DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Irena kOJCZYK-KROLIKIEWICZ

THE LIMITING PROPERTIES OF THE SOLUTIONS OF SYSTEMS OF PARABOLIC FUNCTIONAL - OIFFERENTIAL EQUATIONS

> Sumary. The subject paper is the continuetion of the paper $[6]$. Let u be the solution of the system

$$
\begin{equation*}
u_{t}^{1}=f^{1}\left(t, x, u, u_{x}^{1}, u_{x x}^{1}, u(t, \cdot)\right) \quad 1=1, \ldots, m \tag{1}
\end{equation*}
$$

with linear boundary conditions (aee (3)). We will establish certain sufficient propositions by which the solution u of (1) has the limit s, as $t \rightarrow \infty$, where the function s s the solution of certain syatem which depends on $f=\left(f^{1}, \ldots . f^{n}\right)$. Then after introduction of a more strict essumption on f. than the parabolicity in the sense given by J. Szarski in [7], there will be proved a analogous condition for the solution u. These results are essential generalisation of theorem proved in [4]. Moreover using the same assunption about f, we finslly get also certain theorems for which the resulte of [1], [2] and [3], [5] are particular cases. These problens cannot be solved without the assumption of the strong parabolicity of f, (see def. 8).

1. Definitions and notations

Since the notations and definitions presented in [6], are still obligetory, we will repeat then only in a short way.

Let D be a domain in the space R^{n+1} of the variables ($\left.t, x\right)=\left(t, x_{10}\right.$ $\cdots\left(x_{n}\right)$. The projection of D onto the t - axis is ($0, \infty$) and onto R^{n} is S_{o}^{1}. Notice thet S_{o}^{1} may be bounded or not.
let us denate by $E_{T}=E \cap\left\{(t, x): t>T, x \in R^{n}\right\}$ for overy $E \subset R^{n+1}$ and $T>0$.
b_{p} de a bubset of such points ($(\tilde{t}, \tilde{x}) \in \bar{D}$, which have a lower half noighbourhood (for $t<\tilde{t}$) containing in the domain D. $S_{\tilde{t}}$ atande for the projection onto R^{n} of $D_{p} \cap\{t: t-\tilde{t}\}$, for $\tilde{t}>0$. Let \sum denote the subset of ∂D lying in the layer $0<t<\infty$, for which $\sum \cap D_{p}=\phi$, $s_{o}=\partial D \cap\{t: t=0\}$.

Assumption $A . S_{0}$ and $S_{\tilde{t}}$ are bounded sets for any $\tilde{\tilde{t}}>0$.
Let $g^{i}: \sum^{1} \rightarrow R_{+}$and $h^{1}: \sum^{1} \rightarrow R_{+}$be given on $\sum^{1} \subset \sum$ for $i=1 \ldots$...m. We define at every $(t, x) \in \sum^{i}$ the direction $l^{i}(t, x)$. orthogonal to t-axis, $I^{i}(t, x)$ penetrate in D_{p}. (comp. [6]).

If $S \subset R^{n}$ then we denote $\bar{C}\left(S, R^{\mathbb{R}^{p}}\right)$, the space of bounded and contrnous functions $z: S \rightarrow R^{m}$.

Let $u=\left(u^{1} \ldots \ldots u^{m}\right) \in R^{m}, q=\left(q_{1}, \ldots, q_{n}\right) \in R^{n}, r=\left(r_{11}, r_{12} \ldots\right.$ $\left.\ldots r_{n n}\right) \in R^{n^{2}}$, where $r_{i j}=r_{j i}$, and $f=\left(f^{1}, \ldots, f^{m p}\right):\{(t, x, u, q, r, z)\} \rightarrow$ $\rightarrow R^{\text {min }}$ where $z \in \bar{C}\left(S_{o}^{1}, R^{n}\right)$ and $(t, x) \in D_{p}$.

Function $u: \bar{D} \rightarrow R^{(I I}$ we call \sum-regular in D if for $i=1, \ldots, m$, u^{1} are continuous in $\bar{D}, u_{x}^{i}, u_{x x}^{i}$ and u_{t}^{i} are continuous in D_{p}, and there exists $\frac{d u^{i}}{d l^{i}}$ on \sum^{i}.

We say that u is \sum-regular solution of the oyster (1) if u is a \sum-regular function and if it is a solution of (1) in D_{p}, where $u(t):, S_{t} \longrightarrow R^{\text {mind }}$, and $u(t, \cdot)(x)=u(t, x)$.

The parabolicity of f (see [7] and [8]) is defined as follow:
We say that f is parabolic in D with respect to the \sum-regular function u, if for every pair of arguments $r, \tilde{r} \in R^{2}$ such that

$$
\tilde{r} \geqslant r \Longleftrightarrow \forall \alpha=\left(\alpha_{1} \ldots \ldots \alpha_{n}\right) \in R^{n}, \text { it is } \sum_{j, k=1}^{n}\left(\tilde{r}_{j k}-r_{j k}\right) \alpha_{j} \alpha_{k} \geqslant 0 \text {. }
$$

the inequality

$$
\begin{equation*}
f^{1}\left(t, x, u(t, x), u_{x}^{1}(t, x), \tilde{r}, u(t, \cdot)\right)-f^{1}\left(t, x, u(t, x), u_{x}^{1}(t, x), r, u(t, 0) \geqslant 0\right. \tag{2}
\end{equation*}
$$

for $(t, x) \in O_{p}, 1=1 \ldots \ldots$, , holds.
We shall consider the system (1) with following boundary conditions: for $i=1, \ldots$....

$$
\left\{\begin{array}{l}
u^{1}(t, x)=\varphi_{1}^{1}(t, x) \text { for }(t, x) \in\left(\Sigma \mid \Sigma^{1}\right) \\
m^{1}(u)(t, x)=h^{1}(t, x) u^{1}(t, x)-g^{1}(t, x) \frac{d}{d l^{1}} u^{1}(t, x)=\varphi_{2}^{1}(t, x) \text { for }(t, x) \in \sum^{1} \\
u^{1}(0, x)=\varphi_{0}^{1}(x) \text { for } x \in S_{0}
\end{array}\right.
$$

Definition 1: We say that $u, \sum-r$ regular in D, satisfies strong boundry inequalities if, for $i=1, \ldots$, ,

$$
\begin{aligned}
& \varphi_{0}^{1}(x)<0 \text { on } s_{0}, \varphi_{1}^{i}(t, x)<0 \text { on } \Sigma \backslash \Sigma^{i} \\
& \varphi_{2}^{i}(t, x)<0 \text { on } \Sigma^{1} .
\end{aligned}
$$

2. Somme lemmas

Using the Theorems 4 and 5 given in Remark 5 in 6 , we will formulate Lemma 1 under the Assumption B_{1} and Lemma 2 under the Assumption B_{2}.

Lemma 1. Let u be the \sum-regular solution of the system (1) in D_{p}. satisfying the boundary condition (3) and such that f is parabolic with respect to the u. Let us assume, that there exists $T_{0} \geqslant 0$ and the \sum-regular function $V:\left(D_{P}\right)_{T_{0}} \rightarrow R^{m}$. which satisfies for $(t, x) \in\left(D_{p}\right)_{T_{0}}$ and $1=1, \ldots, m$ inequality

$$
\begin{equation*}
\left.v_{t}^{1}(t, x)>f^{i} t, x, v(t, x), v_{x}^{1}(t, x), v_{x x}^{i}(t, x), v(t, \cdot)\right) \tag{4}
\end{equation*}
$$

where $V(t, \cdot) \in \bar{C}\left(S_{t}, R^{m}\right)$. If the difference $u-V$ satisfies the strong boundary inequalities according to Definition 1 , on $\left(\sum_{T_{0}} U^{S_{T}}\right.$ then $u \leqslant v$ in $\left(D_{P}\right)_{T_{0}}$.

Lemma 2. Let $T_{0} \geqslant 0$, and the \sum-regular function $v:\left(D_{p}\right)_{T_{0}} \rightarrow R^{m}$ satisfies the inequality

$$
\begin{equation*}
v_{t}^{i}(t, x)<f^{i}\left(t, x, v(t, x), v_{x}^{i}(t, x), v_{x x}^{1}(t, x), v(t, 0)\right) \tag{5}
\end{equation*}
$$

where $v(t, \cdot) \in \bar{C}\left(S_{t}, R^{m}\right)$. If u satisfies the assumptions of Lemma 1 and the difference $v-u$ satisfies the strong boundary inequalities on $\left(\sum_{T_{0}} \cup S_{T_{0}} \quad v \leqslant u\right.$ in $\left(D_{p}\right)_{T_{0}}$.

Corollary 1: If we create two families of functions V_{E} and V_{E} such. that :
$1^{\circ} \forall E>0 \exists T_{0}$ such that all assumptions of Lemmas 1,2 hold in $\left(D_{0}\right)_{T_{0}}$ $2^{0} \forall \varepsilon>0, v_{\varepsilon}(t, x)>0, v_{\varepsilon}(t, x)<0$ in $\left(D_{p}\right)_{T_{0}}$ $3^{0} \forall \varepsilon>0, \exists T_{1} \geqslant T_{0}$ such that

$$
v_{\varepsilon}(t, x)<\varepsilon \text { and } v_{\varepsilon}(t, x)>-\varepsilon \text { in }\left(D_{p}\right)_{T_{1}}
$$

then $\lim _{t \rightarrow \infty}\|u(t, \cdot)\|_{t}=0$,
where $\|z(\cdot)\|_{t}=\max _{1 \leqslant 1 \leqslant \sup } x \in S_{t}|z(x)|$ (see [6] corollary 2)

3. The main theorem

Now we will prove two theorems concerning the limiting properties of the solution u. They will depend on properties of function f.

We will need some additional definitions and assumptions.
Definition 2. Let us denote:

$$
\begin{aligned}
& \sum_{\infty}=\left\{x \in R^{n}: \exists\left\{\left(t_{\nu}, x_{\nu}\right)\right\}:\left(t_{\nu}, x_{\nu}\right) \in \sum_{\nu}, v=1,2, \ldots, \lim _{\nu \rightarrow \infty} t_{\nu}=\infty, \lim _{\nu \rightarrow \infty} x_{\nu}=x\right\} \\
& S_{\infty}=\left\{x \in R^{n}: x \notin \sum_{\infty}, \exists\left\{\left(t_{\nu}, x_{\nu}\right)\right\}:\left(t_{\nu}, x_{\nu}\right) \in D_{p}, \nu=1,2 \ldots, \lim _{\nu \rightarrow \infty} t_{\nu}=\infty, \lim _{\nu \rightarrow \infty} x_{\nu}=x\right\} \\
& \sum_{\infty}^{i}=\left\{x \in R^{n}: \exists\left\{\left(t_{\nu}, x_{\nu}\right)\right\}:\left(t_{\nu}, x_{\nu}\right) \in \sum^{1}, \nu=1,2, \ldots \lim _{\nu \rightarrow \infty} t_{v}=\infty, \lim _{\nu \rightarrow \infty} x_{\nu}=x\right\} \\
& \sum_{\infty}=\sum_{\infty} \mid \sum_{\infty}^{1}
\end{aligned}
$$

Assumption C. $S_{\infty}=S_{o}^{1}$ and this set can be bounded or not.
Assumption D. There exists function \tilde{f} of the argument (x, u, q, r, z) where $x \in S_{\infty} u, q, r$ are arbitrary, and $z \in \bar{C}\left(S_{\infty} \cdot R^{m}\right)$. such that:

$$
\forall \varepsilon>0 \exists T>0, \quad \forall(t, x) \in\left(0_{p}\right)_{T}, u, q, r \text { are arbitrary } z \in \overline{\mathrm{C}}\left(s_{\infty}\right)
$$

for $i=1, \ldots .$, m $\left|f^{i}(t, x, u, q, r, z)-\tilde{f}^{ \pm}(x, u, q, r, z)\right|<\varepsilon$.
Definition 3. Let $s \in \bar{C}\left(\bar{S}_{\infty} \cdot R^{m}\right) \cap C^{2}\left(S_{\infty}, R^{m}\right)$, which for every i=1, ..., m has the first derivatives of s^{i} bounded on $S_{\infty} \cup \sum_{\infty^{\prime}}^{i}$ and which fulfills the system

$$
\begin{equation*}
0=\tilde{f}\left(x, s(x), s_{x}^{i}(x), s_{x x}^{i}(x), g(-)\right) \quad i=1, \ldots m \tag{6}
\end{equation*}
$$

and also boundary conditions on \sum_{∞}, which will be defined further (see Def 7)

Definition 4. Let for every $\xi \in\left(0, \xi_{0}\right), p_{\xi}:[-\delta, \infty) \rightarrow R$, be define in the following way

$$
\begin{cases}p_{\xi}(t)=\max _{1 \leqslant i \leqslant m} \sup _{\tau \geq t}\left|f^{i}\left(\tau, x, s(x)+\xi, s_{x}^{1}(x), s_{x x}^{1}(x), s(\cdot)+\xi\right)\right| \text { for } t \geqslant 0 \\ p_{\xi}(t)=p_{\xi}(0) \text { for }-\delta \leqslant t<0, \text { where } \delta>0 \text { arbitrary. }\end{cases}
$$

Assumption E. Assume that for every $\zeta \in C^{2}$ (s) the functions $f^{1}\left(t, x, \zeta(x), \zeta_{x}^{1}(x), \zeta_{x x}^{1}(x), \zeta(\cdot)\right)$ are continuous in \bar{D} and $\tilde{f}^{i}(x, \zeta(x)$, $\left.\zeta_{3 x}^{i}(x), \zeta_{x x}^{i}(x), \zeta(\cdot)\right)$ are continuous in \bar{S}_{∞} for $i=1 \ldots \ldots m$.

Remark 1. The function P_{ξ} defined in (7) in virtue of Assumption E satisfies the following conditions: $1^{0} \quad p_{\xi}(t) \geqslant 0$ for $t \in[-\delta, \infty)$, $2^{0} \lim _{t \rightarrow \infty} p_{\rho}(t)=0 \quad$ (what follows from the Assumptions D, E and (6)), $3^{0} P_{\xi}$ is continuous and non-increasing in $[-\delta, \infty), 4^{0} p_{\xi}(t) \geqslant 1 f^{1}(t, x, s(x)+\xi$ $\left.s_{x}^{i}(x), s_{x x}^{i}(x), s(\cdot)+\xi\right) \mid$ if $s(x) \in C^{2}\left(\bar{S}_{\infty}\right)$. for every $t \geqslant 0, x \in S_{t}$. $i=1 \ldots \ldots, m \in\left(0, \xi_{0}\right)$.
If Assumption E does not hold, then we can take an arbitrary p requiring only the conditions $1^{\circ}-4^{\circ}$ to be satisfied. Therefore we can replace the Assumption E by a weaker one:

Assumption E_{1}. For every $\xi \in\left(0, \xi_{0}\right)$ there exists $P_{\xi}:[-\delta, \infty) \rightarrow R_{0}$, which satisfies all the conditions $1^{\circ}=4^{\circ}$ of the Remark 1.

Remark 2. If $S_{\infty} \neq S_{0}^{1}$, thus $S_{\infty} \subset S_{0}^{1}$, it should be necessary to extend s defined on S_{∞} on the whole S_{0}^{1}. This would be possible if the boundary of S_{∞} should be sufficiently regular, what generally does not hold.

Definition 5. Let \mathcal{L} be the function of argument (t,x,u,q,s) where $(t, x) \in\left(D_{p}\right)_{T_{0}}$ for certain $T_{0} \geqslant 0, u \in R^{m}, q \in R^{n}, \in \bar{C}\left(S_{0}^{1}\right)$, and its values belong to R^{m}.

Assumption F. For. $T_{0} \geqslant 0$ there exist four functions: $\mathcal{L}_{k} k=1,2$
 class C^{2} in S_{0}^{1}, which have the derivative $\frac{d}{d l^{1}(t, x)} \quad{ }_{w}(x), k=1,2$ if $(t, x) \in \sum^{i}$ i-1, We assume that:
1^{0} For every continuous function $\varphi:[0, \infty) \rightarrow R_{+}$the functions \mathcal{L}_{k}, w, $k=1,2$ satisfy for $1=1, \ldots, m$ and arbitrary $\xi \in\left(0, \xi_{0}\right)$ the inequalities:

$$
\begin{align*}
& \psi \xi+B(\cdot))-f^{i}\left(t, x, s(x)+\xi, s_{x}^{i}(x), s_{x x}^{i}(x), s(\cdot)+\xi\right) \leqslant \\
& \leqslant-\varphi(t) \mathcal{L}_{k}^{1}\left(t, x, w_{0}(x), \stackrel{k}{w}_{x}^{\frac{1}{x}}(x) \stackrel{k}{w}(\cdot)\right) \text { in }\left(D_{p}\right)_{T_{0}} \text {. } \tag{8}
\end{align*}
$$

2° the functions $\quad \begin{aligned} & 12 \\ & W, W\end{aligned}$, satisfy the conditions (for $1=1, \ldots . . \min =1,2$)
a) $1 \leqslant(-1)^{k+1}{ }_{W}^{k}(x) \leqslant k \quad$ for $\quad x \in \bar{S}_{0}^{1}$
b) $(-1)^{k+1} \sum_{j=1=1}^{n} w_{x_{j} x_{1}}^{k_{j}}(x) \alpha_{j} \alpha_{l} \leqslant 0 \quad$ for $x \in S_{0}^{1}$
and every $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$
c) there exists $\lambda>0$ such that

$$
\begin{aligned}
& \mathcal{L}_{k}^{i}\left(t, x, w^{k}(x),{ }_{w_{x}^{1}}^{k}(x), \stackrel{k}{w}(\cdot)\right)+(-1)^{k} \lambda w^{k}(x)>0 \text { in }\left(D_{p} T_{0}\right. \\
& \text { d) }(-1)^{k+1} M^{i}(w)(t, x)>0 \text { on }\left(\sum^{k}\right)^{k} T_{0}
\end{aligned}
$$

Assumption G. Let us denote:

$$
H_{0}=\left\{\Phi: \bar{D} \rightarrow R^{m}, \Phi^{i}(t, x)=\varphi(t) w^{1}(x) \quad 1=1, \ldots, m\right\}
$$

where $\varphi \in C^{1}\left([0, \infty), R_{+}\right)$and $W^{i}(x)={ }_{W}^{k}(x) \quad k=1,2$, as regular as it was assumed in Assumption F, and satisfying the conditions a), b). We assume that f is parabolic with respect to every function $\Phi \in H_{0}$.

Definition 6. Let $\phi: A \rightarrow R$ where $(t, x) \in A \subset R^{n+1}$ and $\tilde{\phi}: B \rightarrow R$ where $x \in B \subset R^{n}$. B is the projection of A onto R^{n}. Let us denote $\lim _{(t, x) \in A, t \rightarrow \infty} \psi(t, x)=\tilde{\psi}(x)$ if: $(t, x) \in A, t \rightarrow \infty$

$$
\forall \varepsilon>0 . \exists T(\varepsilon) \geqslant 0, \forall(t, x) \in A_{T},|\psi(t, x)-\tilde{\psi}(x)|<\varepsilon
$$

We introduce the following assumption concerning boundary conditions:
Assumption H. $\exists h_{0} \in(0.1)$ such that $h^{1}(t, x)>h_{0}$ on \sum_{i}^{i} for $1=1 \ldots \ldots$. and there exist functions: $\tilde{\varphi}_{1}^{1}: \sum_{\infty}^{i} \cup S_{\infty} \rightarrow R, \tilde{\varphi}_{2}^{1}: \sum_{\infty}^{i} u S_{\infty} \rightarrow R$, $\tilde{g}^{i}: \sum_{\infty}^{i} \cup S_{\infty} \rightarrow R, \tilde{h}^{i}: \sum_{\infty}^{i} \cup S_{\infty} \rightarrow R, \tilde{I}^{1}: \sum_{\infty}^{i} \cup S_{\infty} \rightarrow R^{n}$. moreover $\tilde{g}^{1}(x)$ are bounded functions on $\sum_{\infty}^{i} u S_{\infty}$. We assume that:

$$
\begin{aligned}
& \lim \varphi_{2}^{i}(t, x)=\tilde{\varphi}_{2}^{1}(x) \\
& (t, x) \in \sum^{i}, t \rightarrow \infty
\end{aligned}
$$

$$
\begin{array}{ll}
\lim g^{1}(t, x)=\tilde{g}^{1}(x), & \lim h^{1}(t, x)=\tilde{h}^{i}(x) \\
(t, x) \in \sum^{i}, t \rightarrow \infty & (t, x) \in \sum^{1}, t \rightarrow \infty
\end{array}
$$

$$
\begin{aligned}
& \lim _{(t, x) \in \sum_{1}^{1}, t \rightarrow \infty}^{1}(t, x)=\tilde{1}_{j}^{1}(x), j=1, \ldots, n, \quad \lim \varphi_{1}^{1}(t, x)=\tilde{\varphi}_{1}^{1}(x) \\
& (t, x) \epsilon \sum^{1} \backslash \sum_{j}^{i}, t \rightarrow \infty
\end{aligned}
$$

for 1=1.....m (see Def 6).
Now we can formulate the boundary conditions for the function s:
Definition 7. For i=1...... we have

$$
\begin{aligned}
& s^{1}(x)=\tilde{\varphi}_{1}^{1}(x) \text { on } \tilde{L}_{\infty}^{1} \\
& \tilde{h}^{1}(x) s^{1}(x)-\tilde{g}^{1}(x) \frac{d}{d \tilde{l}^{1}(x)} s^{1}(x)=\tilde{\varphi}_{\frac{1}{2}}^{1}(x) \text { on } \sum_{\infty}^{1}
\end{aligned}
$$

Theorem 1. Let us suppose that the Assumptions C, B_{1}, B_{2}, hold, and that there exists $T_{0} \geqslant 0$ for which Assumptions F and G hold in ($\left.D_{p}\right)_{T_{0}}$. There hold also the Assumptions D, E_{1} and H. If there exists the solutions s of the system (6), as regular as it was assumed in Definiion 3, and which satisfies boundary conditions according to Definition 7. then for \sum-regular solution u of the system (1) in ($\left.D_{p}\right)_{T_{0}}$ ese tisfying the boundary conditions (3) on $\left(\Sigma_{T_{0}}\right.$, and such that $f 0_{18}$ parebolic with respect to the u, the condition

$$
\lim _{t \rightarrow \infty}\|u(t, \cdot)-s(\cdot)\|_{t}=0 \text { is held (see Corollary } 1 \text {). }
$$

Proof: For arbitrary $\varepsilon>0$, we put $\mathcal{E}_{1}=h_{0} \varepsilon$ and let $T_{1} \geqslant T_{0}$ be so large that from Assumption H we get

$$
\left|\varphi_{1}^{i}(t, x)-\tilde{\varphi}_{1}^{i}(x)\right|<\frac{1}{2} E_{1} \text { for } \quad(t, x) \in\left(\Sigma \mid \Sigma^{i}\right)_{T_{1}}
$$

and

$$
\left|\varphi_{2}^{1}(t, x)-\tilde{\varphi}_{2}^{1}(x)\right|<\frac{\epsilon_{1}}{2} \quad \text { for } \quad(t, x) \in\left(\Sigma^{1}\right)_{T_{1}}
$$

We take, according with the Assumption F, the functions $W_{i}(x)$ for suitable $\lambda_{1}>0$ and we create two functions:

$$
v^{i}(t, x)=J(t)^{1} w^{i}(x)+\varepsilon \quad v^{i}(t, x)=J(t)^{2}{ }^{i}(x)-\varepsilon \text { where } J(t)>0
$$

for $t \geqslant 0$ we will establish later. We have chosen T_{1} in such e way that for $\tilde{u}=u-s$:

$$
\begin{equation*}
\left|\tilde{u}^{i}(t, x)\right|=\left|u^{1}(t, x)-s^{1}(x)\right| \leqslant\left|\tilde{\varphi}_{1}^{i}(t, x)-\tilde{\varphi}_{1}^{i}(x)\right|+\left|\tilde{\varphi}^{1}(x)-s^{i}(x)\right|<\varepsilon_{1} \tag{9}
\end{equation*}
$$

on $\left(\Sigma \mid \sum^{i}\right)_{T_{1}}$ for $i=1, \ldots, m$. We have also

$$
M^{1}\left(\tilde{u}^{i}\right)(t, x)=\varphi_{2}^{1}(t, x)-\left[h^{i}(t, x)_{s}^{i}(x)-g^{i}(t, x) \frac{d}{d l^{1}(t, x)} s^{1}(x)\right] .
$$

It is easy to see that in virtue of the Assumption H, for $\frac{\varepsilon_{1}}{2}$ there exists $T_{2} \geqslant T_{1}$ such that

$$
\left|h^{1}(t, x) g^{1}(x)-g^{1}(t, x) \frac{d}{d l^{1}(t, x)} g^{1}(x)-\tilde{\varphi}_{2}^{1}(x)\right|<\frac{\varepsilon_{1}}{2}
$$

for every $(t, x) \in \sum_{T_{2}}^{1}$. and therefore

$$
\begin{equation*}
\left.\left|M^{i}\left(\tilde{u}^{1}\right)(t, x)\right|<\varepsilon_{1} \quad \text { for } \quad(t, x) \in \Sigma^{i}\right)_{T_{2}}, 1=1 \ldots \ldots, \tag{10}
\end{equation*}
$$

Farther on $\left(\Sigma \mid \Sigma^{i}\right)_{T_{1}}$, we have

$$
\begin{aligned}
& v^{i}(t, x)=J(t){ }^{1} \frac{w^{i}}{}(x)+\varepsilon>\varepsilon>h_{0} \varepsilon-\varepsilon_{1} \text { and } \\
& v^{1}(t, x)<-h_{0} \varepsilon=-\varepsilon_{1} \quad 1=1 \ldots \ldots \text {.... In virtue of (9) there is } \\
& v^{1}(t, x)>\tilde{u}^{i}(t, x)>v^{1}(t, x) \text { on }\left(\Sigma \mid \Sigma^{i}\right)_{T_{1}} \text { for i=1,....... }
\end{aligned}
$$

Because $M^{1}\left(v^{1}\right)(t, x)=J(t)\left[h^{1}(t, x) \stackrel{W}{ }^{1}(x)-g^{1}(t, x) \frac{d}{d l^{1}(t, x)}{ }^{1} w^{1}(x)\right]+$ $+h^{i}(t, x) \varepsilon$, therefore $M^{1}\left(v^{1}\right)(\tau, x)>h_{0} \varepsilon=\varepsilon_{1}$ and similarly ${ }^{\text {d }} \mathrm{M}^{1}\left(v^{1}\right)(\tau, x)<$
$-\varepsilon_{1}$ on $\left(\sum^{2}\right)_{T_{1}}$. It results from the above statements and from (10) that for $1=1 . .1$...m

$$
M^{1}\left(v^{i}-\tilde{u}^{1}\right)(t, x)>0, M^{1}\left(u^{1}-v^{1}\right)(t, x)>0 \text { on }\left(\Sigma^{1}\right)_{T_{2}}
$$

We denote by $K_{0}=\sup _{x \in S_{T_{2}}}\left|\widetilde{U}\left(T_{2}, x\right)\right|$. Now we construct the function J.
According to Assumption E_{1} we take, for the \mathcal{E} fixed above the function p_{ε}. We construct the function $\bar{p}:[-\delta, \infty) \rightarrow R$, which satisfies the conditrons $1^{\circ}-3^{\circ}$ of E_{1}, and such that:

$$
\begin{aligned}
& \bar{p}(t)>p_{\varepsilon}(t) \text { for } t>0 \\
& \bar{p}(0)>\max \left(p_{\varepsilon}(0), \frac{\lambda_{1} k_{0}}{\left(1-e^{-1}\right) \exp \left(-\lambda_{1} T_{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
\bar{p}(t) & =\bar{p}(0) \text { for } t \in\left[-\frac{1}{\lambda_{1}}, 0\right) \text {. For this } \bar{p}(t) \text { we set } \\
J(t) & =\int_{0}^{t} \bar{p}(\tau) \exp \lambda_{1}(\tau-t) d \tau_{0} \\
& =\frac{1}{\lambda_{1}}
\end{aligned}
$$

This function has all the properties as it was formulated in the paper [6]. particulary $\underset{t \rightarrow \infty}{\lim } J(t)=0$. For our purpose we have now:

$$
v^{1}\left(T_{2}, x\right)=J\left(T_{2}\right) \stackrel{1}{w}^{1}(x)+\varepsilon>\int_{-\frac{1}{\lambda_{1}}}^{0} \bar{p}(\tau) \exp \left[\lambda_{1}\left(\tau-T_{2}\right)\right] d \tau \geqslant
$$

$$
\geqslant \bar{p}(0) \frac{1}{\lambda_{1}}\left[1-e^{-1}\right] \exp \left(-\lambda_{1} T_{2}\right)>K_{0} \geqslant \tilde{u}^{1}\left(T_{2}, x\right) \text { on } S_{T_{2}} \text {. for } i=1, \ldots, n
$$

and analogously
$v^{1}\left(T_{2}, x\right)<-K_{0} \leqslant \tilde{u}^{1}\left(T_{2}, x\right)$ on $S_{T_{2}}$.

Now we will prove that the functions V and v satisfy inequalities (4), (5) if on the right-hand side we will set the new function ζ defined as follows:
$\zeta^{1}(t, x, u, q, r, z)=f^{1}\left(t, x, u+8, q+\varepsilon_{x}^{i}, r+\theta_{x x}^{i}, z+s(\cdot)\right)$ for $(t, x) \in 0_{p} u, q, r, z$
arbitrary. Setting $\tilde{u}=u-8$ we see that
$\tilde{u}_{t}^{1}=u_{t}^{i}=f^{i}\left(t, x, u(t, x) u_{x}^{1}(t, x), u_{x x}^{1}(t, x) u(t, \cdot)=\right.$
$=f^{1}\left(t, x, \tilde{u}+s, \tilde{u}_{s}^{1}+s_{x}^{i}, \tilde{u}_{x x}^{i}+s_{x x}^{i}, \tilde{u}(r, \cdot)+s(\cdot)\right)=$
$=\zeta^{1}\left(t, x, \tilde{u}, \tilde{u}_{x}^{1}, \tilde{u}_{x x}^{1}, \tilde{u}(t, \cdot)\right)$.

Now we will shaw that ζ is parabolic with respect to \tilde{u}. If $\tilde{r} \geqslant r$ then $\tilde{r}+s_{x x}^{1} \geqslant r+s_{x x}^{i}$ and since

$$
\zeta^{1}\left(t, x, \tilde{u}, \tilde{u_{x}^{1}}, \tilde{r}, \tilde{u}(t, \cdot)\right)-\zeta^{1}\left(t, x, u^{i}, \tilde{u_{x}}, r, \tilde{u}(t, \cdot)\right)=
$$

$-f^{i}\left(t, x, \tilde{u}_{+s}, \tilde{u}_{x}^{1}+s_{x}^{1}, \tilde{r}^{\prime}+s_{x x}^{1}, \tilde{u}(t, \cdot)+s(\cdot)\right)-$

$$
\begin{aligned}
& -f^{i}\left(t, x, \tilde{u}+s, \tilde{u}_{x}^{i}+s_{x}^{i}, r+g_{x x}^{i}, \tilde{u}(t, \cdot)+s(\cdot)\right)= \\
& =f^{i}\left(t, x, u, u_{x}^{i}, \tilde{r}+s_{x x}^{i}, u(t, \cdot)\right)- \\
& -f^{i}\left(t, x, u, u_{x}^{i}, r+s_{x x}^{i}, u(t, \cdot)\right) \geqslant 0 \quad \text { in virtue of parabolicity } \\
& \text { of } f^{i} \text { with respect to } u .
\end{aligned}
$$

Now applying succesively the properties of J and p, the condition a) of the Assumption F. after that the inequality (8), the conditions c) and b) of the Assumption F, and finally the Assumption G, we get

$$
\begin{aligned}
& v_{t}^{i}(t, x)=\stackrel{1}{w}^{i}(x) \frac{d J}{d t} \geqslant \bar{p}(t)-\lambda_{1} \stackrel{1}{w}^{1}(x) J(t) \geqslant \\
& \geqslant-\lambda_{01}{ }^{\frac{1}{W^{2}}}(x) J(t)+f^{1}\left(t, x, s(x)+\varepsilon, s_{x}^{i}(x), s_{x x}^{1}(x), s(\cdot)+\varepsilon\right) \geqslant \\
& \geqslant\left[-\lambda_{1}{ }_{1}^{w^{i}}(x)+\mathcal{L}_{1}^{\frac{1}{1}}\left(t, x, \stackrel{1}{w}(x), \stackrel{1}{w}_{x}^{i}(x), \stackrel{1}{w}(\cdot)\right)\right] J(t)+ \\
& +f^{i}\left(t, x, V(t, x)+s(x), v_{x}^{i}(t, x)+s_{x}^{i}, s_{x x}^{i}, V(t, \cdot)+s(\cdot)\right)> \\
& >f^{i}\left(t, x, V(t, x)+s(x), v_{x}^{i}(t, x)+s_{x}^{i}, v_{x x}^{i}+s_{x x}^{i}, v(t, \cdot)+s(\cdot)\right)= \\
& =\sum_{j}^{i}\left(t, x, v(t, x), v_{x}^{1}(t, x), v_{x x}^{1}(t, x), v(t, \cdot)\right) \text { in }\left(D_{p}\right)_{T_{1}} .
\end{aligned}
$$

Analogously we obtain:

$$
v_{t}^{i}(t, x)<\zeta^{i}\left(t, x, v(t, x), v_{x}^{i}(t, x), v_{x x}^{i}(t, x), v(t, \cdot)\right) \text { in }\left(D_{p}\right) T_{1}
$$

We have proved that for every $\varepsilon>0$ there exists $T_{2}(\varepsilon) \geqslant T_{0}$ such that in $\left(D_{p}\right)_{T_{2}}$ the function V_{ε} and V_{ε} satisfy all the assumptions of the Lemmas 1 and 2. Therefore $v_{\varepsilon}(t, x)<\tilde{u}(t, x)<v_{\varepsilon}(t, x)$ in ($\left.D_{p}\right)_{T_{2}}$.

Now we set $\mathcal{E}=\frac{\eta}{2}>0$ and for $\frac{\eta}{2}$ we find $T_{3} \geqslant T_{2}\left(\frac{\eta}{2}\right) \geqslant T_{0}$ such that for i ①......m

$$
v_{\eta}^{i}(t, x)=J(t) \stackrel{1}{w^{1}}(x)+\frac{\eta}{2}<\eta, v_{\eta}^{i}(t, x)=J(t) \stackrel{2}{w^{i}}(x)-\frac{\eta}{2}>-\eta \text { in }\left(D_{p}\right)_{T_{3}}
$$

Since in such a way constructed two families V_{η} and v_{η} satisfy all the assumptions of corollary 1, our proof is closed.

Remark 3. In the case of a homogeneous boundary problem we can put $\xi=0$ in (8) of the Assumption F. The proof of Theorem 1 is then much simplier one (comp. [6]. Theorem 1).

4. Some examples

Example 1. The function $u(t, x)=\left(\sin \frac{x}{\sqrt{a}}\right) \frac{t}{1+t^{2}}$ is the solution of the equation

$$
u_{t}^{\prime}=a u_{x x}+u+\left(\sin \frac{x}{\sqrt{a}}\right) \frac{2 t}{\left(1+t^{2}\right)^{2}} \text {, where the domsin } D_{p}=(0<x<\pi \sqrt{a}) \times(0, \infty)
$$

This solution satisfies homogeneaus boundary conditions (comp, example 2 in [6]).
We have also $\lim _{t \rightarrow \infty} u(t, x)=\sin \frac{x}{\sqrt{8}}=s(x)$.
This function s satisfies the equation $a_{x x}+s=0$ and is equal to zero for $x_{1}=0$ and $x_{2}=\pi \sqrt{a}$. All the assumptions of the theorem 1 are fulfilled except the Assumption F, that will be shown later. That means F is the sufficient condition but it is not necessary, obviousiy. In the case of one equation we can put $v(t, x)=J(t) w(x)$ and $v(t, x)=-v(t, x)$, having $E=0$. (Comp, also the example 1 in [6]). Assume that there exist \mathcal{L} and w fulfilling F with a), b), c). d). The inequality (8) obtains the form

$$
\begin{aligned}
& 8 s_{x x}+v+s+\left(\sin \frac{x}{\sqrt{a}}\right) \frac{2 t}{\left(1+t^{2}\right)^{2}}-\left[8 s_{x x}+s+\left(\sin \frac{x}{\sqrt{a}} \frac{2 t}{\left(1+t^{2}\right)^{2}}\right]=\right. \\
& \equiv v(t, x)=J(t)_{w}(x) \leqslant-J(t) \mathcal{L}(w)(x)
\end{aligned}
$$

in virtue of c) we have $J(t) w(x)<-\lambda J(t) w(x)$ hence $(1+\lambda)_{w}(x)<0$. This contradicts the condition a) in D.

Example 2. In the paper [4] there was proved the theorem 4 concerning convergence as $t \rightarrow \infty$ of the solution u of the following almost-linear equation

$$
\begin{equation*}
F[u]=\sum_{i, j=1}^{n} a_{i j}(x) u_{x_{i} x_{j}}+\sum_{k=1}^{n} b_{k}(x) u_{x_{k}}-u_{t}=f(t, x, u) \tag{11}
\end{equation*}
$$

for every $(t, x) \in G x(0, \infty)$, where $G \subset R^{n}$ is bounded. Under the assumptions: $\lim _{t \rightarrow \infty} f(t, x, z)=f_{1}(x, z)$ uniforaly with respect to $x \in G$, where f 18 non decreasing with respect to z, it is proved that $\underset{t \rightarrow \infty}{\lim } u(t, x)=8(x)$. where 8 is the solution of the equation

$$
\sum_{i, j=1}^{\pi} a_{i j}(x)_{s_{x_{i}} x_{j}}+\sum_{k=1}^{\bar{n}} b_{k}(x)_{s_{k}}-f_{1}(x, s(x))=0
$$

for every $x \in G$. The proof of theorem 4 was carried out owing to the following assumption: there exists V such that: $1^{\circ} v(t, x)>0$ in $\overline{0}$. $2^{0} \lim _{t \rightarrow \infty} V(t, x)=0,3^{0} \exists \quad T \geqslant 0$ such that $F(V) \leqslant-|f(t, x, s(x))-f,(x, 8(x))|$ In D_{T}. It is easy to prove that from the condition 3° follows that V and $v=-V$ satisfy inequalities (4) and (5) respectively, but not inversely. But we have another argument because of which the theorem 1, proved above, is weaker than the theorem 4 in [4]. We will shaw that the following condition results from the Assumption F.

$$
\begin{equation*}
F(w) \leqslant-\beta, \quad \beta>0 \tag{12}
\end{equation*}
$$

(which was assumed in [4]) but not inversely. The inaquslity (8) has now the form:

$$
\sum_{k=1}^{n} b_{k} v_{x_{k}}-f(t, x, v+s)+f(t, x, s) \leqslant-J(t) \mathcal{L}\left(t, x, w, w_{x}^{1}\right)
$$

Since $f(t, x, s)-f(t, x, v+s)<0$ we can put $\mathcal{L}(w)=-\sum_{k=1}^{n} b_{k} w_{k}$ and the
inequality $c)$ obtaine the form:

$$
-\sum_{k=1}^{n} b_{x_{k}}(x) w_{x_{k}}(x)-\lambda_{w}(x)>0 \text { hence } \sum_{k=1}^{n} b_{k}(x) w_{x_{k}}<-\lambda_{w}(x) \leqslant-\lambda
$$

using the condition b) we have $\sum_{i, j=1}^{n} a_{1 j}(x)_{w_{x_{i}} x_{j}} \leqslant 0$, setting $\lambda=\beta$ we

$$
F(w)=\sum_{i, j=1}^{n} a_{i j}(x)_{w_{x_{i} x_{j}}}+\sum_{k=1}^{n} b_{k}(x)_{w_{k}}-w_{t} \leqslant-\beta
$$

But obviously from (12) we cannot conclude that there exists $\lambda>0$ for which $\sum_{k=1}^{n} b_{k}(x) w_{x_{k}}<-\lambda w$. This requires another form of assumption c) In order to obtain the equivalence of the both assumptions (comp. Example 3).

Remark 4. When we consider the space $R^{1} 3 x_{\text {, the assumption }} S_{0}^{1}=S_{\infty}$ is obviously superfluous. If $S_{\infty} \subset S_{0}^{1}$, it is posible to extend the functions s on the whole S_{o}^{1} maintaining the class of regularity. In this case the Theorems 1 and 2 of [6] are simple corollaries of the above theoren.

5. Strong parabolicity of f, and Theoren 2

Now we carry into effect the modification of the condition c) of F, that we have talked about before. We will establish a property of f. which will be called the strong parabolicity.

Definition e. We will call strongly parabolic every function for which there exist functions $s^{1}: O_{p} \rightarrow R^{n^{2}}, 1=1, \ldots$ such that: 1° there exist 1 such that $a^{1} \neq 0$ in D_{p} and for $1=2, \ldots, m$,

$$
\begin{aligned}
& a_{j k}^{1}(t, x)=a_{k j}^{1}(t, x) \text { in } D_{p}, \\
& 2^{0} \sum_{j, k=1}^{n} a_{j k}^{1}(t, x) x_{j} x_{k} \geqslant 0 \text { in } D_{p}, 1=1,2 \ldots \ldots, \text { for every } x=\left(x_{1} \ldots x_{n}\right), \\
& 3^{0} \text { for every pair of synmetric eatrices } r=\left[r_{i j}\right], \tilde{r}=[\tilde{r} 1 j] \text { for which }
\end{aligned}
$$

$$
\tilde{r} \geqslant r \Longleftrightarrow \sum_{i, j=1}^{n}\left(\tilde{r}_{i j}-r_{i j}\right) x_{1} x_{j} \geqslant 0 \text {, the following inequalities, for }
$$

$$
1=1
$$

$$
\begin{equation*}
f^{1}(t, x, u, q, \tilde{r}, z)-f^{1}(t, x, u, q, r, z) \geqslant \sum_{j, k=1}^{n} a_{j k}^{1}(t, x)\left(\tilde{r}_{j k}-r_{j k}\right) \tag{13}
\end{equation*}
$$

for every ($t, x) \in D_{p}, u, q$ arbitrary and $z \in \bar{C}\left(s_{t}\right)$, hold.
Remark 5. The Definition a was introduced in paper [5] (the condition H) with an additional assumption: there exists k such that $a_{k k}^{1}(t, x) \geqslant$ $\geqslant a^{1}(t)>0$ in D_{p}, what will be superfluous now.

Remark 6. The strong parabolicity of f with respect to the function 1 . would be dificult to define, because a could then becone dependent on 4 . This assumption would be too weak for our needs.

Bsumption F_{1}. We keep in virtue all the assumptions of F, except the condition c) instead of which now we introduce:
c_{1}) there exists $\lambda_{1}>0$ such that

$$
\begin{aligned}
& \mathcal{L}_{k}^{i}\left(t, x, W_{W}^{k}(x), \stackrel{k}{W}_{x}^{i}(x), \stackrel{k}{W}(\cdot)\right)+(-1)^{k} \lambda_{1}{ }^{\mathbf{k}} W^{i}(x)+ \\
& +(-1)^{k} \sum_{j, 1=1}^{n} a_{j 1}^{1}(t, x){\stackrel{w}{w_{x}} x_{1}}_{x_{1}}>0 \text { for every }\left(t, x \in\left(D_{p}\right)^{\prime} .\right.
\end{aligned}
$$

Remark 7. The stronger property of of f allows us to employ weaker condition c_{1}) instead of c) (taking into account the inequalities

$$
(-1)^{k} \sum_{j, 1=1}^{n} a_{j 1}^{i}(t, x){\stackrel{w}{x_{j}} x_{1}}_{k}^{p_{j}}
$$

We notice also that Assumption G is superfluous if f is strong parabolic.

Now we can formulate:
Theorem 2. We assume that the domain D has a property resulting from Assumption C, and that Assumptions D, B_{1}, B_{2} holf. Moreover let f be strong parabolic and the Assumption F_{1} hold in $\left(D_{p}\right)_{T_{0}}$ and H on $\left(\sum\right)_{T_{0}}$ for certain $T_{0} \geqslant 0$. If there exists the solution of (6) as regular as it was required in' Definition 3, and satisfying the boundary conditions in agreawent with Definition 7, then the \sum-regular solution of the system (1) satisfying the boundary conditions (3) has the following property. $\lim _{t \rightarrow \infty}\|u(t, \cdot)-s(\cdot)\|_{t}=0$ $t \rightarrow \infty$

We omit the proof quite analoguous to the proof of theorem 1.

6. Example 3

We will show that the criterion given by theorem 2 is essentially stronger than that given by theorem 1 . It is easy to see that from c_{1}) it results $f\binom{1}{1} \leqslant-\beta \quad$ (cowp. (11)) for $\lambda_{1}=\beta$. But now the inverse inclusion: $F\binom{1}{w} \leqslant-\beta \Longrightarrow C_{1}$), is true. This follows immediately, since for 1 w we have

$$
-F\left({ }_{(}^{1}\right)-\lambda_{w}^{1} \geqslant \beta-\lambda_{w}^{1} \geqslant \beta-\lambda k>0 \text { if only } 0<\lambda<\frac{\hat{2}}{k}
$$

and for ${ }^{2}=-W^{1}$, we verify C_{1}). Therefore the theoreme 4 end 5 of the paper [4] become coralleries of the theorem 2.

7. The case of the limit zero, and Theorem 3

-t is worthy to stress that the fundamental theorems concerning asymptotic stability proved by M. Krzyzariski in $[1]$. [2] and their generalization in [3]. [5], do not result from theorems contained in [6]. Now using the strong parabolic property, we will obtain this generalization.

Assumption F_{2}. For ${ }_{2} T_{0} \geqslant 0$ there exist four functions: $\mathcal{L}_{k} k=1,2$ (see Def. 5) and W, W as regular as it was supposed in Assumption F. Now we assume that:
1° For every continuous function $\varphi:[0, \infty) \rightarrow R_{+}$the functions \mathcal{L}_{k}, W^{k}, $k=1,2$, satisfy for $i=1, \ldots, m$ and arbitrary $\xi\left(0, \xi_{0}\right)$ the inequalities:

$$
\operatorname{sgn} \stackrel{k}{w}\left[f^{1}\left(t, x, \varphi(t) \stackrel{k}{w}(x)+\xi, \varphi(t) \stackrel{k}{w_{x}^{1}}(x), 0, \varphi(t) \stackrel{k}{w}(\cdot)+\xi\right)-\right.
$$

$-f^{1}(t, x, \xi, 0,0, \xi) \leqslant-\varphi(t) \mathcal{L}_{k}^{1}\left(t, x,{ }_{w}^{k}(x),{ }_{W_{x}^{1}}^{k}(x), W_{w}^{k}(\cdot)\right) \quad$ in $\left(D_{p}\right)_{T_{0}}$.
2° The functions $\quad \begin{aligned} & 1 \\ & W\end{aligned}, W$, satisfy the conditions a) b) d), which were formulated in Assumption F. and the condition C_{1}) from Assumption F_{1}

Assumption E_{2} : There exists $P_{\xi}:[-\delta, \infty) \longrightarrow R$ such that: $\forall \xi \in\left(0, \xi_{0}\right)$
$1^{0} p_{\xi}(t)>0,2^{0} \lim _{t \rightarrow \infty} P_{\xi}(t)=0,3^{0} P_{\xi}$ is continuous and non-increasing, $4^{0}{ }_{p_{\xi}}(t) \geqslant\left|f^{i}(t, x, \xi, 0,0, \xi)\right|$ in D_{p}. for $1=1, \ldots . . \operatorname{m}$ (comp. [6]).

Assumption H_{1} : Let $h^{i}(t, x) \geqslant h_{0} \in(0,1)$ on \sum^{i}, for $i=1, \ldots . . \mathrm{H}^{2}$. We have:
$\forall \varepsilon>0 \exists T(\varepsilon) \geqslant 0$, such that $\left|\varphi_{1}^{1}(t, x)\right|<\varepsilon$ for every $(t, x) \in$
$\epsilon\left(\sum \mid \sum^{-1}\right)_{T}(\varepsilon) \cdot\left|\varphi_{2}^{i}(t, x)\right|<\varepsilon$ for every $\left.t(x) \in \varepsilon^{i}\right) T(\varepsilon)$

Let us notice that now we do not need neither the sets S_{∞} and \sum_{∞} nor the Assumption C.

Theorem 3. Assume that f is strongly parabolic in ($\left.D_{p}\right)_{T_{0}}$ for $T_{0} \geqslant 0$. If B_{1}, B_{2}, H_{1} and E_{2} hold, and moreover F_{2} (for the same T_{0}): then the \sum-regular solution u of system (i) satisfying the boundary conditions (3) has the following property $\lim _{t \rightarrow \infty}\|u(t, \cdot)\|_{t}=0$

We omit the proof which is analogous to the proof of theorem 2 in $[6]$.
In the similar way we can formulate two theorems on the convergence of the solution to $+\infty$ or $-\infty$ under the assumption of strong parabolicity of f, using again the conditions c_{1}).

REFERENCES
[1] M. Krzyzański: "Sur l'allure esymptotique des solutions d'équstion du type parabolique" Bull. Acad. Polon. Sci. S1. III 4(1956) 243-247.
[2] M. Krzyzański: "Sur l'allure asymptotique des solutions des problèmes der Fourier relatifa à une équation lineaire parabolique" Atti Accad. Naz. Lincei Rend 28(1960) 37-43.
[3] I. kojczyk-Krolikiewicz: L'allure asymptotigue des solutions des problèmes de Fourier relatifs aux équations lineaires normales du type parabolique dans $l^{\text {e espace }} \mathrm{Em}^{\mathrm{m}} \mathrm{In}$ Ann. Polon. Math. 14(1963) 1-12. I. kojczyk-Krolikiewicz: "Propriétés limites des solutions des problemes de Fourier relatifs à léquation presque linéaire du type parabolique" Bull. de 1° acad. Polon des Sc. Vol VIII Nr 9 (1960) 597--603.
[5] I, kojczyk-Krolikiewicz: "Stur la stabilité asymptotique de la solution d un système linéare aux dérivées partielles du type parabolique, II" Ann Polon. Math. XXI (1968) 15-20.
[6] I. kojczyk-krolikiewicz: "The ssymptotic behaviour of solutions to systems of parabolic differential-functional equations", in press, in the present monograph.
[7] J. Szarski: -Strong maximum principle for non-linear parabolic diffe-rential-functional inequalities in arbitrary domains" Ann. Polon. Math. XXXI (1975) 197-203.
[8]
J. Szarski: "Differential inequalities" PWN, Warszawa "Monografie Matematyczne ton 43 (1965).

