ZESZYTY NAUKOWE POLITECHNIKI ŚLASKIEJ

Seria: MATEMATYKA-FIZYKA z. 64

DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 70TH BIRTHDAY

Irena ŁOJCZYK-KRÓLIKIEWICZ

THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO SYSTEMS OF PARABOLIC DIFFERENTIAL-FUNCTIONAL EQUATIONS

1. Introduction

In this paper we will investigate the solutions of the system

$$u_{r}^{i} = f^{i}(t, x, u, u_{x}^{i}, u_{xx}^{i}, u(t, \cdot))$$
(1)

i = 1,...,m, with linear boundary conditions. We will establish certain sufficient propositions under which the solution has the limit zero, or ∞ , or $-\infty$ as t $\rightarrow \infty$.

The studies of these problems were begun by M. Krzyżański ([1], [2]) and were generalized later in [3], [4].

The results of the present paper base on the theorems on differentialfunctional inequalities given in Remark 5 below.

Definitions and notations

Let D be an open set in the R^{n+1} space of the variables (t, x) == (t, x_1, \dots, x_n) , and assume that interval $(0, \infty)$ constitutes the projection of D onto the t-axis, and S_0^1 is the projection of D on $R^{\Pi} \ni x =$ = (x_1, \ldots, x_n) . So may be bounded or not.

For an arbitrary set $E \subset \mathbb{R}^{n+1}$ and $T \ge 0$ let us denot by E_T the set:

 $E_{T} = E \cap \left\{ (t, x) : t > T, x \in \mathbb{R}^{n} \right\}$

Let D_{D} be a subset of these points $(\tilde{t}, \tilde{x}) \in \overline{D}$, for which there exists a half-neighbourhood:

$$\left\{ (t,x) : (t < \tilde{t}) \land \sum_{j=1}^{n} (x_{j} - \tilde{x}_{j})^{2} + (t - \tilde{t})^{2} < r^{2} \right\}$$

containing in the domain D. It is obvious that D C D .

 $S_{\widetilde{t}}(\widetilde{t} > 0)$, denotes the projection of the set $D_{p} \cap \{(t,x) : t = \widetilde{t}\}$ onto. R^n . Sy is an open set for any $\widetilde{\tau}>0.$

1990

Nr kol. 1070

Let \sum be such subset of the boundary ∂D , that:

 $1^{0} \sum = \partial D \cap \{(t,x) : t \geq 0\}, \quad 2^{0} \sum \cap D_{p} = \emptyset. \text{ Denote } S_{0} = \partial D \cap \{(t,x) : t = 0\}$

Assumption A. S_o and S_{$\tilde{\tau}$} for any $\tilde{\tau} > 0$, are bounded sets.

Let $g^1: \sum^1 \to R_+$, $h^1: \sum^1 \to R_+$ $i = 1, \dots, m$, where $\sum^1 \subset \sum (\sum^1 may be empty for certain i).$

In every point $(t,x) \in \sum^{1}$, there exists the direction $l^{1}(t,x)$ orthogonal to t-axis, and there exists an open interval of the half-line of the direction l^{1} emerging from the point (t,x) which is also the point of this interval, contained in D_{p} .

For every t > 0, we denote by $\overline{C}(S_t)$ the space of the continuous and bounded functions $Z(\cdot) = (Z^1(\cdot), \ldots, Z^m(\cdot))$: $S_t \ni x \longrightarrow Z(x) \in \mathbb{R}^m$, which are put in order in the following manner:

$$Z(\cdot) \leq \widetilde{Z}(\cdot), (Z < \widetilde{Z}) \iff Z^{J}(x) \leq \widetilde{Z}^{J}(x), (Z^{J}(x) < \widetilde{Z}^{J}(x)),$$

for every x & S_t, i = 1,...,m. In this space we introduce the norm:

$$\|Z\|_{t=\max} \sup_{1 \le i \le m} \sup_{x \in S_{t}} |Z^{1}(x)|$$

Let f be the function of argument (t,x,u,q,r,s) where $(t,x) \in D_p$, $u = (u^1, \dots, u^m) \in R^m$, $q = (q_1, \dots, q_n) \in R^n$, $r = (r_{11}, r_{12}, \dots, r_{nn}) \in R^{n2}$ and $r_{ij} = r_{ji}, i, j = 1, \dots, n$, $s \in \overline{C}(S_t)$, its values belong to R^m . Denote $f = (f^1, \dots, f^m)$.

<u>Definition 1</u>. A function u: $\overline{D} \rightarrow \mathbb{R}^{\mathbb{M}}$, is said to be \sum -regular if u¹ are continuous functions for $\mathbf{i} = 1, \dots, \mathbb{M}$ in \overline{D} , $u_{\mathbf{x}}^{\mathbf{i}}$, $u_{\mathbf{x}}^{\mathbf{i}}$, $u_{\mathbf{t}}^{\mathbf{i}}$ are continuous in $D_{\mathbf{p}}$, and in every point $(\mathbf{t},\mathbf{x}) \in \sum^{\mathbf{i}}$, $\mathbf{i} = 1, \dots, \mathbb{M}$, there exists the derivative $\frac{du^{\mathbf{i}}}{dl^{\mathbf{i}}}$ in the direction $l^{\mathbf{i}}(\mathbf{t},\mathbf{x})$.

<u>Definition 2.</u> We say that u is the \sum -regular solution of the system (1) if for every $(t,x) \in D_p$ and $u(t,.) \in \overline{C}(S_t)$, u is a function \sum -regular, and if it constitutes the solution of the system (1). The function $u(t,\cdot)$ we define as follow: $u(t,\cdot)$: $S_t \rightarrow R^m$, $u(t,\cdot)(x) = u(t,x)$.

(2)

<u>Definition 3</u>. We say that f is parabolic with respect to the \sum -regular function u, if for every pair of arguments r, $\tilde{r} \in \mathbb{R}^{n^2}$, the inequality

$$f^{1}(t,x,u(t,x), u^{1}_{x}(t,x), \tilde{r}, u(t, \cdot) - f^{1}(t,x,u(t,x), u^{1}_{x}(t,x), r, u(t, \cdot) \ge 0$$

for
$$(t,x) \in D_p$$
, $i = 1, \dots, m$ and $\tilde{r} \ge r$, holds.
 $\tilde{r} \ge r$ means, that for every $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, $\sum_{j,k=1}^n (\tilde{r}_{jk} - r_{jk}) \alpha_j \alpha_k \ge 0$,
where $r_{ij} = r_{ji}$ and $\tilde{r}_{ij} = \tilde{r}_{ji}$ (comp. [5]).

<u>Definition 4</u>. We say that \sum -regular function u, satisfies strong boundary inequalities if there exists $T \ge 0$ such that for i = 1, ..., mwe have (comp. [5])

Using the theorems about the differential-functional inequalities given in Remark 5 bolew, we are going to formulate the Lemma 1 under the Assumption B_1 and Lemma 2 under the Assumption B_2 .

We consider the system (1) with the following boundary conditions:

$$u^{1}(t,x) = \varphi_{1}^{1}(t,x) \text{ for } (t,x) \in \sum \sum \sum^{1}$$

$$M^{1}(u)(t,x) = \varphi_{2}^{1}(t,x) \text{ for } (t,x) \in \sum^{1}$$

$$u^{1}(0,x) = \varphi_{0}^{1}(t,x) \text{ for } (x) \in S_{0}$$

$$(5)$$

Lemma 1. Let $T \ge 0$, and the \sum -regular function V satisfies for $(t,x) \in (D_n)_T$, i = 1,...,m, the inequalities:

$$V_{t}^{1}(t,x) > f^{1}(t,x,V(t,x),V_{x}^{1}(t,x),V_{xx}^{1}(t,x),V(t,\cdot))$$
(6)

where V $(t, \cdot) \in \overline{C}(S_t)$. We assume also that u is the \sum -regular solution of the system (1) in D_p, u satisfies the boundary condition (5), and f is parabolic with respect to u. If the difference u - V

satisfies the strong boundary inequalities according to definition 4 then $u \leq V$ in $(D_n)_T$.

<u>Lemma 2</u>. Let $T \ge 0$, and the \sum -regular function v satisfies for $(t,x) \in (D_p)_T$, i = 1,...,m, the inequalities:

$$v_{t}^{i}(t,x) \leq f^{i}(t,x), v, v_{x}^{i}(t,x), v_{xx}^{i}(t,x), v(t,\cdot))$$
 (7)

where $v(t, \cdot) \in \overline{C}(S_t)$. If u satisfies the Assumption of Lemma 1 and the difference v - u satisfies the strong boundary inequalities then $v \le u$ in $(D_n)_T$.

<u>Coroliary 1</u>. If all the Assumptions of the Lemmas 1 and 2 hold for $T \ge 0$ and besides for $i = 1, \dots, m$:

$$1^{\circ} \quad \forall (t,x) \in \overline{D}_{T} \quad v^{1}(t,x) > 0, \quad v^{1}(t,x) < 0$$

2°
$$\forall \varepsilon > 0, \exists T_0 \ge T, \forall (t,x) \in (O_p)_{T_0}$$

 $v^{i}(t,x) < \varepsilon$ and $v^{i}(t,x) > -\varepsilon$

then $\lim_{t\to\infty} \|u(t,\cdot)\|_t = 0$ the norm $\|\cdot\|_t$ is defined analogously as in (2). <u>Corollary 2</u>. If we create two families of functions V_F and v_c such

that:

1° $\forall \epsilon > 0 \exists T_0$ such that in $(D_p)_{T_0}$ all the assumptions of Lemmas 1 and 2 hold,

$$\forall \epsilon > 0, v_{\epsilon}(t,x) > 0, v_{\epsilon}(t,x) < 0$$
 in $(D_{p})_{T}$

3° $\forall \& \ge 0$, for T_o from 1°, $\exists T_1 \ge T_0$ such that $V_g(t,x) < \&$ and $v_g(t,x) \ge -\&$ in $(D_p)_{T_1}$

then lim $\|u(t,\cdot)\|_t = 0$

<u>Proof</u>. It results from Lemmas 1, 2 that: $\forall \varepsilon > 0$

$$V_{\varepsilon}(t,x) > u(t,x) > v_{\varepsilon}(t,x)$$
 in $(D_{p})_{T}$

Therefore - & < u(t,x) < & in $(D_p)_{T_1}$. Hence $||u(t,\cdot)||_t < \&$ for $t > T_1$, what complete the proof.

<u>Remark 1</u>. The assertions of the Lemmas are valid independently of the initial condition φ_0 on S_0 , if we are only able to construct the function v and V just such that v(T,x) < u(T,x) < V(T,x) on S_T .

We will establish conditions for the function f, which will enable the effective construction of the function v and V.

2. Homogeneous boundary conditions

<u>Assumption C</u>. There exists p: $[-\delta, \infty) \rightarrow \mathbb{R}$ where $\delta \ge 0$ is fixed but arbitrary, satisfying:

- $1^{0} p(t) > 0$
- $2^{0} \lim_{t \to \infty} p(t) = 0$

3° p is continuous, non-increasing

 $4^{0} p(t) \ge |f^{1}(t,x,0,0,0,0)|$ in $D_{p}, i = 1,...,m$.

We can construct the function p effectively if we introduce:

Assumption D. We denote $\zeta^1(t,x) = f^1(t,x,0,0,0,0)$ for $(t,x) \in D_p$ and assume that $\zeta = (\zeta^1, \dots, \zeta^m)$ is a continuous function in \overline{D} and $\lim_{t \to \infty} \|\zeta(t, \cdot)\|_t = 0.$

We put: $p(t) = \sup_{\mathfrak{T} \ge t} \|\zeta(\mathfrak{T}, \cdot)\|_{\mathfrak{T}}$ for $t \ge 0$ and p(t) = p(0) for $-\delta < t < 0$

If there exists an index i such that $\zeta^{1}(t,x) \neq 0$ for every $T \ge 0$ in D_{T} then function p constructed above satisfies all the conditions $1^{0}-4^{0}$. If for every index i there exists $T_{i} \ge 0$ such that $\zeta^{1}(t,x) \equiv 0$ in $D_{T_{i}}$, then p(t) may be constructed arbitrarily, according to the Assumption C.

As the Assumption C is weaker than D, we will use it in further consideration.

With the help of the function p we can construct the following function

$$J_{\lambda}(t) = \int_{-\delta}^{t} p(S) \exp \lambda(S - t) dS$$

which, for every $\lambda>0,$ has properties important for us (these properties were proved in [4])

 $1^{\circ} J_{\lambda}(t) > 0$ for $t \ge 0$

 $2^{\circ} J_{\lambda}(t)$ is continuous and has the continuous derivative for $t \ge 0$ $3^{\circ} \lim_{t \to \infty} J_{\lambda}(t) = 0.$

Now we can construct the function $V = (V^1, \dots, V^n)$ in the following way:

 $v^{i}(t,x) = J(t)w^{i}(x)$, $i = 1, \dots, m$, but we shall still need another assumptions for the adequate choice of functions w¹. Definition 5. Let L be the function of argument (t,x,u,q,s), where $(t,x) \in (D_p)_T$, $u \in \mathbb{R}^m$, $q \in \mathbb{R}^n$, $S \in \overline{C}(S_t)$ its values belong to \mathbb{R}^m . Assumption E. For $T_{f_1} \ge 0$, there exist four functions: L_k, k = 1,2 (see Def. 5) and $w: S_0^1 \rightarrow R_+^m$ and $w: S_0^1 \rightarrow R_-^m$ continuous in \overline{S}_{0}^{1} , of class C^{2} in S^{1} , which have the derivatives $\frac{d}{dl^{i}(t,x)} \stackrel{k_{i}}{=} 1,2 \text{ if } (t,x) \in \sum^{i}, i = 1,...,m. \text{ We assume that:}$ 1° For every continuous function $\varphi: [0,\infty) \rightarrow R_1$, the functions L_1 , w, k = 1,2, satisfy the inequalities, for i = 1,...,m. sgn w $\begin{bmatrix} f^{1}(t,x,\varphi(t)w(x),\varphi(t)w_{*}(x),0,\varphi(t)w(\cdot)) \end{bmatrix} =$ $-f^{i}(t,x,0,0,0,0,0)] \leq -\varphi(t)L_{k}^{i}(t,x,w(x),w_{x}^{i}(x),w(\cdot))$ in the domain $(D_p)_{T_p}$. 1° 2° The functions w, w satisfy the following conditions, for i = 1,...,m, k = 1, 2:a) $1 \leq (-1)^{k+1} w^1(x) \leq K$ for $x \in S^1_{a}$, b) $(-1)^{k+1} \sum_{j=1}^{m} \underset{w_{x_j x_1}}{\overset{k}{\to}} (x) \alpha_j \alpha_1 \leq 0$ for $x \in S_0^1$ and every $\alpha = (\alpha_1, \dots, \alpha_n)$ c) there exists $\lambda > 0$, such that $L_k^i(t, x, w(x), w_x^i(x), w(\cdot)) +$ + $(-1)^k \lambda_w^{ki}(x) > 0$ in $(D_p)_{T_0}$, d) $(-1)^{k+1} M^{1}(w)(t,x) > 0 \text{ on } (\sum^{1})_{T_{0}}$

Assumption F. Let us denote:

$$\begin{split} H_{0} &= \left\{ \Phi: \overline{D} \rightarrow R^{m}, \ \Phi^{1}(t,x) = \varphi(t) \ w^{1}(x), i = 1, \ldots, m \right\} \text{ where } \varphi \in C^{1}([0,\infty), R_{+}) \\ \text{and } w^{1}(x) &= \ w^{1}(x), \ k = 1, \ 2 \text{ are as regular as it was assumed in} \\ \text{Assumption E, and satisfy the conditions a), b). We assume that f is \\ \text{parabolic with respect to every function } \Phi \in H_{0}. \end{split}$$

We prove now

<u>Theorem 1</u>. Let us suppose that f satisfies Assumptions F,B_1,B_2 and the Assumations C and E hold, for $T_0 = 0$, in D_p . Let u be the \sum -regular solution of the system (1) in D_p , satisfying the boundary condition (5) with:

$$\varphi_1^i \equiv 0$$
 on $\sum \sum_{i} \varphi_2^i \equiv 0$ on $\sum_{i} and \varphi_0^i \equiv 0$ on S_0

We assume moreover that f is parabolic with respect to the u. Then $\lim_{t\to\infty} \|u(t, \cdot)\|_{t} = 0$.

Proof: We take $\lambda > 0$, for which the condition c) of Assumption E is satisfied. Put $J(t) = J_{\lambda}(t)$ and $v^{1}(t,x) = J(t)^{\frac{1}{p}1}(x), v^{1}(t,x) = J(t)^{\frac{2}{p}1}(x), i = 1, \dots, m$ in D_{p} . Notice that $V = (V^{1}, \dots, V^{m})$ and $v = (v^{1}, \dots, v^{m})$ are the \sum -regular function in D_{p} and $V(t, \cdot), v(t, \cdot)$ belong to $\overline{C}(S_{t})$ for t > 0.

We will prove that the functions V and v, constructed above satisfy the propositions of Lemmas 1, 2. First we verify inequalities (6). We apply successively the Assumption C, inequality (8) for k = 1, conditions a), c) and b) of the Assumption E, and finally Assumption F, and by this way we abtain

$$V_{t}^{i}(t,x) = \frac{1}{w}(x)J(t) \ge p(t) - \lambda_{w}^{i}(x)J(t) \ge -\lambda_{w}^{i}(x)J(t) + f^{i}(t,x,0,0,0,0) \ge J(t) \left[-\lambda_{w}^{i}(x) + L_{1}^{i}(t,x,w(x),w_{x}^{i}(x),w^{i}(\cdot) \right] + f^{i}(t,x,V(t,x), V_{x}^{i}(t,x),0,V(t,\cdot)) \ge$$

$$\geq f^{\perp}(t,x,V(t,x), V^{\perp}_{X}(t,x), V^{\perp}_{XX}(t,x), V(t,\cdot)) \quad \text{in } D_{p}.$$

Analogously we shaw that v satisfy the inequality (7) in D_p . Now we will deal with the boundary conditions. On $\sum \sum_{i=1}^{i} for i = 1, \ldots, m$, and on S_0 we have $v^i(t, x) < 0 \equiv u(t, x) < V^i(t, x)$. It results from the condition d) of the Assumption E that we get

$$M^{i}(u^{i} - V^{i})(t, x) = -h^{i}(t, x)V^{i}(t, x) + g^{i} \frac{d}{dl^{i}}V^{i}(t, x) =$$

$$= \Im(t)(g^{i}(t,x) \frac{d}{dl^{i}} u^{i}(x) - h^{i}u^{i}(x)) < 0$$

and similarly $M^{1}(v^{1} - u^{1})(t, x) < 0$ on $\sum_{i=1}^{1}$, i = 1, ..., m.

Furthermore applying the condition 3° of the function J (and the inequality a) of Assumption E) we conclude that all the propositions of the corollary 1 hold in the domain D, that completes the proof. Under linear boundary conditions the theoreme 1 in 4 is a particular

case of the above theorem.

3. Some examples

Example 1. We consider the case when the system (1) is reduced to the one differential equation of the parabolic type:

$$u_{t}(t,x) = \sum_{i,j=1}^{n} a_{ij}(t,x)u_{x_{i}x_{j}}(t,x) + \sum_{k=1}^{n} b_{k}(t,x)u_{k}(t,x) +$$

 $+ c(t,x)u(t,x) - f_1(t,x)$

Now the inequality (8) has the following form:

$$\operatorname{sgn} {}^{k}_{w} \left\{ \varphi(t) \left[\sum_{j=1}^{n} b_{j}(t, x)^{k}_{w_{x_{j}}}(x) + c(t, x)^{k}_{w(x)} \right] \right\} \leq$$

$$\leq -\varphi(t)L_{k}^{k}(t,x,w(x),w_{x}(x)), k = 1, 2, \text{ for every } (t,x) \in D_{p}.$$

We note that in the case of sgn w = 1 we can put

$$L_{1}(t,x,w(x),w(x)) = -\sum_{j=1}^{n} b_{j}(t,x)w_{x_{j}}(x) - c(t,x)w(x)$$
2

and if sgn w = -1 then

-

$$L_{2}(t,x,w(x),w_{x}(x)) = \sum_{j=1}^{n} b_{j}(t,x)w_{x_{j}}(x) + c(t,x)w(x).$$

Hence the inequalities c) can be written in the form

$$\sum_{k=1}^{n} -b_{k}(t,x) w_{x_{k}}(x) - (c(t,x) + \lambda) w(x) > 0$$

$$\sum_{k=1}^{n} b_{k}(t,x) w_{x_{k}}(x) + (c(t,x) + \lambda) w(x) > 0$$
(10)

The coefficients b_k and c are known, therefore taking an arbitrary parameter $\lambda \ge 0$ we can find the solutions of the inequalities (10). We can give an example of such solutions:

Obviously we have w = -w. Assume for k = 1, ..., m, $b_k(t,x) \le \le -Bo < 0$, $c(t,x) \le c_0$, $c_0 \ge 0$ and let the following condition $B_0 - Kc_0 > 0$ hold true for K > 1. Suppose S_0^1 is bounded, denote R = diam S_0^1 and for suitable fixed i_0 we set $w(x) = K - exp(R - x_1)$, assuming that the origin of coordinates $\in S_0^1$.

Then we have $1 \leq w(x_{i_0}) \leq K$, where $K > \max(\beta + 1, \beta \frac{g_0 + h}{h_0})$, $\beta = \exp 2R$, $0 < g^1(t,x) \leq g_0$ and $0 < h_0 \leq h^1(t,x) \leq h$ on $\sum_{i=1}^{1}$. If we set $0 < \lambda < \frac{B_0 - Kc_0}{K}$ then the first one of the inequalities (10) obtains the form:

$$= \sum_{k=1}^{n} b_{k}(t,x) w_{x_{k}}(x) - (c(t,x) + \lambda) w(x) \ge B_{0} - K(c_{0} + \lambda) > 0.$$

We see that w = -w satisfies the second of the inequalities (10), for the same number λ .

Yet we shall examine the conditions d) of the Assumption E. We have

$$g^{1}(t,x) \frac{d}{dl^{1}} w(x) - h^{1}(t,x)w(x) \leq (g_{0} + h)exp(R - x_{10}) - h_{0} K < 0$$

for the above fixed K. So is also for $\begin{array}{c} 2 & 1 & 2 \\ w = -w, & M^{1}(w)(t,x) < 0. \end{array}$

If we suppose that f is continues in D and $\lim_{t\to\infty} f_1(t,x) = 0$ uniformly with respect to x, then we can construct the function p in the same way as we have done it on the page 165 (under the Assumption D) and then the Assumption C is held. Thus all the Assumptions of the Theorem 1 are satisfied and we obtain $\lim_{t\to\infty} u(t,x) = 0$ as the result. $t\to\infty$

Analogously if $b_k(t,x) \ge B_o > 0$, taking $w(x) = K - exp(R + x_i)$, we can prove the same property of the solution of the equation (9).

We have supposed, that K satisfies two inequalities: $\max(\beta + 1, 3 \frac{g_{0} \div h}{h_{0}}) < K < \frac{B_{0}}{c_{0} \div \lambda}$ For simplicity of our consideration let us establish $\beta + 1 < K < \frac{B_{0}}{c_{0} \div \lambda}$ hence

 $(\beta + 1)(c_0 + \lambda) < 8_0$

169

(11)

Setting c_0 as a constant we obtain from (11) the restriction of B_0 , or for the diameter R, as $\beta = \exp 2R$. If we want the inequality (11) to hold for arbitrary R it is sufficient to put a stronger condition on the coefficient c(t,x), for instance $c(t,x) \leq c_0 \exp(-\mathcal{H}t)$, $\mathcal{H} > 0$. Then for sufficiently large $t \geq T_0 > 0$ and convenient $\lambda > 0$, the inequality (11) holds in D_{T_0} (comp.th.2 in [4]). The inequality $c(t,x) \leq c_0 \exp(-\mathcal{H}t)$ is the particular case of the Assumption C_1 od the theorem 2 (comp. remark 2 below).

Example 2. We will give the example of certain equation of which the solution does not converge to zero and we shall prove that the Assumption E does not hold in this case.

The function $u(t,x) = \frac{t^2}{1+t^2} \cdot \sin \frac{x}{\sqrt{a}}$ where $a \ge 0$ is arbitrary, satisfies the equation $a \cdot u_{xx} + u + \frac{2t}{(1+t^2)^2} \cdot \sin \frac{x}{\sqrt{a}} = u_t$ in the domain $D = (0 \le x \le \eta \sqrt{a}) x(0,\infty)$, and u is equal to zero for $x_1 = 0$, $x_2 = \eta \sqrt{a}$, and for t = 0, but u does not converge to zero, as $t \ge \infty$, in the whole interval $[0, \eta \sqrt{a}]$. For $\Phi \in H_0$, sgn $\Phi = 1$, the condition (8) has now the following form $f(t,x,\Phi(t,x),\Phi_x(t,x),0) - f(t,x,0,0,0) =$ $= \Phi(t,x) \le -\phi(t) L(t,x,w(x),w_x(x))$. Setting $\Phi(t,x) = J(t)w(x)$, in virtue of η') we get $\Phi(t,x) = J(t)w(x) \le -J(t)\lambda w(x) \Longrightarrow w(x)(1+\lambda) \le 0$. This however contradicts the condition a.

3. Non - homogeneous boundary conditions

We shall get a generalisation of the theorem 2 of [4] only for the linear boundary conditions¹.

1) The proof of the theorem 2 in [4] is not quite correct. A mistake was made in the proof of the inequalities (*) $V_t^i \ge f^i(t, x, V, V_x^i, V_{xx}^i)$ $i = 1, \dots, m$. We shall now carry on this fragment of reasoning in the correct way. For $\varepsilon > 0$ and $T(\varepsilon) > 0$ the following estimates hold: $\frac{\delta^i(t-T)}{J(t)} \le \frac{d \exp[-\mathcal{H}(t-T)]}{x \exp(-\mathcal{H}t)} = \frac{d_1}{s} \exp(\lambda - \mathcal{H})t \le \frac{d_1}{s}$ for $\lambda < \mathcal{H}$, where $d_1 = (\exp \mathcal{H}T)d$, $s = \frac{p(0)}{\lambda} [1 - \exp(-\lambda \delta)]$. Applying the assumption (24) from page 249 in [4] we have $A = -\lambda K - \delta^i(t - T)mK - \frac{\delta^i(t-T)}{J(t)}m\varepsilon + \mu^i(t - T)w_x \ge -K\lambda + y - \frac{d_1}{s}m\varepsilon$, but $\frac{d_1 \varepsilon}{s}m = \frac{d_1 m \varepsilon \lambda}{p(0)[1 - \exp(-\delta \lambda)]}$.

170

The following definitions and assumptions will be used:

Assumption $E_1 \cdot For T_0 \ge 0$, there exist four functions: L_k , k = 1, 2, (see Def. 5) and w, k = 1, 2, which are as regular as it was supposed in Assumption E. We assume that:

1⁰. For every $\xi \in (0, \xi_0)$, where ξ_0 arbitrary but fixed number, and k for every continuous function $\varphi: [0, \infty) \longrightarrow R_+$, the functions L_k , w, k = 1,2, satisfy for i = 1,...,m, the inequalities:

$$sgn \overset{k}{w} \left[f^{1}(t, x, \varphi(t) \overset{k}{w}(x) + \xi, \varphi(t) \overset{k}{w_{x}}(x), 0, \varphi(t) \overset{k}{w}(\cdot) + \xi \right] = - f^{1}(t, x, \xi, 0, 0, \xi) \right] \leq -\varphi(t) L_{k}^{1}(t, x, w(x), \overset{k}{w_{x}}(x), w(\cdot))$$
(12)

in the domain (D_p)_{Tok}

 2° . The functions w, k = 1, 2, satisfy the conditions a), b), c), d) of the Assumption E.

<u>Assumption C</u>₁. For every $\xi \in (0, \xi_0)$ exists $p_{\xi} : [-\delta, \infty) \rightarrow R$, for $\delta > 0$ arbitrary fixed, such that:

<u>Remark 2</u>. In the case of one differential equation of the form (9) we have $f(t,x,\xi,0,0) = c(t,x)\xi - f_1(t,x)$. Assuming that the functions c and f_1 converge uniformly to zero, the Assumption C_1 holds. The inequality (12) is satisfied by just the same functions L_1 and L_2 as those in the Example 1.

The non - homogeneous boundary conditions will be considered under suitable:

Assumption G_1 . Let $h^{\frac{1}{2}}(t,x) \ge h_0$, where $0 < h_0 < 1$, on $\sum^{\frac{1}{2}} i = 1, \dots, m$. Suppose that for every $\varepsilon > 0$ exists T > 0 such that: $|\varphi_1^{\frac{1}{2}}(t,x)| < \varepsilon$ for every $(t,x) \in (\sum \sum_{i=1}^{2})_T$ and $|\varphi_2^{\frac{1}{2}}(t,x)| < \varepsilon$ for every $(t,x) \in (\sum_{i=1}^{2})_T$.

cd. notki ze str. 170

Since up to now δ has been an arbitrary number so we can set $\delta = \frac{1}{\lambda}$ and therefore $\frac{d_1 m \mathcal{E}}{S} = \frac{d_1 m \mathcal{E} \lambda}{p(0)(1 - e^{-1})}$ and hence $A \ge \lambda \left[-K - \frac{d_1 m \mathcal{E}}{p(0)(1 - e^{-1})}\right] + \frac{1}{\lambda}$. Since $\lambda < \mathcal{K}$ can be arbitraily small, we notice that $A \ge 0$ and hence the inequality (*) holds.

I. Łojczyk-Królikiewicz

<u>Theorem 2</u>. Let f satisfies Assumptions F_1B_1, B_2 , and let Assumptions C_1 , E_1 hold in $(D_p)_{T_0}$. Let u be the \sum -regular solution of the system (1) in D_p such, that f is parabolic with respect to u. If u satisfies the boundary conditions (5) under the Assumption G_1 then

 $\lim_{t\to\infty} \|u(t,\cdot)\|_t = 0.$

<u>Proof</u>. We establish for arbitrary $\mathcal{E} = \frac{2}{2} > 0$ the number $\mathcal{E}_1 = h_0 \mathcal{E}$. We choose a suitable $T_1 \ge T_0$ for this \mathcal{E}_1 , so that the inequalities of Assumption G_1 hold on $\sum_{T_1} \mathcal{E}_1$.

Let λ_1 be established according to the Assumption E_1 in $(D_p)_{T_1}$. We denote $\|\mathbf{u}(T_1, \cdot)\|_{T_1} = K_0$.

Let $p_{\mathcal{E}}(t_{i})$ be the function defined by Assumption C_{1} . We construct the function \overline{p} , which satisfies the conditions $1^{\circ}-3^{\circ}$ of C_{1} , such that $\overline{p}(t) \ge p_{\mathcal{E}}(t)$ for $t \ge 0$ and

$$\overline{p}(0) > \max\left\{ p_{g}(0), \frac{K_{0}\lambda_{1}}{(1 - \frac{1}{\theta})\exp(-\lambda_{1}T_{1})} \right\}$$

$$(13)$$

We set $\overline{p}(t) = \overline{p}(0)$ for $-\frac{1}{\lambda_1} \le t \le 0$.

Taking $\hat{J}(t) = J_{\lambda_1}(t) = \int_{-\frac{1}{2}}^{t} \overline{p}(t) \exp[\lambda_1(t-t)] dt$, we can define $V_{\hat{\varepsilon}}^{1}(t,x) = -\frac{1}{2}$

 $= J(t)_{w}^{1}(x) + \delta \text{ and } v_{\delta}^{1}(t,x) = J(t)_{w}^{2}(x) - \delta, i = 1, \dots, m. \text{ Due to the conditions which satisfy w and w (see Assumption E₁), the function <math>V_{\delta}$ and v_{δ} satisfy the inequalities (6) and (7) in the domain $(D_{p})_{T_{1}}^{*}$. The proof of this fact is similar to the adequate part of the proof of the Theorem 1. Now we should verify the boundary conditions. Let us notice that (comp [4]: the property 6⁰ of the function J, and assumption (13) above) for every $x \in S_{T_{4}}$, $i = 1, \dots, m$ we have

$$v_{\varepsilon}^{1}(T_{1},x) = \frac{1}{3}(T_{1})w^{1}(x) + \varepsilon > \int_{-\frac{1}{\lambda_{1}}}^{0} \overline{p}(\tau) \exp\left[\lambda_{1}(\tau - \tau_{1})\right] d\tau \ge$$

 $\geq \overline{p}(0) \frac{4}{\lambda_{1}} (1 - \frac{1}{e}) \exp(-\lambda_{1} T_{1}) > K_{0} \geq u^{1}(T_{1}, x)$

and similarly

$$v_{\varepsilon}^{1}(T_{1},x) < -\frac{1}{\Im}(T_{1}) \leq -\int_{-\frac{1}{\lambda_{1}}}^{0} \overline{p}(\tau) \exp[\lambda_{1}(\tau - T_{1})] d\tau < -\kappa_{0} \leq u^{1}(T_{1},x).$$

It follows from the condition d) of the Assumption E_1 that $M^{i}(u^{i} - V_{E}^{i})(t,x) = \varphi_{2}^{i}(t,x) +$

+ $\frac{1}{J(t)}(g^{i}(t,x) \frac{d}{dl^{i}} w^{i}(x) - h^{i}(t,x)w^{i}(x)) - \delta h^{i}(t,x) <$

$$< \varphi_2^1(t,x) - h_0 \varepsilon = \varphi_2^1(t,x) - \varepsilon_1 < 0$$
 for every $(t,x) \in (\sum^1)_{T_1}$

Analogously $M^{i}(u^{i} - v_{\hat{\epsilon}}^{i})(t, x) > 0$ on $(\sum^{i})_{T_{1}}$ We have also $V_{\hat{\epsilon}}^{i}(t, x) > \overline{J}(t) + \hat{\epsilon} > h_{o}\hat{\epsilon} = \hat{\epsilon}_{1}$ and $v_{\hat{\epsilon}}^{i}(t, x) < -\hat{\epsilon}_{1}$ on $(\sum \sum^{i})_{T_{1}}$. Hence $v_{\hat{\epsilon}}^{i}(t, x) < u^{i}(t, x) < V_{\hat{\epsilon}}^{i}(t, x)$ on $(\sum \sum^{i})_{T_{1}}$.

Applying the Lemmas 1 and 2 we get $v_{\epsilon} < u < V_{\epsilon}$ in $(D_{p})_{T_{1}}$. Now we see that: $\forall \epsilon = \frac{\eta}{2} > 0, \exists T_{2} \ge T_{1}$ so that $0 < V_{\eta}(t,x) < \eta$ and $0 > v_{\eta}(t,x) > -\eta$ for $(t,x) \in (D_{p})_{T_{2}}$ in virtue of Corollary 2 we have $\lim_{t \to \infty} \|u(t,\cdot)\|_{t} = 0$ what closes the proof.

Let us notice that u has the limit zero independently of the initial conditions (comp. Remark 1).

4. The case of the improper limits

 1° n (t) > 0

Assumption C_2 : There exists $p_1: [0,\infty) \rightarrow R$, which has the following preparties

$$2^{0} \lim_{t \to \infty} p_{1}(t) = \infty$$

$$t \to \infty$$

$$3^{0} p_{1} \text{ is continuous non - decreasing function}$$

$$4^{0} \text{ there exists } T_{3} \ge 0 \text{ such that for } i = 1, \dots, m$$

$$p_{1}(t) \le f^{1}(t, x, 0, 0, 0, 0) \text{ in}(D_{n})_{T}.$$

<u>Remark 3</u>. We denote $\zeta^{1}(t,x) = f^{1}(t,x,0,0,0,0)$ for $(t,x) \in D_{p}$ and assume that $\zeta = (\zeta^{1}, \dots, \zeta^{m})$ is a continuous function in D. Setting $|\zeta(t, \cdot)|_{t} = \min \inf |\zeta^{1}(t,x)|$, we assume $\lim_{t\to\infty} |\zeta(t, \cdot)|_{t} = \infty$, then we $1 \le i \le m S_{t}$ $t \to \infty$ can put $p_{1}(t) = \inf_{T \ge t} |\zeta(T, \cdot)|_{T}$

Now we introduce a new assumption concerning the boundary condition (5).

Assumption <u>G</u>₂. There exists $\mathcal{X}_1 \ge 0$ and T₂ ≥ 0 , such that for $i = 1, \dots, m$ we have $\varphi_1^i(t, x) \ge \frac{P_1(t)}{\mathcal{X}_1}$ on $(\sum \setminus \sum^i)_{T_2}$, $\varphi_2^i(t, x) \ge \frac{P_1(t)}{\mathcal{X}_1}$ on $(\sum^i)_{T_2}$, $u_1(T_2, x) \ge \frac{P_1(t)}{\mathcal{X}_1}$ on S_{t_2} .

<u>Remark 4</u>. If $T_2 = 0$ and the last condition in Asumption G_2 holds, then $\mathcal{X}_1 \cdot \varphi_0^1 \ge f^1(0, x, 0, 0, 0, 0)$, $i = 1, \dots, m$, that means that the solution is essentially dependent on the initial condition.

Assumption E₂. For $T_0 \ge 0$ there exist two functions: L₃ (see Def 5) and w : $S_0^1 \longrightarrow R_+^m$ as regular as it was assumed in E. We assume that: 1° For every continuous function $\varphi: [0,\infty) \longrightarrow R_+$ the function L₃ and 3 w satisfy the inequalities:

$$f^{1}(t,x,\varphi(t)_{w}^{3}(x),\varphi(t)_{w}^{3}(x),0,\varphi(t)_{w}^{3}(\cdot)) = -f^{1}(t,x,0,0,0,0) \ge -\varphi(t)L_{3}^{1}(t,x,w(x),w_{x}^{1}(x),w(\cdot))$$

in $(D_{\overline{p}})_{T_0}$, for i = 1,...,m.

2° The function $\overset{3_{i}}{w^{i}}(x)$ for i = 1, ..., m, satisfy the conditions: a_{1}) $0 < w_{0} \leq \overset{3_{i}}{w^{i}}(x) \leq 1$ for every $x \in \overline{s_{0}^{i}}$

$$b_1) \sum_{\substack{j,k=1\\j,k=1}}^{n} \overset{3_1}{\overset{w_x}{_j} \overset{x_k}{_k}}(x) \, \alpha_j \alpha_k > 0 \quad \text{for every } x \in s_0^1 \text{ and every } \alpha = (\alpha_1, \dots, \alpha_n)$$

c_1) there exists $\lambda_3 > \mathcal{N}_1$ such that the following inequalities hold, for i = 1,...,m:

$$L_{3}^{\frac{1}{2}}(t,x,\overset{3}{w}(x),\overset{3}{w}_{x}^{\frac{1}{2}}(x),\overset{3}{w}(\cdot)) - \lambda_{3}^{\frac{3}{2}}(x) < 0 \text{ for every } (t,x) \in (D_{0})_{T_{0}},$$

 $d_1) M^1(\overset{3}{w}(x))(t,x) < 1 \quad \text{for every } (t,x) \in \sum_{T_0}^1.$

Assumption F. Let us denote:

 $H_1 = \left\{ \Phi : \overline{D} \longrightarrow R^m, \quad \Phi^1(t, x) = \varphi(t) w^1(x), \quad i = 1, \dots, m \right\}$ where $\varphi \in c^1([0, \infty), R_1)$ and $w^1(x) = w^1(x)$ as regular as it was assumed in Assumption E and satisfying the conditions a_1 , b_1 .
We assume that f is parabolic with respect to every function $\Phi \in H_1$.

Let us denot $\Im_{\lambda}(t) = \int_{0}^{t} p_{1}(t) \exp[\lambda(t-t)] dt$ for arbitrary $\lambda \ge 0$. We have obviously 0

```
\lim_{t\to\infty} J_{\lambda}(t) = \infty .
```

Now we prove

<u>Theorem 3</u>. Let T_0 be so established that the Assumptions E_2 in $(D_p)_{T_0}$ and C_2 for $T_3 = T_0$, hold. Suppose that f satisfies the Assumptions F_1 and B_2 . Let u be the \sum -regular solution of the system (1) in D_p , such that f is parabolic with respect to u in $(D_p)_{T_0}^-$. Furthermore let us suppose that u satisfies boundary conditions (5) under the Assumption G_2 for $T_2 = T_0$.

Then we have $\lim_{t\to\infty} |u(t, \cdot)|_t = \infty$ (comp Remark 3).

Proof. We establish λ_3 according with the condition c_1) of E_2 and 3we put $J = J_{\lambda_3}$, $v^1(t,x) = J(t)w^1(x)$, i = 1,...,m. It is easy to prove that v satisfies the system (7).

Since
$$\overline{J}(t) \leq p_1(t) \frac{1}{\lambda_3} \left[\exp \lambda_3(\mathcal{T} - t) \right]^t = \frac{1}{\lambda_3}$$

$$= \frac{p_1(t)}{\lambda_3} - \frac{p_1(t)e^{-1}}{\lambda_3} \exp -(\lambda_3 t) < \frac{p_1(t)}{\lambda_3}$$

therefore for $\lambda_3 > \mathcal{H}_1$ the function v - u satisfies the strong boundary conditions (def. 4). In virtue of Lemma 2, v < u in $(D_p)_T$. From the conditions (15) and a_1) of the Assumption E_2 follows $\lim_{t \to \infty} |u(t, \cdot)|_t = \infty$

Establishing the symmetric assumptions we can give the conditions for which $u \rightarrow -\infty$ for $t \rightarrow \infty$.

Example 4. Let u: $\overline{D} \rightarrow R$ be the \sum_{3}^{n} -regular solution of the equation (9) of parabolic type. We set $L_3(t, x, w(x), w_x(x)) = -\sum_{k=1}^{n} b_k(t, x) w_x - c(t, x) w(x)$ similarly as it was made in the example 1. Let the index i_0 be established so, that $-R \leq x_i \leq 0$, where $0 < R < \infty$ is the diameter

(15)

of
$$S_0^1$$
. Let us take $w(x) = w(x) = \exp x_{i_0}^2$. Now we have $w_0 = \exp(-R) \le \le w(x) \le 1$ and $\sum_{i,j=1}^{n} w_{x_i x_j} \alpha_i \alpha_j = w_{x_{i_0} x_{i_0}} \alpha_{i_0}^2 \ge 0$. Let us suppose that $0 < b_0 \le b_k(t,x) \ k = 1, \dots, n$, and $c_0 \le c(t,x) \le 0$ then $(-\lambda w + L_3(w))(t,x) = = -\sum_{k=1}^{n} b_k(t,x) w_{x_k}(x) - (c(t,x) + \lambda)w(x) \le -\exp(-R)(\lambda + b_0) - c_0^2$.

Setting $\lambda > \max(\mathcal{X}_1, -c_0 \exp R - b_0)$ we see that C_1 holds. Let us assume now that on \sum^1 we have 0 < h(t,x) < 1 and 0 < g(t,x) < < 1 - h(t,x). Hence $h(t,x)w(x) - g(t,x) \frac{d}{d1}w(x) < h(t,x) + g(t,x) < 1$ on \sum^1 . We see that all conditions of the Assumption E_2 hold. If we set $\lim_{t\to\infty} -f_1(t,x) = \infty$ uniformly with respect to $x \in S_0^1$, and furtherly $t\to\infty$ $-f_1(t,x) > 0$ for $t \ge T_0$; then we can define $p_1(t) = \inf_1^1 - f_1(\tau, \cdot)|_{\tau}$, for $t \ge T_0$, $p_1(t) = p_1(T_0)$ for $0 \le t < T_0$ and after that we can use $p_1(t)$ to construct $J_{\lambda}(t)$. In virtue of the theorem 3 we get:

<u>Corollary 3</u>. Let us suppose that: $\lim_{t\to\infty} -f_1(t,x) = \infty$ and the following inequalities hold in $(D_p)_{T_0} : 0 \le b_0 \le b_k(t,x)$ k = 1,...,n,

 $c_0 \leq c(t,x) \leq 0$, $\sum_{ij=1}^{n} a_{ij}(t,x) d_i d_j \geq 0$. If on the boundary $(\sum_{i=1}^{n})_{T_0}$ there is 0 < h(t,x) < 1 and 0 < g(t,x) < 1 - h(t,x), then $\sum_{i=1}^{n}$ -regular solution of (9), which satisfies boundary conditions (5) under following assumptions:

$$u(t,x) \ge \frac{p_1(t)}{\mathcal{X}_1} \quad \text{on } (\sum \sum^1)_{T_0}, \ h(t,x)u(t,x) = g(t,x) \frac{d}{dI} u(t,x) \ge \frac{p_1(t)}{\mathcal{X}_1} \quad \text{on } (\sum^1)_{T_0}, \ u(T_0,x) \ge \frac{p_1(T_0)}{\mathcal{X}_1} \quad \text{on } S_{T_0}$$

converges to $+\infty$ for t $\rightarrow\infty$, uniformly with respect to x.

Remark 5. Now we will formulate two theorems concerning differentialfunctional inequalities, which were basic for the two Lemmas 1 and 2 given at the beginning.

Assigntion B_k , k = 1,2. Let u, v be \sum -regular. We denote $N_k^i = \{(t,x) \in D_p, (-1)^{k+1}u^i(t,x) > (-1)^{k+1}v^i(t,x)\}$. We assume that $(-1)^{k+1}u_t^i \le (-1)^{k+1}f^i(t,x,u,u_x^i,u_{xx}^i,u(t,\cdot))$

$$(-1)^{k+1}v_{t}^{i} \leq (-1)^{k+1}f^{i}(t,x,v,v_{x}^{i},v_{xx}^{i},v(t,\cdot))$$

for $(t,x) \in N_k^1$. Next we assume that there exists $M: \{(t,x,s,q,s(t,\cdot))\} \rightarrow \mathbb{R}^m$, where $s \in \overline{C}(S_t,\mathbb{R}^m)$, such that for every $i = 1, \ldots, m$ and every pair of arguments of f^1 we have

$$sgn(x^{1}-s^{-1}) \left[f^{1}(t,x,s,q,r,s(t,\cdot))-f^{1}(t,x,\overline{s},\overline{q},r,\overline{s}(t,\cdot))\right] \leq \\ \leq M^{1}(t,x,x-\overline{s},q-\overline{q},s(t,\cdot)-\overline{s}(t,\cdot)) \text{ for } (t,x) \in D_{p} \text{ and arbitrary } r \in \mathbb{R}^{n^{2}}. \\ Next we assume that for every $z:D_{p} \rightarrow \mathbb{R}^{m}$, bounded from above in the set N_{1}^{1} (bounded from below in the set N_{2}^{1}), in every point of the set N_{k}^{1} , in which max $\left[(-1)^{k+1}z^{p}(t,x)\right] > 0$, we have$$

 $M^{i}(t,x,z(t,x),0,z(t,\cdot)) \leq \max \sup_{p \in S_{t}} \left[(-1)^{k+1} z^{p}(t,x) \right] K, \text{ for a certain } K \in \mathbf{R},$

Theorem 4 Let u, v be \sum -regular for which the Assumption B₁ holds and f¹ are parabolic with respect to u. If u-v satisfies boundary inequalities according to Def. 4, then $u \leq v$ in $(D_n)_T$.

Theorem 5. Let u, v be \sum -regular for which the Assumption B₂ holds and fⁱ are parabolic with respect to u. If v-u satisfies boundary inequalities according to Def. 4, then $u \ge v$ in $(D_p)_T$.

Proofs are easier than these of the Theorems 6 and B given in paper [7], therefore we omit them.

Notice that from the Theorem 1 it results, that if the posed boundary problem for system (1) has a solution, then this solution is unique.

Remark 6. The Theorems 1 and 2 of the paper 4 can be proved under the Assumptions B_1 and B_2 too, as they are particular cases of the above presented Theorems 1 and 2.

REFERENCES

- [1] Krzyżański M.: Sur l'allure asymptotique des solutions d'équation du type parabolique, Bull. Acad. Polon. Sci. Cl III (1956), p.243-247.
- [2] Krzyżański M.: Sur l'allure asymptotique des solutions des problèmes de Fourier relatifs a une equation linèsire parabolique Atti Accad Naz. Lincei Rend. 28 (1960), p. 37-43.
- [3] Łojczyk-Królikiewicz I.: L'allure asymptotique des solutions des problemes de Fourier relatifs aux équations linèaires normales du type parabolique dans l'espace E^{m+1}, Annales Polon. Math. 14 (1963), p. 1-12.
- [4] Łojczyk-Królikiewicz I.: Sur la stabilité asymtotique de la solution d'un système non linèaire d'équations aux derivées partielles du type parabolique. Ann. Polon. Math. XVIII (1966), p. 243-255.

- [5] Szarski J.: Strong maximum principle for non-linear parabolic differential-functional inequalities in arbitrary domains. Ann. Poln. Math. XXXI (1975), p. 197-203.
- [6] Szarski J.: Differential inequalities. PWN, Warszawa Monografie Matematyczne Tom 43 (1965).
- [7] Łojczyk-Królikiewicz I.: Systems of parabolic differential-functional inequalities. Technical Univ. of Cracow. Monograph 77 (1989), 175-200.