circ x \circ f^{-1}, \Lambda^{p} T^{*} f \circ \omega \circ f^{-1}\right)=\Lambda^{q} T^{*} f \circ A_{M}(x, \omega) \circ f^{-1}
$$

for all $x \in C^{\infty} T M$ and all $\omega \in C^{\infty} \wedge^{P} T^{*} M$.
b) for every open subset $U \subset M$, it hold

$$
A_{U}(x|U, \omega| U)=A_{M}(x, \omega) \mid U
$$

2. The bilinear Peetre theorem reads that every bilinear support nonincreasing operator has locally finite order. [1]. This implies that every natural bilinear operator $T \oplus \Lambda^{p_{T}} T^{*} \Lambda^{q} T^{*}$ has globally a finite order r. According to the general theory, there is a canonical action of the group G_{m}^{r+1} of all invertible $(r+1)-j e t s$ of R^{m} into R^{m} with source 0 and target 0 on the standard fibres $S^{r}:=J_{0}^{r} T R^{m}, Z^{r}:=$ $=J_{0}^{r} \wedge^{P} T^{*} R^{m}$ and $\Lambda^{q} R^{m *}=\wedge^{q} T_{0}^{*} R^{m}$. (The latter action factorizes through the standard actional of $G_{m}^{1}=G L(G, R)$ on $\wedge^{q_{R} m^{*}}$.) Further, there is a canonical bijection between the r-th order natural bilinear operators $T \oplus \Lambda^{p} T^{*} \rightarrow \Lambda^{q} T^{*}$ and the G_{m}^{r+1}-equivariant bilinear maps $S^{x} \times z^{r} \rightarrow \Lambda^{q} R^{m *}$. [3].

Let α, β be multiindices of range m. Denote by

$$
x_{\alpha}^{1} \quad 0 \leqslant|\alpha| \leqslant r
$$

the canonical coordinates on S^{r}, by

$$
b_{i_{1} \ldots i_{p}}, \beta \quad 0 \leqslant|\beta| \leqslant r
$$

the canonical coordinates on z^{r} and by

$$
c_{i_{1} \ldots i_{q}}
$$

 shall need the explicit expression of the above-mentioned actions in the case $r^{r}=1$ only. Let $a_{i}^{i}, a_{i k}^{\ddagger}$ be the usual coordinates of an element a $E G^{2}$ and let ${\underset{a}{m}}_{1}^{1} \hat{a}_{j k}^{1}$ denote the coordinates of the inverse element a^{-1}. A standard evaluation yields
$\bar{x}^{i}=a_{j}^{i} x^{j}$
$\bar{x}_{j}^{i}=a_{k z}^{i} \tilde{a}_{j}^{z} x^{k}+a_{k}^{i} x_{z}^{k} \tilde{a}_{j}^{z}$
$\bar{b}_{i_{1} \ldots i_{p}}=b_{j_{1} \ldots j_{p}} \tilde{a}_{i_{1}}^{j_{1}}{ }^{\tilde{e}_{i}}{ }_{p}^{j_{p}}$
$\vec{b}_{i_{1} \ldots i_{p}, i}=b_{j_{1}} \ldots j_{p}, j^{\tilde{a}_{i_{1}}} \ldots \tilde{a}_{i_{p}}^{j_{p}} \tilde{a}_{i}+b_{j_{1}} \ldots j_{p}\left[\tilde{a}_{i_{1}}^{j_{1}} \tilde{a}_{i_{2}}^{j_{2}} \ldots \tilde{a}_{i}^{j}+\ldots+\tilde{a}_{i_{1}}^{j_{1}} \ldots \tilde{a}_{i} p_{p}\right]$
$\bar{r}_{1_{1}} \ldots 1_{q}=c_{j_{1} \ldots j_{q}} \tilde{a}_{1_{1}}^{j_{1}} \ldots \tilde{a}_{1}^{1} q_{q}$
3. Let $f: S^{r} \times z^{r} \rightarrow \wedge^{q} R^{m}$ be an G^{r+1}-equivariant ilinear map. Consider the canonical inclusion $1: G L(m, R) \longrightarrow G_{m}^{r+1}$ trasforming every matrix into the, $(r+1)$-jet of the corresponding linear trasformation. One verifies easily that the tranaformation laws of $x_{\alpha,}^{i} b_{i_{1}, \ldots i_{p} \beta}$ with respect to $1(G L(m, R))$ are tensorial. Then the equivariany of f with respect to the homotheties $a_{j}^{i}=k^{-1} \delta_{j}^{1}, k \in R, k>0$ givs the homogeneity condition

$$
k^{q^{f}}\left(x_{\alpha}^{1}, b_{1_{1} \ldots i_{p}, \beta}\right)=f\left(k^{|\alpha|-1} x_{\alpha,}^{1}, k^{|\beta|+p_{b_{1}}} 1_{1} \ldots 1_{p}, \beta\right)
$$

Hence f is a linear combination of those products of X and $b_{1} \ldots 1_{p} \rho_{1}$ that satisfy the relation

$$
\begin{equation*}
q=p-1+|\alpha|+|\beta| \tag{1}
\end{equation*}
$$

4. Consider the case $p=q$. Then the only two possibilties for (1) are $|\alpha|=0,|\beta|=1$ and $|\alpha|=1, \quad|\beta|=0$. We first etermine all $G L(m, R)$-equivariant bilinear maps $f_{1}: \quad R^{m n} \times \Lambda^{p} R^{m *} \otimes \wedge R^{m *} \rightarrow \wedge_{R^{m *}}^{m}$. Anslogously to $[4]$, consider the following diagram

where Alt denote the alternator of the indicated degree. n this diagram the vertical maps are also $G L(m, R)$-equivariant and the $L(m, R)$-equivariant map in the botom row can be determined by the invaiant tensor theorem. [2], [3]. This implies that f_{1} is a linaar comination of the contraction of x^{1} with the derivation entry in $b_{1}, \ldots 1$, and of the contraction of x^{1} with a non-derivation entry in $b_{i_{1} \ldots i_{p} . j}$ followed by the alternation.

Next we determine all GL(回, R)-equivariant bilinear map $f_{2}:\left(R^{m} \otimes R^{m *}\right) x$ $x \wedge^{P_{R}{ }^{n}} \xrightarrow{ } \wedge_{P_{R}{ }^{\text {an }}}$. Consider the diagram

where \tilde{f}_{2} is the linearization of f_{2}. Taking into account that the map in the bottom row is determined by the invariant tensor theorem, we conclude similarly as above that f_{2} is a linear combination of the inner contraction x_{j}^{j} multiplied by $b_{i} \ldots i_{p}$ and of the contraction $x_{i_{1}}^{1} b_{i_{2}} \ldots i_{p}{ }^{j}$

Thus, the equivariancy of f with respect to $1(G L(m, R))$ leads to the following 4-parameter family

$$
\begin{align*}
f_{i_{1} \ldots i_{p}} & =a x^{j} b_{i_{1}} \ldots i_{p}, j \\
& +b x^{j} b_{j}\left[i_{2} \ldots i_{p}, i_{1}\right] \tag{4}\\
& +e x^{j}\left[i_{1} b_{i_{2}} \ldots i_{p} b_{1} \ldots\right.
\end{align*}
$$

a, b, c, e \in R, where the square bracket denotes alternation. Further we express the equivariancy of f with respect to the kernel $a_{j}^{i}=\delta_{j}^{1}$ of the jet projection $G_{m}^{2} \longrightarrow G_{m}^{1}$. It is characterized by

$$
\begin{align*}
0 & =-a x^{j}\left(b_{k i_{2} \ldots i_{p}} a_{i_{1} j}^{k}+\ldots+b_{i_{1}} \ldots i_{p-1} k^{k^{k}} i_{p} j\right)+ \\
& \left.\left.+b x^{j} b_{k\left[i_{2} \ldots i_{p}\right.} a_{i_{1}}^{k}\right]_{j}+c a_{k j}^{k} x^{j} b_{i_{1}} \ldots i_{p}+e x^{k} a_{k\left[i_{1}\right.}{ }^{n_{1}} \ldots i_{p}\right]_{j} \tag{5}
\end{align*}
$$

This implies $c=0$ and one linear relation among a, b, e. Interpreting the result geametrically, we obtain (provided \rfloor denotes the inner product of a vector field and of an exterior form).

Proposition 1. All natural vilinear operators $T \oplus \Lambda^{P} T^{*} \rightarrow \Lambda^{P_{T}} T^{*}$ from the following 2-parameter family

$$
\left.\left.k_{1} d(x\lrcorner \omega\right)+k_{2}(x\lrcorner d \omega\right) \quad k_{1}, k_{2} \in R
$$

There ia a third well-known natural bilinear operator $T \oplus \Lambda^{P_{T}} \rightarrow \Lambda^{P_{T}}{ }^{*}$, namely the Lie derivative $L_{x} \omega$ of ω with respect to x. Hence Proposition 1 implies that $L_{x} \omega$ must be a linear combination of $d(x \mid \omega)$ and $x\rfloor d c r e$ If we evaluate $k_{1}=1=k_{2}$ in two suitable cases, we obtain an interesting proof of the classical formula.
5. In the case $q=p-1$ relation (1) can be satisfied for $|\alpha|=$ $=|\beta|=0$ only. Analogously to (2) or (3), we then deduce that all GL(m,R)-equivariant bilinear maps $R^{m} \times \wedge^{P_{R}} \xrightarrow{m *} \Lambda^{p-1} R^{m *}$ are the constant multiples of the tensor contraction. This proves.

Proposition 2. The only bilinear natural operators $T \oplus \Lambda^{P} T^{*} \rightarrow \Lambda^{p-1} T^{*}$ are the constant multiples of $x\lrcorner \omega$.
6. In the case $q=p+1$ the homogeneity condition (1) and the invariant tensor theoren yield the following 4-parameter fanily

$$
\begin{align*}
& a x^{j}\left[1_{1} 1_{1} \ldots i_{p} \cdot j\right]+b x^{j}\left[i^{b} 1_{1} \ldots . i_{p-1} \cdot i_{p}\right]^{+c x} j_{j}^{j}\left[i_{1} \ldots i_{p}\right]^{+} \\
& +e x^{j} b\left[1_{1} \ldots 1_{p}, i\right] j \tag{6}
\end{align*}
$$

Considering its equivariancy with respect to the kernel of the jet projection $G_{m}^{3} \longrightarrow G_{m}^{1}$, we deduce $c=0$ and two linear independent relations among a, b, e. Interpreting this result geometrically, we obtain

Proposition 3. The only natural bilinear operators $T \oplus \wedge^{p} T^{*} \rightarrow \wedge^{p+1} T^{*}$ are the constent multiples of $d(X J d \omega)$.
7. In the case $q<p-1$ relation (1) cannot be satisfied for any $|\propto|$. $|\beta|$. This implies that the only natural bilinear operator is the zero operator.

In the case $q=p+2$ we proceed similarly to item 6. Having applied the invariant tensor theorem, we see that the only term which does not vanish after alternation is

$$
\begin{equation*}
a x^{k}\left[1^{b_{1}} \ldots 1_{p}, j\right] k \tag{7}
\end{equation*}
$$

However, considering the equivariancy of (7) with respect to the subgroup $a_{j}^{1}=\delta_{j}^{1}$ in G_{m}^{2}, we find $a=0$. In the case $a \geqslant p+3$, the invariant tensor theorem yields the zero map. Thus, we have proved

Proposition 4. In the case $q \neq p-1, p, p+1$ theonly natural bilinear operator $T \oplus \Lambda^{p} T \longrightarrow \Lambda^{q} T^{*}$ is the zero operator.

REFERENCES

[1] Cahen M. de Wilde M. Gutt S. : Local cohomology of the algebra of C^{∞}-functions on a connected manifold, Lett. Math. Phys., 4(1980). 157-167.
[2] Oieudonne J.A., Carrell J.B.: Invarient Theory, Odl and New, Academic Press. New York - London 1971.
[3] Kolár I.: Some natural operators in differential geometry, Proc. Conf. Differential Geometry and its Applications, Brno 1986, D. Reidel 1987. 91-110.
[4] Kolár I., Michor P.E.: All natural concomitants of vector valued differential forms, Rendiconti del Circolo Matematico di Palermo. Supplemento, Serie II, numero 16(1987), 101-108.
[5] Nijenhuis A.: Natural bundles and their general properties, Differential Geometry, Kinokuniya, Tokyo 1972, 317-334.

