Seria: MATEMATYKA-FIZYKA z. 64
Nr kol. 1070

DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Zbigniew KOWALSKI

ON SOME PROBLEM IN GEOMETRY FOR CONNOISSEURS

In the beautiful and rare book of Petersen [1] there is the following problem is given:

Let us consider an arbitrary quadrilateral, the intersection point S of its diagonals and four perpendiculars S1, S2, S3 and S4 to the corresponding sides, cf. Fig. 1.

Fig. 1. Analyeis of the problem

Given the points $1,2,3,4$ there is the problem of reconstruction of the quadrilateral. The intersection point S is not given.

The solution of this problem without any mathematical formula may be of interest (the analytical method leads to the result that the point $s\left(x_{0}, y_{0}\right)$ is the intersection point of two curves of the fourth degree in x and y).

Analysis of the problem

At the point S two circles 4 IV $1 S$ and 2 II 3 S are externally tangent. The centers of these circles lie at the midpoints of the segments S IV and S II.

The circles 1 I 2 S and 3 III 4 possess a similar property.

Construction

Let us draw the axes fo symmetry of the segment 41 and of the segment 23, cf. Fig. 2. Denote these axes by sym 41 and sym 23.

Fig. 2. First step: construction of locus of points \sum of external tangency

Fig. 3. Second step: construction of locus of points \sum^{\prime} of external tangency

Any point 0_{1} on sym 41 is equidistant from the end points 4 and 1 , therefore Q_{1} is the center of the circle C_{1} passing through 4 and 1. We construct the circle C_{3} passing through the points 2 and 3 and externally tangent to the cricle C_{1} at the point denoted by \sum.

Choosing O_{1} on the axis sym 41 we construct the locus. of pointe Σ of external tangency of the circles C_{1} and C_{3}. This locus contains the desired point S since the circle 4 IV 15 passess through the points 4 and 1, the circle 2 II 3 S pessese through the points 2 and 3 and these both circles are externally tangent at the point S. cf. Analysis of the problem.

In a siallar way we proceed with the axes sym 12 and sym 34.
Any point O_{2} on eym 12, cf. Fig. 3, ts the center of the circle C_{2} passing through 1 and 2. We construct the circle C_{4} passing through the points 3 and 4 externally tangent to C_{2} and find the point Σ^{\prime} of external tangency.

Choosing O_{2} on the axis sym 12 we construct the locus of points Σ^{\prime} of external rangency of the circles C_{2} and C_{4}. The desired point s belongs to this locus since the circles 112 S and 3 III 4 S are externally tangent at the point S, cf . Analysis of the problem.

Thus both curves : locus of points \sum and locus of points \sum^{t} intersect each other at the desired point S.
with the point S et hand we draw through the points 1,2,3,4 the lines perpendicular to the segments S1, S2, S3 and S4, respectively, and this ends the reconstruction of the quadrilatersl.

Remarks

The construction of the point \sum bay be given in the following way:
Let us suppose for a moment that there are given the center O_{1} and radius r of the circle C_{1}, cf. Fig. 2. Then $O_{1} O_{3}-O_{3}{ }^{2}=r$. This means that the center O_{3} is 1° on the axis aym 23 and 2° on the hyperbole $O_{1} P-P 2=r$ with given focuses at the points 2 and O_{1} and given axis $2 \mathrm{a}=\mathrm{r}$. There are seversl methode of construction such a hyperbola. There are also other mothode of construction of externally tangent circles C_{1} and C_{3}. Obviously, the construction passesses the theoretical and aesthetic value rather than the practical one.

REFERENCES

[1] Petersen J.: Methoden und Theorien zur Lösung geometrischer Konetruktionsaufgaben, Kopenhagen 1879.
[2] Peterson J.: Metody i teorie rozwiazywania zadań geometrycznych konstrukcyjnych, tzumaczyz K. Hertz, Warazawa 1881 (jedyne wydanie).

