DEDICATED TO PROFESSOR MIECZYStAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Irena ŁOJCZYK-KROXLIKIEWICZ

THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO SYSTEMS OF PARABOLIC DIFFERENTIAL-FUNCTIONAL EQUATIONS

1. Introduction

In this paper we will investigate the solutions of the system

$$
\begin{equation*}
u_{t}^{i}=f^{i}\left(t, x, u, u_{x}^{i}, u_{x x}^{i}, u(t, \cdot)\right) \tag{1}
\end{equation*}
$$

$i=1, \ldots .$. , with linear boundary conditions.
We will establish certain sufficient propositions under which the solution has the limit zero, or ∞, or $-\infty$ as $t \rightarrow \infty$.

The studies of these problems were begun by M. Krzyżański ([1] , [2]) and were generalized later in [3]. [4].

The results of the present paper base on the theorems on differentialfunctional inequalities given in Remark 5 below.

Definitions and notations
Let D be an open set in the R^{n+1} space of the variables $(t, x)=$ $=\left(t, x_{1} \ldots \ldots x_{n}\right)$, and assume that interval $(0, \infty)$ constitutes the projection of D onto the t-axis, and S_{0}^{1} is the projection of D on $R^{n} 3=$ $=\left(x_{1} \ldots \ldots, x_{n}\right) . s_{0}^{1}$ may be bounded or not.

For an arbitrary set $E \subset R^{n+1}$ and $T \geqslant 0$ let us denot by E_{T} the set:

$$
E_{T}=E \cap\left\{(t, x): t>T, x \in R^{n}\right\}
$$

Let D_{p} be a subset of these pointe $(\tilde{t}, \tilde{x}) \in \bar{D}$, for which there exists a half-neighbourhood:

$$
\left\{(t, x):(t<\tilde{t}) \wedge \sum_{j=1}^{n}\left(x_{j}-\tilde{x}_{j}\right)^{2}+(t-\tilde{t})^{2}<r^{2}\right\}
$$

containing in the domain D. It is obvious that $D \subset D_{p}$.
$S_{\tilde{t}}(\tilde{t}>0)$, denotes the projection of the set $D_{p} \cap\{(t, x): t=\tilde{t}\}$ onto $R^{n} \cdot S_{\tilde{\tau}}$ is an open set for any $\tilde{\tau}>0$.

Let \sum be such subset of the boundary ∂D, that :
$1^{0} \sum=\partial D \cap\{(t, x): t>0\}, 2^{0} \sum \cap D_{p}=\varnothing$. Denote $S_{o}=\partial D \cap\{(t, x): t=0\}$
Assumption A. S_{0} and $S_{\tilde{\mathfrak{t}}}$ for any $\tilde{\mathfrak{t}}>0$, are bounded sets.
Let $g^{1}: \Sigma^{1} \rightarrow R_{+}, h^{i}: \Sigma^{1} \rightarrow R_{+} 1=1 \ldots \ldots$, , where $\sum^{1} \subset \sum\left(\Sigma^{1}\right.$ may be empty for certain i).
In every point $(t, x) \in \sum^{i}$, there exists the direction $l^{i}(t, x)$ orthogonal to t-axis, and there exists an open interval of the half-line of the direction l^{1} emerging fram the point (t, x) which is also the point of this interval, contained in D_{p}.

For every $t>0$, we denote by $\overline{\mathrm{C}}\left(S_{t}\right)$ the space of the continuous and bounded functions $z(\cdot)=\left(z^{1}(\cdot), \ldots . Z^{m}(\cdot)\right): S_{t} \quad x \rightarrow z(x) \in R^{m}$, which are put in order in the following manner:

$$
z(\cdot) \leqslant \tilde{z}(\cdot),(z<\tilde{z}) \Longleftrightarrow z^{j}(x) \leqslant \tilde{z}^{j}(x), \quad\left(z^{j}(x)<\tilde{z}^{j}(x)\right) .
$$

for overy $x \in S_{t}, i=1, \ldots .$, .
In this apace we introduce the norm:

$$
\begin{equation*}
\|z\|_{t}=\max _{1 \leqslant i \leqslant n} \sup _{x \in S_{t}}\left|z^{i}(x)\right| \tag{2}
\end{equation*}
$$

Let f be the function of argument (t, x, u, q, r, s) where (t, x) $\in D_{p}$. $u=\left(u^{1} \ldots . . u^{m}\right) \in R^{m}, q=\left(q_{1} \ldots \ldots q_{n}\right) \in R^{n}, r=\left(r_{11}, r_{12} \ldots \ldots r_{n n}\right)^{P} \in R^{n^{2}}$ and $r_{i j}=r_{j 1}, i_{j}=1 \ldots \ldots, n$, e $\in \bar{C}\left(S_{t}\right)$, its values belong to $R^{m i n}$. Denote $f=\left(f^{1} \ldots \ldots f^{m}\right)$.

Definition 1. A function $u: \bar{D} \rightarrow R^{m}$, is said to be \sum-regular if u^{1} are continuous functions for $1=1, \ldots, m$ in $\overline{0}, u_{x}^{1}, u_{x x}^{i}, u_{t}^{i}$ are continuous in D_{p}, and in every point $(t, x) \in \sum^{1}, 1=1 \ldots \ldots$, there exists the derivative $\frac{d u^{1}}{d l^{1}}$ in the direction $l^{1}(t, x)$.

Definition 2. We say that u is the \sum-regular solution of the system (1) If for every $(t, x) \in D_{p}$ and $u(t,.) \in \bar{C}\left(S_{t}\right)$, u ia a functiag \sum-regular. and If it constitutoe the solution of the syate (1).
The function $u(t, \cdot)$ we dafine as follow: $u(t, \cdot): s_{t} \rightarrow R^{m}, u(t, \cdot)(x)=$ - u(ε, x).

Definition 3. We eay that f is parabolic with respect to the $\sum-r e-$ gular function u, if for every pair of arguments $r, \tilde{r} \varepsilon R^{n^{2}}$, the inequality

$$
\begin{equation*}
f^{i}\left(t, x, u(t, x), u_{x}^{i}(t, x), \tilde{r}, u(t, .)=f^{i}\left(t, x, u(t, x), u_{x}^{i}(t, x), r, u(t, .,) \geqslant 0\right.\right. \tag{4}
\end{equation*}
$$

for $(t, x) \in D_{p}, 1=1, \ldots .$, and $\tilde{r} \geqslant r$, holds. $\tilde{r} \geqslant r$ means, that for every of $=\left(\alpha_{1}, \ldots \ldots \alpha_{n}\right) \in R^{n}, \sum_{j, k=1}^{n}\left(\tilde{r}_{j k}-r_{j k}\right) \alpha_{j} \alpha_{k} \geqslant 0$, where $r_{i j}=r_{j i}$ and $\tilde{r}_{i j}=\tilde{r}_{j 1}(\operatorname{comp} .[5])$.

Definition 4. We say that \sum-regular function u, satisfies strong boundary inequalities if there exists $T \geqslant 0$ such that for $i=1 \ldots .$. we have (comp. [5])
$1^{0} u^{1}(T, x)<0 \quad$ for every $x \in \bar{S}_{T}$
$2^{0} M^{i}(u)(t, x)=h^{i}(t, x) u^{i}(t, x)-g^{i}(t, x) \frac{d^{i}}{d I} u^{i}(t, x)<0$
for every $(t, x) \in \sum_{t}^{i}$, and
$3^{0} u^{i}(t, x)<0$ for every $(t, x) \in\left(\sum \mid \sum^{1}\right)_{T^{\prime}}$.
Using the theorems about the differential-functional inequalities given in Remark 5 bolow, we are going to formulate the Lemma 1 under the Assumption B_{1} and Lemma 2 under the Assumption B_{2}.

We consider the system (1) with the following boundary conditions:

$$
\left.\begin{array}{l}
u^{i}(t, x)=\varphi_{1}^{1}(t, x) \quad \text { for }(t, x) \in \sum \mid \sum^{i} \tag{5}\\
M^{1}(u)(t, x)=\varphi_{2}^{1}(t, x) \text { for }(t, x) \in \sum^{1} \\
u^{2}(0, x)=\varphi_{0}^{1}(t, x) \quad \text { for }(x) \in s_{0}
\end{array}\right\}
$$

Loma 1. Let $T \geqslant 0$, and the \sum-regular function V satiefies for $(t, x) \in\left(D_{p}\right)_{T}, 1-1, \ldots$. m, the $^{\text {inequalities: }}$

$$
\begin{equation*}
v_{t}^{1}(t, x)>f^{1}\left(t, x, v(t, x), v_{x}^{1}(t, x), v_{x x}^{1}(t, x), v(t, \cdot)\right) \tag{6}
\end{equation*}
$$

where $V(t, 0) \in \bar{C}\left(S_{t}\right)$. We assume also that u is the \sum-regular solution of the system (1) in D_{p}. usatisfies the boundary condition (5), and f is parabolic with respect to u. If the difference $u=V$
satiesfies the strong boundary inequalities according to definition 4 then $u \leqslant V$ in $\left(D_{p}\right)_{T}$.

Lemme 2. Let $T \geqslant 0$, and the \sum-regular function v satisfies for $(t, x) \in\left(D_{p}\right)_{T}, i=1, \ldots ., m$, the inequalities:

$$
\begin{equation*}
\left.v_{t}^{i}(t, x)<f^{i}(t, x), v, v_{x}^{i}(t, x), v_{x x}^{i}(t, x), v(t, \cdot)\right) \tag{7}
\end{equation*}
$$

where $v(t, \cdot) \in \bar{C}\left(S_{t}\right)$. If u satisfies the Assumption of Lemma 1 and the difference $V-u$ satisfies the strong boundary inequalities then $v \leqslant u$ in $\left(D_{p}\right)_{T}$.

Corollary 1. If all the Assumptions of the Lemmas 1 and 2 hold for $T \geqslant 0$ and besides for $i=1 \ldots . . . m:$
$1^{0} \forall(t, x) \in \overline{\mathrm{D}}_{\mathrm{T}} v^{i}(t, x)>0, v^{i}(t, x)<0$
$2^{\circ} \quad \forall \varepsilon>0, \exists T_{0} \geqslant T_{,} \forall(t, x) \in\left(D_{p}\right)_{T_{0}}$
$v^{1}(t, x)<\varepsilon$ and $v^{i}(t, x)>-\varepsilon$
then $\lim _{t \rightarrow \infty}\|u(t, \cdot)\|_{t}=0$ the norm $\left\|_{t}\right\|_{t}$ is defined analogously as in (2).
Corollary 2. If we create two families of functions $V_{\mathcal{E}}$ and V_{ε} such that:
$1^{\circ} \quad \forall \varepsilon>0 \exists T_{0}$ such that in $\left(D_{p}\right)_{T_{0}}$ all the assumptions of Lemmas 1 and 2 hold,
$2^{0} \quad \forall \varepsilon>0, v_{\varepsilon}(t, x)>0, v_{\varepsilon}(t, x)<0 \quad$ in $\left(D_{p}\right)_{T_{0}}$
$3^{\circ} \quad \forall \varepsilon>0$, for T_{0} from $1^{\circ}, \exists T_{1} \geqslant T_{0}$ such that $v_{\varepsilon}(t, x)<\varepsilon$ and

$$
v_{\varepsilon}(t, x)>-\varepsilon \text { in }\left(D_{p}\right)_{T_{1}}
$$

then $\underset{t \rightarrow \infty}{\lim }\|u(t, \cdot)\|_{t}=0$
Proof. It results from Lemmas 1, 2 that: $\forall \varepsilon>0$
$v_{\varepsilon}(t, x)>u(t, x)>v_{\varepsilon}(t, x)$ in $\left(D_{p}\right)_{T_{0}}$
Therefore $-\varepsilon<u(t, x)<\varepsilon$ in $\left(D_{p}\right)_{T_{1}}$. Hence $\|u(t, \cdot)\|_{i}<\varepsilon$ for $t>T_{1}$, what complete the proof.

Remark 1. The assertions of the Lemmas are valid independently of the initial condition φ_{0} on S_{0}. if we are only able to construct the function v and V just such that $V(T, x)<u(T, x)<V(T, x)$ on S_{T}.

We will establish conditions for the function f, which will enable the effective construction of the function v and v.

2. Homogeneous boundary conditions

Assumption C. There exists $p:[-\delta, \infty) \rightarrow R$ where $\delta>0$ is fixed but arbitrary, satisfying:

$$
1^{0} p(t)>0
$$

$$
2^{0} \lim _{t \rightarrow \infty} p(t)=0
$$

$3^{\circ} \mathrm{p}$ is continuous, non-increasing
$4^{0} p(t) \geqslant\left|f^{i}(t, x, 0,0,0,0)\right|$ in $D_{p}, 1=1, \ldots, m$.
We can construct the function p effectively if wo introduce:
Assumption D. We denote $\zeta^{i}(t, x)=f^{i}(t, x, 0,0,0,0)$ for $(t, x) \in D_{p}$ and assume fhat $\zeta=\left(\zeta^{1} \ldots, \zeta^{m}\right)$ is a continuous function in \bar{D} and $\lim _{t \rightarrow \infty}\|\zeta(t, \cdot)\|_{t}=0$.

We put: $p(t)=\sup _{\tau \geqslant t}\|\zeta(\tau,)\|_{\tau}$ for $t \geqslant 0$ and $p(t)=p(0)$ for $-\delta<t<0$
If there exists an index i such fhat $\zeta^{i}(t, x) \neq 0$ for every $T \geqslant 0$ in D_{T} then function p constructed above satisfies all the conditions $1^{\circ}-4^{\circ}$ 。 If for every index i there exists $T_{i} \geqslant 0$ such that $\zeta^{i}(t, x) \equiv 0$ in $\mathrm{D}_{\mathrm{T}_{i}}$, then $\mathrm{p}(\mathrm{t})$ may be constructed arbitrarily, according to the Assumption C.

As the Assumption C is weaker than D, we will use it in further consideration.

With the help of the function p we can construct the following function

$$
J_{\lambda}(t)=\int_{-\delta}^{t} p(S) \exp \lambda(S-t) d S
$$

which, for every $\lambda>0$, has properties important for us (these properties were proved in [4])
$1^{0} J_{\lambda^{\prime}}(t)>0$ for $t \geqslant 0$
$2^{0} J_{\lambda}(t)$ is continuous and has the continuous derivative for $t \geqslant 0$
$3^{0} \lim _{t \rightarrow \infty} J_{\lambda}(t)=0$.
Now we can construct the function $v=\left(V^{1} \ldots, v^{m}\right)$ in the following way:
$v^{i}(t, x)=J(t) w^{i}(x), 1=1 \ldots \ldots, m$, but we shall still need another assumptions for the adequate choice of functions w^{1}.

Definition 5. Let L be the function of argument (t, x, u, q, s), where $(t, x) \in\left(D_{p}\right)_{T_{0}}, u \in R^{m}, q \in R^{n}, S \in \bar{C}\left(S_{t}\right)$ its values belong to R^{m}.

Assumption E. For $T_{0} \geqslant 0$, there exist four functions: $L_{k}, k=1,2\left(s e \theta\right.$ Def. 5) and ${ }_{w}^{1}: S_{o}^{1} \rightarrow R_{+}^{m}$ and $w^{2}: S_{o}^{1} \rightarrow R_{-}^{m}$ continuous in \bar{S}_{0}^{1}, of class C^{2} in S^{1}, which have the derivatives
$\frac{d}{d l^{i}(t, x)} \mathrm{w}^{\mathrm{w}^{\prime}}(x), k=1,2$ if $(t, x) \in \sum^{i}, 1=1, \ldots, m$. We assume that :
1^{0} For every continuous function $\varphi:[0, \infty) \rightarrow R_{+}$, the functions L_{k}, w_{0}^{k} $k=1,2$, satisfy the inequalities, for $1=1, \ldots, m_{\text {, }}$

$$
\begin{aligned}
& \operatorname{agn}{ }_{w}^{k}\left[f ^ { i } \left(t, x, \varphi(t)_{w}^{k}(x), \varphi(t)_{w_{x}}^{k_{i}}(x), 0, \varphi(t)_{w(\cdot))}^{k}=\right.\right. \\
& \left.-f^{i}(t, x, 0,0,0,0)\right] \leqslant-\varphi(t) L_{k}^{i}\left(t, x, w(x), w_{x}^{\frac{1}{2}}(x), w(\cdot)\right)
\end{aligned}
$$

in the domain $\left(D_{p}\right)_{T_{0}}$.
2^{0} The functions $\quad \begin{aligned} & 1 \\ & w\end{aligned}, w$ satisfy the following conditions, for $1=1 \ldots \ldots m$, $k=1,2$:
a) $1 \leqslant(-1)^{k+1} w_{1}^{k_{1}}(x) \leqslant K$ for $x \in S_{0}^{1}$,
b) $(-1)^{k+1} \sum_{j, l=1}^{m} w_{x_{j} x_{1}}^{k}(x) \alpha_{j} \alpha_{1} \leqslant 0$ for $x \in s_{o}^{1}$ and every $\alpha_{0}\left(\alpha_{1} \ldots, \ldots \alpha_{n}\right)$
c) there exists $\lambda>0$, such that $L_{k}^{i}\left(t, x, w(x), w_{x}^{k}(x), w_{w}^{k}(\cdot)\right)$ + $+(-1)^{k} \lambda_{w^{1}}^{k_{1}}(x)>0$ in $\left(D_{p}\right)_{T_{0}}$.
d) $(-1)^{k+1} M^{i}(w)(t, x)>0$ on $\left(\Sigma^{i}\right)_{T_{0}}$.

Assumption F. Let us denote:

$H_{0}=\left\{\Phi: \bar{D} \rightarrow R^{m}, \Phi^{1}(t, x)=\varphi(t) w^{i}(x), 1=1 \ldots \ldots m\right\}$ where $\varphi \in C^{1}\left([0, \infty), R_{+}\right)$ and $w^{i}(x)=w^{i}(x), k=1,2$ are as regular as it was assumed in
Assuraption E, and satisfy the conditions a), b). We assume that f is parabolic with respect to every function $\Phi \in \mathrm{Ho}^{\boldsymbol{L}}$.

We prove now

Theorem 1. Let us suppose that f satisfies Assumptions F, B_{1}, B_{2} and the Assumptions C and E hold, for $T_{0}=0$, in D_{p}. Let u be the \sum-regula solution of the system (1) in D_{p}, satisfying the boundary condiion (5) with:

$$
\varphi_{1}^{1} \equiv 0 \text { on } \sum \backslash \sum^{i}, \varphi_{2}^{1} \equiv 0 \text { on } \sum^{1} \text { and } \varphi_{0}^{1} \equiv 0 \text { on } S_{0} \text {. }
$$

We assume moreover that f is parabolic with respect to the u. Then $\lim _{t \rightarrow \infty}\|u(t,)\|_{t}=0$.

Proof: We take $\lambda>0$, for which the condition c) of Assumption ${ }_{2} E$ is satisfied. Put $J(t)=J_{\lambda}(t)$ and $V^{1}(t, x)=J(t)^{\frac{1}{1}}(x), v^{1}(t, x)=J(t)^{2}(x)$, $1=1 \ldots \ldots$ in D_{p}. Notice flat $v=\left(v^{1} \ldots \ldots v^{m}\right)$ and $v=\left(v^{1} \ldots \ldots v^{m}\right)$ are the \sum-regular function in D_{p} and $v(t, \cdot), v(t, \cdot)$ belong to $\bar{c}\left(S_{t}\right)$ for $t>0$.

We will prove that the functions V and V, constructed above satisfy the propositions of Lemmas 1, 2. First we verify inequalities (6). We apply succesively the Assumption C, inequality (8) for $k=1$, conditions a), c) and b) of the Assumption E, and finally Assumption F, and by this way we abtain

$$
\begin{aligned}
& v_{t}^{1}(t, x)={ }_{w}^{1}(x) J^{\prime}(t) \geqslant p(t)-\lambda_{w}^{1}(x) J(t) \geqslant-\lambda_{w^{1}}^{1}(x) J(t)+ \\
& f^{1}(t, x, 0,0,0,0) \geqslant J(t)\left[-\lambda_{w}^{1}(x)+L_{1}^{1}\left(t, x, w(x)_{w_{x}^{1}}^{1}(x), w^{1}(\cdot)\right]+\right. \\
& +f^{1}\left(t, x, v(t, x), v_{x}^{1}(t, x), 0, v(t, \cdot)\right)> \\
& >f^{1}\left(t, x, v(t, x), v_{\dot{x}}^{1}(t, x), v_{x x}^{1}(t, x), v(t, \cdot)\right) \text { in } D_{p}
\end{aligned}
$$

Analogously we shaw that v satisfy the inequality (7) in D_{p}.
Now we will deal with the boundary conditions. On $\sum \backslash \sum_{1}^{i}$ for $i=$ $=1 \ldots \ldots$, and on S_{0} we have $v^{1}(t, x)<0 \equiv u(t, x)<v^{1}(t, x)$. It results from the condition d) of the Assumption E that we get

$$
\begin{aligned}
& M^{i}\left(u^{i}-v^{i}\right)(t, x)=-h^{i}(t, x) v^{1}(t, x)+g^{i} \frac{d}{d l^{i}} v^{i}(t, x)= \\
& =J(t)\left(g^{i}(t, x) \frac{d}{d l^{i}}{ }^{1} w^{i}(x)-h^{1^{1}} w^{i}(x)\right)<0
\end{aligned}
$$

and similarly $M^{1}\left(v^{i}-u^{i}\right)(t, x)<0$ on $\sum^{i}, i=1, \ldots, m$.

Furthermore applying the condition 3° of the function J (and the inequality a) of Assumption E) we conclude that all the propositions of the corollary 1 hold in the domain D, that completes the proof.

Under linear boundary conditions the theoreme 1 in [4] is a particular case of the above theorem.

3. Some examples

Example 1. We consider the case when the system (1) is reduced to the one differential equation of the parabolic type:

$$
\begin{align*}
& u_{t}(t, x)=\sum_{i, j=1}^{n} a_{i j}(t, x) u_{x_{i} x_{j}}(t, x)+\sum_{k=1}^{n} b_{k}(t, x) u_{k}(t, x)+ \\
& +c(t, x) u(t, x)-f_{1}(t, x) \tag{9}
\end{align*}
$$

Now the inequality (8) has the following form:

$$
\begin{aligned}
& \operatorname{sgn} w_{w}^{k}\left\{\varphi(t)\left[\sum_{j=1}^{n} b_{j}(t, x)_{w_{x_{j}}}^{k}(x)+c(t, x)_{w}^{k}(x)\right]\right\} \leqslant \\
& \leqslant-\varphi(t) L_{k}\left(t, x, w(x), w_{x}(x)\right), k=1,2, \text { for every }(t, x) \in D_{p}
\end{aligned}
$$

We note that in the case of $\operatorname{sgn} w=1$ we can put

$$
L_{1}\left(t, x, w^{1}(x), w^{1}(x)\right)=-\sum_{j=1}^{n} b_{j}(t, x)_{w_{x_{j}}}^{1}(x)-c(t, x)_{w}^{1}(x)
$$

$$
2
$$

and if $\operatorname{sgn} w=-1$ then

$$
L_{2}\left(t, x, w(x), w_{x}^{2}(x)\right)=\sum_{j=1}^{n} b_{j}(t, x)_{w_{x_{j}}}^{2}(x)+c(t, x)_{w}^{2}(x)
$$

Hence the inequalities c) can be written in the form

$$
\left.\begin{array}{l}
\sum_{k=1}^{n}-b_{k}(t, x)_{w_{x_{k}}}^{1}(x)-(c(t, x)+\lambda)_{w}^{1}(x)>0 \tag{10}\\
\sum_{k=1}^{n} b_{k}(t, x)_{w_{x_{k}}}^{2}(x)+(c(t, x)+\lambda)_{w}^{2}(x)>0
\end{array}\right\}
$$

The coefficients b_{k} and c are known, therefore taking an arbitrary parameter $\lambda>0$ we can find the solutions of the inequalities (10). Wo can give an example of such solutions:

Obviously we have $w=-w$. Assume for $k=1, \ldots ., b_{k}(t, x) \leqslant$ $\leqslant-B_{0}<0, c(t, x) \leqslant c_{0}, c_{0} \geqslant 0$ and let the following condition $B_{0}-K c_{0}>0$ hold true for $K>1$. Suppose S_{o}^{1} is bounded, denote $R=$ diam S_{o}^{1} and for suitable fixed i_{0} we set $w(x)=K-\exp \left(R-x_{i_{0}}\right)$, assuming that the origin of coordinates $\in S_{0}^{1}$.

Then we have $1 \leqslant w\left(x_{i_{0}}\right) \leq K$, where $K>\max \left(\beta+1, \beta \frac{g_{0}+h}{h_{0}}\right), \beta=\exp 2 R_{0}$, $0<g^{1}(t, x) \leqslant g_{0}$ and $0<h_{0} \leqslant h^{1}(t, x) \leqslant h$ on \sum^{1}. If we set $0<\lambda<\frac{B_{0}-K c_{0}}{K}$ then the first one of the inequalities (10) obtains the form:

$$
-\sum_{k=1}^{n} b_{k}(t, x)_{w_{x_{k}}}^{1}(x)-(c(t, x)+\lambda)_{w}^{1}(x) \geqslant B_{0}-k\left(c_{0}+\lambda\right)>0
$$

We see that ${ }^{2}=\frac{1}{-w}$ satisfies the second of the inequalities (10), for the same number λ.

Yet wa shall examine the conditions d) of the Assumption E. We have

$$
g^{1}(t, x) \frac{d}{d l^{1}} \frac{1}{w}(x)-h^{1}(t, x)^{1} w(x) \leqslant\left(g_{0}+h\right) \exp \left(R-x_{i_{0}}\right)-h_{0} k<0
$$

for the above fixed K. So is also for $\quad \begin{gathered}2 \\ m\end{gathered}=w^{1}, M^{2}(w)(t, x)<0$.
If we suppose that f is continous in D and $\lim _{t \rightarrow \infty} f_{i}(t, x)=0$ uniformly with respect to x, then we can construct the function P in the same way as we have done it on the page 165 (under the Assumption D) and then the Assumption C is held. Thus all the Assumptions of the Theoremi are satisfied and we obtain $\lim _{t \rightarrow \infty} u(t, x)=0$ as the result.

$$
t \rightarrow \infty
$$

Analogously if $b_{k}(t, x) \geqslant B_{0}>0$, taking $w(x)=K-\exp \left(R+x_{i_{0}}\right)$, we can prove the same property of the solution of the equation (9).

We have supposed, that K satisfies two inequalities: $\max \left(\beta+1.3 \frac{g_{3}+h}{h_{0}}\right)<k<\frac{B_{0}}{c_{0}+\lambda^{\prime}}$ for sitplicity of our consideration lat us establish $\beta+1<k<\frac{B_{0}}{c_{0}+\lambda}$ hence

$$
\begin{equation*}
(\beta+1)\left(c_{0}+\lambda\right)<s_{0} \tag{11}
\end{equation*}
$$

Setting c_{0} as a constant wo obtain from (11) the restriction of B_{0}. or for the diameter R, as $\beta=\exp 2 R$. If we want the inequality (11) to hold for arbitrary R it is sufficient to put a stronger condition on the coefficient $c(t, x)$, for instance $c(t, x) \leqslant c_{0} \exp (-X t), \chi>0$. Then for sufficiently large $t \geqslant T_{0}>0$ and convenient $\lambda>0$, the inequality (11) holds in $D_{T_{0}}$ (comp.th. 2 in [4]). The inequality $c(t, x) \leqslant c_{o} \exp (-x t)$ is the particular case of the Assumption C_{1} od the theorem 2 (comp. remark 2 below).

Example 2. We will give the example of certain equation of which the solution does not converge to zero and we shall prove that the Assumption E does not hold in this case.

The function $u(t, x)=\frac{t^{2}}{1+t^{2}} \cdot \sin \frac{x}{\sqrt{a}}$ where $a>0$ is arbitrary. satisfies the equation $a \cdot u_{x x}+u+\frac{2 t}{\left(1+t^{2}\right)^{2}} \cdot \sin \frac{x}{\sqrt{a}}=u_{t}$ in the domain $D=(0<x<\pi \sqrt{a}) \times(0, \infty)$, and u is equal to zero for $x_{1}=0$, $x_{2}=\pi \sqrt{a}$, and for $t=0$, but u does not converge to zero, as $t \rightarrow \infty$, in the whole interval $[0, \pi \sqrt{a}]$. For $\Phi \in H_{0}, \operatorname{sgn} \Phi=1$, the condition (B) has now the following form $f\left(t, x, \Phi(t, x), \Phi_{x}(t, x), 0\right)=f(t, x, 0,0,0)=$ $=\Phi(t, x) \leqslant-\varphi(t) L\left(t, x, w(x), w_{x}(x)\right)$. Setting $\Phi(t, x)=J(t)_{w}^{1}(x)$, in virtue of γ^{\prime}) we get $\Phi(t, x)=J(t)_{w}^{1}(x)<-J(t) \lambda_{w}^{1}(x) \Longrightarrow w_{w}^{1}(x)(1+\lambda)<0$ 。 This however contradicts the condition a).

3. Non - homogeneous boundary conditions

We shall get a generalisation of the theorem 2 of [4] only for the linear boundary conditions ${ }^{1}$).

1) The proof of the theorem 2 in [4] is not quite correct. A sistake was made in the proof of the inequalities
(*) $v_{t}^{i} \geqslant f^{1}\left(t, x, v, v_{x}^{i}, v_{x x}^{i}\right) \quad 1=1, \ldots, m$.
We shall now carry on this fragment of reasoning in the correct way. For $\varepsilon>0$ and $T(\varepsilon)>0$ the following estimates hold:
$\frac{\sigma^{1}(t-T)}{J(t)} \leqslant \frac{d \exp [-\chi(t-T)]}{x \exp (-\lambda t)}=\frac{d_{1}}{g} \exp (\lambda, x) t \leqslant \frac{d_{1}}{s}$
for $\lambda<\chi_{0}$ where $d_{1}=(\exp \chi T) d, \quad \operatorname{s}=\frac{p(0)}{\lambda}[1-\exp (-\lambda \delta)]$. Applying the assumption (24) from page 249 in [4] we have $A=-\lambda K-\sigma^{1}(t-T) m K-\frac{G^{1}(t-T)}{J(t)}$ m $E+\mu^{i}(t-T) w_{x} \geqslant-K \lambda+\gamma-\frac{d_{1}}{s} m E$, but $\frac{d_{1} \varepsilon}{s} m=\frac{d_{1}-\varepsilon \lambda}{p(0)[1-\exp (-\delta \lambda)]}$.

The following definitions and assumptions will be used:
Assumption E_{1}. For $T_{0} \geqslant 0$, there exist four functions: $L_{k}, k=1,2$, (see Def. 5) and $w, k=1,2$, which are as regular as it was supposed in Assumption E. We assume that:
1^{0}. For every $\xi \in\left(0, \xi_{0}\right)$, where ξ_{0} arbitrary but fixed number, and for every continuous function $\varphi:[0, \infty) \longrightarrow R_{+}$, the functions $L_{k}, w_{1}, k=1,2$, satisfy for $i=1, \ldots .$. .n, the inequalities:

$$
\begin{align*}
& \quad \operatorname{sgn}_{w}^{k}\left[f^{1}\left(t, x, \varphi(t){ }_{w}^{k}(x)+\xi \cdot \varphi(t)_{w_{x}^{i}}^{k}(x), 0, \varphi(t)_{w}^{k}(\cdot)+\xi\right)=\right. \\
& \left.-f^{i}(t, x, \xi, 0,0, \xi)\right] \leqslant-\varphi(t) L_{k}^{i}\left(t, x, w(x),{ }_{w_{x}^{1}}^{k}(x), w(\cdot)\right) \tag{12}
\end{align*}
$$

in the domain $\left(D_{p}\right)_{T_{k}}$
2^{0}. The functions $\mathbf{w}, k=1,2$, satisfy the conditions a), b), c), d) of the Assumption E.

Assumption C_{1}. For every $\xi \in\left(0, \xi_{0}\right)$ exists $P_{\xi}:[-\delta, \infty) \rightarrow R$, for $\delta>0$ arbitrary fixed, such that:
$1^{0} \quad P_{\xi}(t)>0$
$2^{0} \lim _{t \rightarrow \infty} P_{\xi}(t)=0$
$3^{\circ} p_{\xi}$ is continous and non - increasing
$4^{0} p_{\xi}(t) \geqslant\left|f^{i}(t, x, \xi, 0,0, \xi)\right| \quad$ in $D_{p} . i=1, \ldots . . m_{0}$.
Remark 2. In the case of one differential equation of the form (9) we have $f(t, x, \xi, 0,0)=c(t, x) \xi-f_{1}(t, x)$. Assuming that the functions c and f_{1} converge uniformly to zero, the Assumption C_{1} holds. The inequality (12) is satisfied by just the same functions L_{1} and L_{2} as those in the Example 1.

The non - homogeneous boundery conditions will be considered under suitable:

As sumption G_{1}. Let $h^{i}(t, x) \geqslant h_{0}$, where $0<h_{0}<1$, on $\sum_{i}^{i} i=1, \ldots, m$. Suppose that for every $\mathcal{E}>0$ exists $T>0$ such that: $\left|\varphi_{1}^{i}(t, x)\right|<E$ for every $(t, x) \in\left(\sum \backslash \sum^{i}\right)_{T}$ and $\left|\varphi_{2}^{i}(t, x)\right|<\varepsilon$ for every $(t, x) \in\left(\sum^{i}\right)_{T}$.
cd. notki ze gtr. 170

Since up to now δ has been an arbitrary number so we can set $\delta=\frac{1}{\lambda}$ and therefore $\frac{d_{1} m E}{s}=\frac{d_{1} \text { m } E \lambda}{p(0)\left(1-e^{-I}\right)}$ and hence $\left.A \geqslant \lambda_{\left[-K-\frac{d_{1} m}{} E(0)\left(1-e^{-I}\right)\right.}^{p}\right]+\gamma^{\nu}$. Since $\lambda<x$ can be arbitraily small, we notice that $A \geqslant 0$ and hence the inequality (*) holds.

Theorem 2. Let f satisfies Assumptions F, B_{1}, B_{2}, and let Assumptions C_{1}, E_{1} hold in $\left(D_{P}\right)_{T_{0}}$. Let u be the \sum-regular solution of the system (1) in D_{p} such, that f is parabolic with respect to u. If u satisfies the boundary conditions (5) under the Assumption G_{1} then

$$
\lim _{t \rightarrow \infty}\|u(t, \cdot)\|_{t}=0
$$

Proof. We establish for arbitrary $\varepsilon=\frac{\partial}{2}>0$ the number $\varepsilon_{1}=h_{0} \varepsilon$. We choose a suitable $T_{1} \geqslant T_{0}$ for this ε_{1}, so that the inequalities of Assumption G_{1} hold on $\Sigma_{T_{1}}$.

Let λ_{1} be established according to the Assumption E_{1} in $\left(D_{p}\right)_{T_{1}}$. We denote $\left\|u\left(T_{1}, \cdot\right)\right\|_{T_{1}}=K_{0}$.

Let $p_{\mathcal{E}}\left(t_{\text {}}\right)$ be the function defined by Assumption C_{1}. We construct the function \bar{p}, which satisfies the conditions $1^{\circ}-3^{\circ}$ of C_{1}, such that $\bar{p}(t) \geqslant p_{\varepsilon}(t)$ for $t>0$ and

$$
\begin{equation*}
\bar{p}(0)>\max \left\{p_{\varepsilon}(0), \frac{K_{0} \lambda_{1}}{\left(1-\frac{1}{\theta}\right) \exp \left(-\lambda_{1} T_{1}\right)}\right\} \tag{13}
\end{equation*}
$$

We set $\bar{p}(t)=\bar{p}(0)$ for $-\frac{1}{\lambda_{1}} \leqslant t \leqslant 0$.
Taking $\stackrel{1}{J}(t)=J_{\lambda_{1}}(t)=\int_{1}^{t} \bar{p}(\tau)_{\exp }\left[\lambda_{1}(\tau-t)\right] d \tau$, we can define $v_{\varepsilon}^{i}(t, x)=$ $-\frac{1}{\lambda_{1}}$
$=\frac{1}{J}(t)^{\frac{1}{2}}(x)+\varepsilon$ and $v_{\varepsilon}^{\frac{1}{2}}(t, x)=\frac{1}{J}(t)_{2}^{2} w^{i}(x)-\varepsilon, i=1, \ldots . m$. Due to the conditions which satisfy ${ }_{w}^{1}$ and ${ }_{w}^{2}$ (see Assumption E_{1}), the function V_{E} and v_{E} satisfy the inequalities (6) and (7) in the domain $\left(D_{p}\right)_{T_{1}}$. The proof of this fact is similar to the adequate part of the prof of the Theorem 1. Now we should verify the boundary conditions. Let us notice that (comp [4]: the property 6° of the function J, and assumption (13) above) for every $x \in S_{T_{1}}, i=1 \ldots \ldots m$ we have

$$
\begin{aligned}
& \begin{aligned}
v_{\varepsilon}^{1}\left(T_{1}, x\right)=\stackrel{1}{J}\left(T_{1}\right) w^{1}(x)+\varepsilon> & \int_{1}^{0} \bar{p}(\tau) \exp \left[\lambda_{1}\left(\tau-T_{1}\right)\right] d \tau \geqslant \\
& -\frac{1}{\lambda_{1}}
\end{aligned} \\
& \geqslant \bar{p}(0) \frac{1}{\lambda_{1}}\left(1-\frac{1}{e}\right) \exp \left(-\lambda_{1} T_{1}\right)>K_{0} \geqslant u^{i}\left(T_{1}, x\right)
\end{aligned}
$$

and similarly

$$
v_{\varepsilon}^{1}\left(T_{1}, x\right)<-\frac{1}{J}\left(T_{1}\right) \leqslant-\int_{-\frac{1}{\lambda_{1}}}^{0} \bar{p}(\tau) \exp \left[\lambda_{1}\left(\tau-T_{1}\right)\right] d \tau<-K_{0} \leqslant u^{i}\left(T_{1}, x\right)
$$

It follows from the condition d) of the Assumption E_{1} that

$$
\begin{aligned}
& M^{i}\left(u^{i}-v_{\varepsilon}^{i}\right)(t, x)=\varphi \frac{1}{2}(t, x)+ \\
& +\frac{1}{J}(t)\left(g^{i}(t, x) \frac{d}{d 1^{i}}{ }^{1} w^{i}(x)-h^{i}(t, x)^{\frac{1}{1}}(x)\right)-\varepsilon h^{1}(t, x)< \\
& <\varphi_{2}^{1}(t, x)-h_{0} \varepsilon=\varphi_{2}^{1}(t, x)-\varepsilon_{1}<0 \text { for every }(t, x) \in\left(\sum^{i}\right) T_{1}
\end{aligned}
$$

Analogously $M^{1}\left(u^{1}-v_{\varepsilon}^{i}\right)(t, x)>0$ on $\left(\sum^{i}\right)_{T_{1}}$
We have also $v_{\varepsilon}^{\frac{1}{2}}(t, x)>\stackrel{1}{J}(t)+\varepsilon>h_{0} \varepsilon=\varepsilon_{1}$ and $v_{\varepsilon}^{i}(t, x)<-\varepsilon_{1}$ on $\left(\sum \mid \sum^{i}\right)_{T_{1}}$. Hence $v_{\varepsilon}^{i}(t, x)<u^{i}(t, x)<v_{\varepsilon}^{i}(t, x)$ on $\left(\sum \mid \sum^{i}\right)_{T_{1}}$.

Applying the Lemmas 1 and 2 we get $v_{\varepsilon}<u<v_{\varepsilon}$ in $\left(D_{p}\right)_{T_{1}}$.
Now we see that: $\forall E=\frac{\eta}{2}>0, \exists T_{2} \geqslant T_{1}$ so that $0<v_{\eta}(t, x)<\eta$ and $0>v_{\eta}(t, x)>-\eta$ for $(t, x) \in\left(D_{p}\right)_{T_{2}}$ in virtue of Corollary 2 we have $\lim _{t \rightarrow \infty}\|(t, \cdot)\|_{t}=0$ what closes the proof.

Let us notice that u has the limit zero independently of the initial conditions (comp. Remark 1).

4. The case of the improper limits

Assumption C_{2} : There exists $P_{1}:[0, \infty) \rightarrow R$, which has the following properties
$1^{\circ} P_{1}(t) \geqslant 0$
$2^{\circ} \lim _{t \rightarrow \infty} p_{1}(t)=\infty$
$3^{\circ} \mathrm{P}_{1}$ is continuous non - decreasing function
4° there exists $T_{3} \geqslant 0$ such that for $i=1 \ldots \ldots$....
$p_{1}(t) \leqslant f^{1}(t, x, 0,0,0,0) \ln \left(D_{p}\right)_{T_{3}}$.

Remark 3. We denote $\zeta^{1}(t, x)=f^{1}(t, x, 0,0,0,0)$ for $(t, x) \in D_{p}$ and assume that $\zeta=\left(\zeta^{1}, \ldots, \zeta^{m}\right)$ is a continuous function in D. Setting $|\zeta(t, \cdot)|_{t}=\min _{1 \leqslant i \leqslant m S_{t}} \operatorname{sinf}_{t}\left|\zeta^{i}(t, x)\right|$. we assume $\lim _{t \rightarrow \infty}|\zeta(t, \cdot)|_{\tau}=\infty$, then we can put $p_{1}(t)=\inf _{\tau \geqslant t}^{\operatorname{in}}|\zeta(\tau, \cdot)|_{\tau}$

Now we introduce a new assumption concerning the boundary condition (5).
Assumption G_{2}. There exists $X_{1}>0$ and $\mathrm{T}_{2} \geqslant 0$, such that for $1=1, \ldots$. m we have $\varphi_{1}^{i}(t, x) \geqslant \frac{P_{1}(t)}{X_{1}}$ on $\left(\Sigma \mid \sum^{i}\right)_{T_{2}}, \varphi_{2}^{i}(t, x) \geqslant \frac{p_{1}(t)}{x_{1}}$ on $\left(\sum^{i}\right)_{T_{2}}, \quad u_{i}\left(T_{2}, x\right) \geqslant \frac{P_{1}(t)}{x_{1}}$ on $s_{t_{2}}$.

Remark 4. If $T_{\overline{2}}=0$ and the last condition in Asumption G_{2} holds. then $X_{1} \cdot p_{0}^{1} \geqslant f^{2}(0, x, 0,0,0,0), i=1, \ldots . m$. that means that the solution is essentially dependent on the initial condition.
$\frac{\text { Assumption } E_{2}}{3}$. For $T_{0} \geqslant 0$ there exist two functions: L_{3} (see Def 5) and $\quad w: S_{o}^{1} \rightarrow R_{+}^{m}$ as regular as it was assumed in E. We assume that: 1^{0} For every continuous function $\varphi:[0, \infty) \rightarrow R_{+}$the function L_{3} and 3
w satisfy the inequalities:
$f^{i}\left(t, x, \varphi(t)^{3}(x), \varphi(t)_{w_{x}^{i}}^{3}(x), 0, \varphi(t)_{w}^{3}(\cdot)\right)=$
$-f^{1}(t, x, 0,0,0,0) \geqslant-\varphi(t) L_{3}^{\frac{1}{3}}\left(t, x, w(x) . w_{x}^{3}(x), w_{w}^{3}(\cdot)\right)$
in $\left(D_{\vec{P}}\right)_{T_{0}}$. for $i=1, \ldots, m_{0}$
2^{0} The function ${ }_{w^{3}}{ }^{(}(x)$ for $i=1, \ldots, m_{\text {, satisfy the conditions: }}$
a_{1}) $0<w_{0} \leqslant w^{3}(x) \leqslant 1$ for every $x \in{\overline{s_{0}^{1}}}_{0}^{1}$
$\left.b_{1}\right) \sum_{j, k=1}^{n} 3_{w_{j}}^{3} x_{k}(x) \alpha_{j} \alpha_{k}>0$ for avery $x \in s_{o}^{1}$ and every $\alpha=\left(c_{1}, \ldots, \alpha_{n}\right)$
c_{1}) there exists $\lambda_{3}>x_{1}$ such that the following inequalities hold. for $1=1, \ldots . . m:$
$L_{3}^{i}\left(t, x, w(x),{ }_{w_{x}^{i}}^{3}(x), w^{3}(\cdot)\right)-\lambda_{3} w^{i}(x)<0$ for ovary $(t, x) \in\left(D_{0}\right)_{T_{0}}$,
$\left.d_{1}\right) M^{i}(w(x))(t, x)<1 \quad$ for every $(t, x) \in \sum_{1}^{i} T_{0}$.

Assumption F_{1}; Let us denote:
$H_{1}=\left\{\Phi: \bar{D} \rightarrow R^{m}, \Phi^{i}(t, x)=\varphi\left(t w^{i}(x),{ }_{3} i-1, \ldots, m\right\}\right.$
where $\varphi \in C^{1}\left([0, \infty), R_{+}\right)$and $w^{1}(x)={ }^{3} w^{1}(x)$ as regular as it was assumed in Assumption E and satisfying the conditions a_{1}), b_{1}). We assume that f is parabolic with respect to every function $\Phi \in H_{1}$.

Let us denote $J_{\lambda}(t)=\int_{0}^{t} p_{1}(\tau) \exp [\lambda(\tau-t)] d \tau$ for arbitrary $\lambda>0$.

$$
\begin{equation*}
\lim _{t \rightarrow \infty} J_{\lambda}(t)=\infty . \tag{15}
\end{equation*}
$$

Now we prove

Theorem 3. Let T_{0} be so established that the Assumptions E_{2} in $\left(D_{p}\right)_{0}$ and C_{2} for $T_{3}=T_{0}$, hold. Suppose that f satisfies the Assumptions F_{1} and B_{2}. Let u be the \sum-regular solution of the system (2) in D_{p}. such that f is parabolic with respect to u in $\left(D_{p}\right)_{T_{0}}$.
Furthermore let us suppose that u satisfies boundary conditions (5) under the Assumption G_{2} for $T_{2}=T_{0}$.

Then we have $\lim _{t \rightarrow \infty}\left|u\left(t_{0}\right)\right|_{t}=\infty$ (comp Remark 3).
Proof: We establish λ_{3} according with the condition c_{1}) of E_{2} and we put $J_{J}^{3}=J_{\lambda 3^{\prime}} v^{1}(t, x)={ }_{J}^{3}(t)_{w^{1}}^{3}(x), 1=1, \ldots \ldots m$. It is easy to prove that v satisfies the system (7).

$$
\text { Since } \begin{aligned}
& J(t) \leqslant p_{1}(t) \frac{1}{\lambda_{3}}\left[\exp \lambda_{3}(\tau-t)\right]^{t}-\frac{1}{\lambda_{3}}= \\
& =\frac{p_{1}(t)}{\lambda_{3}}-\frac{p_{1}(t) e^{-1}}{\lambda_{3}} \exp -\left(\lambda_{3} t\right)<\frac{p_{1}(t)}{\lambda_{3}}
\end{aligned}
$$

therefore for $\lambda_{3}>\chi_{1}$ the function $v-u$ satisfies the strong boundary conditions (def. 4). In virtue of Lemma 2, $v<u$ in ($\left.D_{p}\right)_{T_{0}}$. From the conditions (15) and a_{1}) of the Assumption E_{2} follows $\lim _{t \rightarrow \infty}|u(t, \cdot)|_{t}=\infty$

Establishing the symmetric assumptions we can give the conditions for which $u \rightarrow-\infty$ for $t \rightarrow \infty$.

Example 4. Let $u: \bar{D} \rightarrow R$ be the \sum_{3}-regular solution of the equation (9) of parabolic type. We set $L_{3}\left(t, x, w^{3}(x), w_{x}^{3}(x)\right)=-\sum_{k=1}^{n} b_{k}(t, x)^{3} w_{x_{k}}-$ $-c(t, x)_{w}^{3}(x)$ similarly as it was made in the example 1 . Let the index i_{0} be established so, that $-R \leqslant x_{i_{0}} \leqslant 0$, where $0<R<\infty$ is the diameter
of S_{0}^{1}. Let us take ${ }^{3}(x)=w(x)=\exp x_{i_{0}}$. Now we have $w_{0}=\exp (-R) \leqslant$ $\leqslant w(x) \leqslant 1$ and $\sum_{i, j=1}^{n} w_{x_{1} x_{j}} \alpha_{1} \alpha_{j}-w_{x_{1}} x_{i_{0}} \alpha_{1_{0}}^{2} \geqslant 0$. Let us suppose that $0<b_{0} \leqslant b_{k}(t, x) k=1, \ldots, n$, and $c_{0} \leqslant c(t, x) \leqslant 0$ then $\left(-\lambda_{w+L_{3}}^{3}(w)\right)(t, x)=$ $=-\sum_{k=1}^{n} b_{k}(t, x) w_{x_{k}}(x)-(c(t, x)+\lambda) w(x) \leqslant-\exp (-R)\left(\lambda+b_{0}\right)-c_{0}$.

Setting $\lambda>\max \left(X_{1}, c_{0} \exp R-b_{0}\right)$ we see that $\left.C_{1}\right)$ holds. Let us assume now that on \sum^{1} we have $0<h(t, x)<1$ and $0<g(t, x)<$ $<1-h(t, x)$. Hence $h(t, x) w(x)-g(t, x) \frac{d}{d I} w(x)<h(t, x)+g(t, x)<1$ on \sum^{1}. We see that all conditions of the Assumption E_{2} hold. If we set $l_{t \rightarrow \infty}-f_{1}(t, x)=\infty$ uniformly with respect to $x \in s_{0}^{1}$, and furtherly $-f_{1}(t, x)>0$ for $t \geqslant T_{0}$, then we can define $p_{1}(t)=\inf _{\tau \geqslant t}\left|-f_{i}\left(\tau_{1} \cdot\right)\right|_{\tau_{0}}$, for $t \geqslant T_{0} \cdot P_{1}(t)=P_{1}\left(T_{0}\right)$ for $0 \leqslant t<T_{0}$ and after that we can use $P_{1}(t)$ to construct $J_{\lambda}(t)$. In virtue of the theorem 3 we get:

Corollary 3. Let us suppose that: $\lim _{t \rightarrow \infty}-f_{1}(t, x)=\infty$ and the following inequalities hold in $\left(D_{\bar{N}}\right)_{T_{0}}: 0<b_{o} \leqslant b_{k}(t, x) k=1, \ldots, n$, $c_{0} \leqslant c(t, x) \leqslant 0 . \sum_{i j=1}^{n} a_{i j}(t, x) \alpha_{i} \alpha_{j} \geqslant 0$. If on the boundery $\left(\sum^{1}\right)_{T_{0}}$ there is $0<h(t, x)<1$ and $0<g(t, x)<1-h(t, x)$, then \sum-regular solution of (9), which satisfies boundary conditions (5) under following assumptions:

$$
\begin{aligned}
& u(t, x)>\frac{p_{1}(t)}{x_{1}} \text { on }\left(\sum \mid \sum^{1}\right)_{T_{0}}, h(t, x) u(t, x)-g(t, x) \frac{d}{d I} u(t, x)> \\
& >\frac{p_{1}(t)}{X_{1}} \text { on }\left(\sum^{1}\right)_{T_{0}}, u\left(T_{0}, x\right)>\frac{P_{1}\left(T_{0}\right)}{X_{1}} \text { on } S_{T_{0}}
\end{aligned}
$$

convarges to $+\infty$ for $t \rightarrow \infty$. uniformly with respect to x.
Remark 5. Now we will formulate two theorems concerning differentialfunctional inequalities, which were basic for the two Lemmes 1 and 2 gim ven at the beginning.

Asejmption $B_{k}, k=1,2$. Let u, v be \sum-regular. We denote $N_{k}^{1}=\left\{(t, x) \in D_{p},(-1)^{k+1} u^{i}(t, x)>(-1)^{k+1} v^{i}(t, x)\right\}$. We assume that $(-1)^{k+1} u_{t}^{i} \leqslant(-1)^{k+1} f^{i}\left(t, x, u, u_{x}^{i}, u_{x x}^{i}, u(t, \cdot)\right)$
$(-1)^{k+1} v_{t}^{i} \leqslant(-1)^{k+1} f^{i}\left(t, x, v, v_{x}^{i}, v_{x x}^{i}, v(t, \cdot)\right)$
for $(t, x) \in N_{k}^{1}$. Next we assume that there exists $M:\left\{\left(t, x, s, q, s(t,)^{\circ}\right)\right\} \rightarrow R^{m i n}$, where $s \in \bar{C}\left(S_{t}, R^{m}\right)$, such that for every $1=1, \ldots$, , mind anery pair of arguments of f^{i} we have
$\operatorname{sgn}\left(x^{i}-s^{-i}\right)\left[f^{1}(t, x, s, q, r, s(t, \cdot))-f^{1}(t, x, \overline{8}, \bar{q}, r, \bar{s}(t, \cdot))\right] \leqslant$
$\leqslant M^{1}(t, x, x-\bar{s}, q-\bar{q}, s(t, \cdot)-\bar{s}(t, \cdot))$ for $(t, x) \in D_{p}$ and arbitrary $r \in R^{n^{2}}$. Next we assume that for every $z: D_{p} \rightarrow R^{m}$, bounded from above in the set $N_{1}^{\frac{1}{1}}$ (bounded from below in the set N_{2}^{i}), in every point of the set N_{k}^{i}, in which $\max _{p}\left[(-1)^{k+1} z^{p}(t, x)\right]>0$. we have
$M^{i}(t, x, z(t, x), 0, z(t, \cdot)) \leqslant \max _{P} \sup _{t}\left[(-1)^{k+1} z^{P}(t, x)\right] K$, for a certain $K \in \mathbb{R}^{\text {. }}$
Theorem 4 Let u, v be \sum-regular for which the Assumption B_{1} holds and f^{i} are parabolic with respect to u. If $u=v$ satisfies boundary inequalities according to Def. 4 , then $u \leqslant v$ in $\left(D_{p}\right)_{T}$.

Theorem 5. Let u, v be \sum-reguler for which the Assumption B_{2} holds and f^{i} are parabolic with respect to u. If $v-u$ satisfies boundary inequalities according to Def. 4 , then $u \geqslant v$ in $\left(D_{p}\right)_{T}$.

Proofs are easier then these of the Theorems 6 and B given in paper [7], therefore we omit them.

Notice that from the Theorem 1 it results, that if the posed boundary problem for system (1) has a solution, then this solution is unique.

Remark 6. The Theorems 1 and 2 of the paper 4^{*} can be proved under the Assumptions B_{1} and B_{2} too, as they are particular cases of the above presented Theorems 1 and 2.

REFERENCES
[1] Krzyzański M.: Sur 1 'allure asymptotique des solutions d'équation du type parabolique. Bull. Acad. Polon. Sci. Cl III (1956), p.243-247.
[2] Krzyzański M.: Sur l'allure asymptotique des solutions des problèmes de Fourier relatifs a une equation linesire parabolique Atti Accad Naz. Lincei Rend. 28 (1960). p. 37-43.
[3] Łojczyk-Królikiewicz I.: L'allure asymptotique des solutions des problemes de Fourier relatifs aux équations linèaires normales du type parabolique dans l^{\prime} espace E^{m+1}. Annales Polon. Math. 14 (1963). p. 1-12.
[4] Łojczyk-Królikiewicz I.: Sur la stabilité asymtotique de la solum tion d'un système non linèaire d'équations aux derivees partielles du type parabolique. Ann. Polon. Math. XVIII (1966). p. 243-255.
[5] Szarski J.: Strong maximum principle for non-linear parabolic diffe-rential-functional inequalities in arbitrary domains. Ann. Poln. Math. XXXI (1975), p. 197-203.
[6] Szarski J.: Differential inequalities. PWN, Warszawa Monografie Metematyczne Tom 43 (1965).
[7] Łojczyk-Królikiewicz $I_{\text {. }}$: Systems of parabolic differential-functional inequalities. Technical Univ. of Cracow. Monograph 77 (1989). 175-200.

