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RESTRICTED STABILITY OF THE CAUCHY AND THE PEXIDER EQUATIONS

D.H. Hyers [V] Introduced the notion of stability of a functional 
equation. Lately this notion has been generalized [93. [s] and combined 
with the notion of “almost everywhere" [63. The purpose of this paper is 
to show that the Cauchy and the Pexider equations are "ideally stable". 
Here "ideally stable" means that the respective inequality and equality 
hold everywhere except of elements of some “small" sets.

1. Introduction

Let (X. + ) be a group (not necessarily commutative). By a proper 
linearly invariant ideal or in short p.l.i. ideal [43 we mean a nonempty 
family I c  2X satisfying the following conditions:

1. A. B ei =*>Au B 61,

2. A  € I , B C A => B 61,

3. x e x ,  A 6 I =*> X - A G  I,

4. X 4 I.

If we replace 1 in the above definition by
OO

1. Aj Sl , i = 0.1,2,... =*- (J A± 6l.
i=0

then I will be called a p.l.i. 6 -ideal.

For A c X , n = 0,1,2,... we put

A^: = |x 6X: 2nx 6 A j ,  A*: = Q  An.
n=0

In the sequel we shall assume the following condition 

(c) A 6 l = 5 > A * e I .
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Following notations of [4], we put for given p.l.i. ideal I in X:

f t ( I ) : = { i 1 C X x X :  3  V  M : » { y e X : ( x , y ) e M S l } .
U ( M ) G I  x e X N U ( M )

£2 (I) is a p.l.i. ideal in (X*X,t).

Thoroughout the paper U(M) and Mx will denote the sets distinguis
hed in the definition of £2(1).

Let Y be a sequentially complete linear topological space over the 
filed Q of rationals. Following [V], Hyers' definition of stability1  ̂

may be formulated as follows:

Definition 1 . The Cauchy equation

f: X — >-Y, f(x+y) = f(x) + f(y) for x , y £ X  (1)

is said to be stable if there exists a constant K € Q ,  K ^ 0 such that 
for every Q-convex set V c Y, symmetric with respect to zero, containing 
zero and bounded and every g: X — vY satisfying the condition

g(x+y ) - g(x) - g(y ) e V for x.y ex

there exists a solution f of equation (1) such that

f(x) - g( x ) £ K seqcl V for x eX.

where seqcl V denotes the sequential closure of V.
We propose the following definition of the ideal stability.

*
Definition 2 . The Cauchy equation is said to be ideally stable or in 

short I-stable if there exists a constant K e Q ,  K ^ 0 such that for every
V c Y  possesing in Definition 1 specified properties, for every M e £2 (X)
and every g: X — >■ Y satisfying the condition

g (x+y ) - g(x) - g(y ) £ V for (x ,y )£ X2 \ M

there exist a set W E I  and a solution f of equation (l) such that

f(x) - g ( x ) £ K s e q c l  V for x £ X \ W .

Observe that if I ={£>}, where 0 denotes the empty set, then I-stabili-
ty coincides with stability.

* ^There are also other definitions of the stability in use (of. fz],
M .  00 ).
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The main purpose of the paper is to prove that the Cauchy and the 
Pexider equation

f,g,h: X — >Y, f (x+y ) = g(x) + h(y) for x,y£X

are I-stable. Cauchy's equation is 1-stable not only in X but also in
some class of subsemigroups of X.

2. I-stabilitv of the Cauchy equation

In our considerations we shall apply some properties of ideals.
One can prove easily that if I is a p.l.i. ideal in X then

X ex, A C I = > - x  + A, x + A, A + x. A - x 61,

For further considerations we need the following general hypotheses:

(HI) (X,+) is a group, I is a p.l.i. ideal in X satisfying 
condition (c).

(H 2 ) S is a subsemigroup of X, S - S « X , S I.

(H3) N6fl(I).

*( h4) 0  CM2kx]*eI for x e s \ [ u ( M ) ] *
k*0

(H5) Y is a sequentially complete linear topological space over the
field Q, V c Y  is a Q-convex set, symmetric with respect to zero 
bounded and containing zero.

(H6) f: S *■ Y , f (x+y ) - f(x) - f( y) 6V for (x.y)eS2 \M .

(H 7 ) y  y  3  f (2™ (x+y) ) = f(2mx - 2my ).
x,y G S  n £ Nq • 6 N 0 , m » n

We start with some useful lemmas.

Lemma 1. If (Hi) holds and A C X  then

x ex\A*=i> 2nx 6 X \ A *  for n e N q : = n u {o }.

1/ ^
Proof. If 2 x 6 A  for some k £ N  then there exists an n £ N  such " ■■■■' . , o o

that 2n-2 x = 2n+ x £A, which means that x e.A*.cj
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Lemma 2 . If (Hi) and (H3) hold then

X e x \ [ u ( H ) ] %  m x u  m 2x u  (-x + Mx )e I.

Proof. Let xe x \ [ u ( M f ] * .  But U(M)C [u (m []*, hence x 6 X \ U ( M ) .
Therefore, in view of the definition of ii(I), e l  and further
- x + M^SI. By Lemma 1 2x 6 X \ U ( M ) ,  so, again by the definition of £2(1),
M„ 6 1.2x

Lemma 3 . If (Hi), (H2), (H3), (H4) hold then

(i) M: = {( x, y ) 6 S 2 : xe[u(M)]* or y £  [ U ( M ) T  or x+y £ [u(Mj]*

or (x $ [u(M)J and y & U  [m  k ] )} € S2(I).
k=0 2 x

(ii) (x,y)6S2 \ M  =5> (2nx,2ny) 6 S 2 \H.

Proof. (1). Consider any x 6 S \ [ u ( H ) ]  . We have

* °° *
Mx = ([u(M)]*u{y 6X: x+ye [u(n)] u{y ex: y e (J [M k ] )ns

k=0 2 x

-([u(M)]*U(- x + [u(M)]*u Q  [M k ] * > n S -
k=0 2 x

(ii). Let (x,y ) 6 S2 \  M. Then x£S\[u(M)]* and y 6 S \  |J [m  k ]*.
k=0 2 X

Suppose, for an indirect proof, that (2 x,2 y ) 6 M  for some n G N q .

By Lemma 1 2nx 6 S \  [U( M jl * and hence 2ny £ M  .
2 xoo ^

Thus y 6 Tm  ~]*C U  [m  k 1 ■ which leads to a contradiction. □
2 x  k=0 2 x

Lemma 4 . If (Hi), (H2), (H3). (H5), (H6) hold then

f(2x) - 2f (x) 63 V for x e S \ [ u ( M ) ] * .  (2)

Proof. Consider aa arbitrary x 6 S \  ¡JJ(M)]*. On account of Lemma 2 
M U U  (- x + M ) 6 1, so S \  (M U  M U (- x + M )) f ¡3. Choose arbitra-

X  ¿.X X  X  ¿ X  A
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rily a y e S \ (Mx U M ^ U  (- x + Mx )). Then (x ,y ) 6 S2 \ M, (2x ,y ) e S2 \ M
and y e S \ ( -  x + Mx ) i.e. (x ,x+y ) 6 S2 \ M. Now applying (H6) we get

f(2x + y) - f(2x) - f(y)eV,

f(2x + y) - f (x ) - f(x+y) = f[x + (x+yj] - f(x) r f(x+y)6V, 

f (x+y ) - f (x) - f (y ) eV.

These three conditions yield

#(2x) - 2f(x) = - f(2x+y) + f(2x) + f(y) + f(2x+y) - f(x) - 

- f(x+y) + f(x+y) - f(x) - f(y) = - V + V + V =  3V.

Lemma 5. If (Hi), (H2), (H3), (H5), (H6) hold then

2"nf(2mx) - f(2m“nx) G3 (l - 2“n )V (3)

for
x e s \ [ u ( « f ,  n , m s N o , n <  m.

Proof. We shall use induction with respect to n. For n = 0 condition 
(3) evidently holds. Consider now an * S S \ [ u ( M ) ]  , n , m £ N o , n + K m  
and suppose that

2"n f(2rax) - f (2m”nx ) 63(1 - 2"n )V.

Then we have

g-n-lf (2rax ) - 2-1f (2ra-nx)6 |(1 - 2“n )V. (4)

On account of Lemma 1 2*"n‘1x 6S \  [u(M)]*, Applying now Lemma 4 (with x
replaced in (2) by 2m"‘n-1x ) we get

f(2m-nx) - 2f(2ro-n-1x) 63V,

which yields

2_lf(2m-nx ) - f(2m-n-1x )e |  V. (5)

Relations (4) and (5) together give

2-n_lf (2rax ) - f (2m-n-1x) e|(l - 2- n )V + |  V = 3(1 - 2*n_1 )V 

which completes the inductive proof of (3).C3
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The following theorem is the main result of the paper. It generalizes 
the result of R. Ger [V] p. 265, Theorem. However the method of our proof 
is different from R. Ger's one.

Theorem 1. If (Hi), (H2), (H3). (H4), (H5), (H6), (H7) hold then there 
exists an additive mapping at: x — >-Y and a set T e l  such that

oc(x) - f( x ) e 3  eeqcl V for x £ S \ T ,  (6)

where seqcl V denotes sequential closure of V.
Moreover, if Y is a T-l space then cc is unique.

Proof. Consider an x £ S \  [u(H)]*. Following D.H. Hyers we are
f(2nx)  ̂ mgoing to show that n— L is a Cauchy sequence. Let VQ be a

neighbourhood of zero. Replacing in Leema 5 n by m-n we get for 
i,n 6 ^ ,  n « a :

f (2**x ) _ f (2nx ) _ 2n~°lf(2Blx) - f(2nx) 3(1 - 2n~m ) V.

Since V is bounded, for sufficiently large n,m £ N q , m & n

3(1 - 2n~"1 v c v 0.

f(2nx )Thus — ■ —  is a Cauchy sequence and hence there exists its limit

(generally not unique). 
We set

h(x)
lim fi2,n*.? for xeS\[u(M)]*
n->*oo 2

g(x) for xe[u(M)]*,

f(2nx ) f(2nx1where lim —  L denotes any one limit of the sequence A — L and
2n

g:[u(M)3*-»Y is an arbitrary function.
Consider the set M defined as in Lemma 3. By this lemma H e  Sl(I).

We are going to show that

h(x+y) - h(x) - h( y) £ cl{o} for (x,y)£S2 \M. (7)



Restricted stability of the Cauchy. 209

2 A/
Take for the proof a pair (x,y)eS \ M. In virtue of (H7) there exists

a sequence of positive integers { n k}< "k-*"00 as k ~> °° . such t 

f(2 (x+y )) - f(2 kx ♦ 2 y ) for all nk.

O
By Lemma 3 (ii) (2 x # 2 y) GS \ M  and hence, in view of (H6)

n. n, n,
f (2 *x + 2 y ) - f(2 kx) - f (2 *y) SV.

hat

Thus

f (2 k (x+y)) - f (2 kx) - f (2 ky ) 6 V

and so

n, n. n,k
.t (2 x ) f(2 % ) 1

2"k 2nk 2nk 2nk ‘ (8)

It results from the definition of M that x, y, xty e S  \[u(M)]*. 
Therefore, by the first part of the proof, the sequences of the left hand 
side of (7) are convergent. Letting n|<_*’°0 in (8 ) an<* making use of 
boundedness of V we get directly (7).

Following the method used in £9]] we write Y as the direct sum of 
cl{o} (which is a subspace of V) and some subspace Y ^ :

Y = Yx + cl{0}.

Let Jlj, Tt0 be the projections of Y on Y^ and cl{o], respectively. 
Evidently TT1 and fCQ are additive and

y = ̂ ( y )  + JT^(y) for y eY. (9 )

We set

A(x): ■ il^Qifxj] for x & S .

From (7) and additivity of we get now for (x.y) e S 2 \ M
A( x+y) - A(x) - A(y ) = ft̂  [h(x+y) - h(x) - h(yj] » Tt(0) = 0.
Thus A is almost £2(1 )-additive and hence in consequence of Theorem 1
of [V] there exl3t an additive mapping at: X — ► Y and a set W e i  such 
that

► '

c*(x) = a ( x ) for x e S \ w .  (10)
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Put

T :  =  W * u  [ l l ( M ) ] * .

Setting in (3) m ■ n, we obtain

■f.L2. *,) _ f(x ) & 3 (1 _ 2~n )V for x 6 S \ T .  (11)
2

Making use of (9), we get

h( x) - A ( x ) = h(x) - n^[h(x)] » ftc [h(x)] 6 cl{o}, 

and hence, as the translation is a homeomorphism,

A(x)eh(x) + cl{0} » cl{h(x)}.

Since ---*- h(x) for x e S \ T  and A ( x ) ecl{h(x)}. we have
2  n — > o o

U 2.?*). --- ►  A(x) for x e S \ T .
2  n - * - o o

This condition and (11) yield

A( x) - f(x) 6 seqcl 3 V = 3 seqcl V for x G S \ T ,

which, in view of (10), gives (6) and hence completes the proof of the 
first part of the theorem.

An easy proof of uniqueness of <* is given in 6. n

Under some additional assumption on the exceptional set M, the proof
of Theorem 1 can be shorten and better estimation than in (6) can be
found.

Theorem 2 . Let all assumptions of Theorem 1 be fulfilled and let 
additionally

(H 8 ) Mjj: = £ x e S :  ( x , x ) e M j  si.

Then there exist an additive mapping cC: Y — »-Y and a set r el such that

cC(x) - f(x)eseqcl V for x e S \ T .

Before we shall give an idea of the proof of this theorem, we have to do 
some modifications in Lemmas 4 and 5.

Lemma 4*. Under assumptions of Theorem 2

f (2x) - 2f(x) e V  for X £ S \ [ U ( M ) U M D]*.
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Proof. Let x e S \ [ u ( M ) u M 0] . Than x 6 S \ M D , and hence (x,x) g S 2 \  M. 
Applying (H6 ) we get

f(2x) - 2 f ( x ) e v . a

Lemma 51. Under assumptions of Theorem 2

2"nf(2nx) - f(2m-nx ) £ (1 - 2*n )V

for X 6 S \ [ U ( M ) U M D]*. n , m e N o> ngm.
Proofs of Lemma 5 ( and that of Theorem 2 run analogusly as the proofs 

of Lemma 5 and Theorem 1, respectively. We should only replace, in respec
tive places: 3 by 1, U(M) by U(M)u Mq , Lemmas 4 and 5 by Lemmas 4 f and 
5 1, respect^/ely. □

As it can be seen in the previous theorems, the estimation of the 
expression <*(x) - f(x) depends strongly on the shape of the exceptional 
set M. In the case when the exceptional set M has the shape of a cross, 
cc(x) - f(x) can be estimated for all x, instead of "almost all" x, as 
it occurs in the preceding theorems. It leads to the following corollary 
which is a generalisation of Proposition of R. Ger [V] , p. 273.

Corollary. Let (HI), (H5) hold and let the following conditions (H9). 
(H10) be fultilled.

(H9) f: X — >-Y, f(x+y) - f(x) - f(y)eV for x , y e X \ W ,  

where W e I ,

(H10) V  V  3  f(2ra(x+y)) = f(2mx + 2ny).
x . y e X  n e N Q m e N Q , m ^ n

Then there exists an additive mapping at: X — *-Y such that

o((x) - f(x) 6 3  seqcl V for x e X .

Moreover, if Y is a T-l space then at is unique.

Proof. Put S: = X, M: = W x W. Obviously Meft(I) and Mn = W e i ,  
i.e. (H3) and (H 8 ) hold. Furthermore, in our case, W C U ( M )  and so 
Mx = W for x e X \ U ( M ) ,  which proves that
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Thus the assumptions of Theorem 2 are fulfilled. Therefore there exist
an additive mapping cC: X — *- Y and a set T 61 such that

o&(x) - f(x) 6 saqcl V for x e x \ T .  (12)

Without loss of generality we may assume that W CT. Since T e l ,  we
have (cf. Lemma 3)

(X \ T  ) + (X \  T ) » X.

Let us write x e X  in the form x = Xĵ  + x2 with Xj .Xj B X N T .  Then,
as W c T ;  x ^ . X g S X X w .  Making use of (H7), additivity of ot and (12) we
get

Ct(x) - f(x) = <*(x1+x2 ) - f(x1+x2 ) m («(Xj) + 0t(x2 ) - f (Xj ) - f(x2 )-V

=* [<*(x1 ) - fiXjj] + 0 ( x 2 ) - f(x2 )] + V 

cseqcl V + seqcl V + V C  3 seqcl V. C3

3. Remarks and comments

Remark 1 . If I is a p.l.i. 6 -ideal in X such that

a  e i =*- a r e i ,

then (H4) holds. ^
In fact, if A e i  than A* » IJ A ei. Further, if x ex\[l)(M)[]

k n«0 *
then, according to Lemma 1, 2 x 6 X \ [ u ( H ) J  and hence M . e l  and so

2 x
OO

does [m . 1 . Since I is a 6-ideal, U Fm . ~| 6 1 i.e. (H4) holds
2 x k>0 2 x

But on the other hand, it may happen that (H4) holds, however, I is
not a 6 -ideal. To see this, put

(X,+) = (R,+), I - the family of bounded sets,

W - a bounded set, M = W x W.

This example also shows that a p.l.i. ideal satisfying condition (c) 
need not be a 6- ideal.

Remark 2 . From the stability point of view hypothesis (H7) may seem 
a little inconvenient. One may prefer to make assumptions rather on X
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and Y than on f. Hypothesis (H7) results directly from the following 
"weak commutativity condition“

(H7') \/ V 3 2ra(x+y) = 2mx + 2my.
x , y e S  n e N Q n e N ^ ,  m S n

The converse implication is not true, even if we assume hypothesis
(H6 ) additionally. To prove it put, similarly as in [V]:

(X. + ) - (S, + ) - (GL(2,R ), •), (Y,+ ) » (R,+ ),

f(x) - c (constant). xQ . yo » ^  °).

Then (H6 ) and (H7) hold but (H7) is not fulfilled for xQ , yQ.
Condition (H7) also results from the following one.

*
(H7") 3  \/ f(2k (x+y)) » f(2kx + 2ky).

k 6 NQ x,y e S

In fact, by induction we derive from (H7,()

f (2kn(x+y )) = f (2knx + 2kny) for x.y eX, n e N Q ,

which simply implies (H7).
Similarly, if we cancel f in (H7W ) we get a condition, which implies 

(H7').
There exist noncommutative groups satisfying (H7) e.g. multiplicative 

group of quaternions {l,^l,i,-i,J,-j,k,-k}. Observe also that if each 
group of the family { g J ^ 6 L  satisfies (H7) then ®  satisfies it,

too. £

Remark 3. If we replace in Theorem 1 (H7) by (H71) then, in view of 
Remarks 1 and 2, this theorem proves that the Cauchy equation on the 
semigroup S is I-stable with respect to every p.l.i. 6 -ideal satisfying 

(HI) and (H2 )•

Remark 4 . It is assumed in the Corollary, contrary to Theorems 1 and 
2, that the function f is defined on X. For f: S-*-Y the Corollary 
is not true, even if we replace 3 by any constant kSQ, k # O. Set

(X, + ) » (Y.+ ) - (R.+ ), S =

ic ^ 0 for x = 0

x for x >  0.
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Then

f(x+y) - f(x) - f(y) = 0 for x,y>0, 

but f(0) = c # 0.

4. 1-stability of the Pexider equation

R. Ger proved in [V] that if (X,+) and (Y,+) are abelian groups, 1 is 
a p.l.i. ideal in (X. + ), Mefl(I), M_1 : {(y.x) X2 : (x,y)e m} G S1(I),
F ,G ,H : X —> Y are functions such that F(x+y) = G(x) + H(y) for (x,y)e 
X x X \M, then
there exists a unique homomorphism f: X — *-Y constants a . b G Y  and a 
set W eI such that

F(x) = f(x) + a.+ b for x e X  \W,

G( x) = f(x) + a for x e X W Y ,

H( x ) = f(x) + b for x e X \  VV.

Following some ideas of the proof of this theorem we shall obtain now
analogous results for the Pexider equation

F(x+y ) = G( x) + H(y)

as in section 3 for the Cauchy equation.

Consider the following hypotheses:

(HI1) (X, +) is a group, I is a p.l.i. 6 -  ideal in X satisfying 
condition (c).

(H3') MGfl(I), M"1 : = {(y,x) G X 2 : (x.yleMjefifl). s

(H71) V V 3  2m (x+y) = 2mx + 2my.
x . y e X  n 6 N Q m e N 0 , m > n

(Hll) f.g.h: X — >-Y, f (x+y ) - g(x) - h ( y ) e V  for (x,y)eX2 \M.

Theorem 3 . If (H^), (H^), (H5), (H7'). (Hll) hold then there exist a 
solution F, G, H: X — *-Y of Pexider equation and a set W el such that

F(x) - f(x) 6 9  seqcl V for x g X \ W ,

G(x) - g ( x) Gl O seqcl V for x g X \ W ,

H(x) - h( x ) G i O  seqcl V for x e X \ W .
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Proof. We set 

M's = M u  M“1 .

By (H3') M'eft(l). Take now U(M*) and fix an x(jeXeU(M').
Put

M: = {(x,y) 6 X 2 ! x e Mx or ¥ e Mx or (x » v ) ^ M } 
o o

= (M* X  X) u( X X  )U M. 
o o

It is a routine matter to check that Meft(I).
In view of (Hll) we have

f (x+y) - g(x) - h ( y ) e V  for (x,y)eX2 \ M .  (13)

If x C X \ m ' then (x.x ) e X 2 \ M. Therefore, making use of (Hll) we get 
xo

f(x+x ) - g(x) - h(x )e v  for x e X \ M *  . (14)o o XQ

Similarly, if y £ X \ k '  then (x , y ) e X 2 \M, Hence, again by (Hll)
o

f(x +y ) - g(x ) - h ( y ) e V  for y e X \ M '  . (15)o o xQ

(13), (14) and (15) imply directly

f(x+y) - f(x+xQ ) - f(xQ+y) + g(*0 ) + h(x„) 6 3 V

for (x,y ) e X 2 \ M.

Consider now the set

M( x0 ): = {(x.y) e X 2 :(x0 +x, y+xQ ) e M }  = (-xQ ,0) + M «• (0,-x0 ).

Since £2(1) is a p.l.i. ideal, M(xQ ) 6 £2(1).

Replacing in (16) x by xQ+x and y by y+*0 > we obtain

f(xo+x+y+xQ ) - f(xo+x+xQ ) - f(xQ+y+x0 ) + g(xQ ) + h(xQ ) e 3  V (17)

for (x,y) is X2 \ M(xQ ) .

Put

if>(x)i * f (x0+x+Xq ) - g(x0 ) - h(xQ ). (1 8 )
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(17) and (18) imply directly the following condition

c|»(x+y) - <|>(x) - <|>(y)e3 V for (x ,y ) 6 X2 \ M ( x q  ).

Since I is a 6 -ideal satisfying condition (c) condition (H4) (with 
S = X) holds (see Remark 1).

Thus, on account of Theorem 1, there exist an additive function 
oC : X — > Y  and a set T e l  such that

oC(x) - cji( x ) 6 3  seqcl 3 V = 9 seqcl V for x e X \ T .  (19)

Replacing in this condition x by -xo+x_x0 » applying additivity 
of ct and (18), we get

By the similar argument, substituting in (19) x by x+xQ , we obtain

<i(x) - f (x ) - <*(xQ ) - ot(x0 ) + g(xQ ) + h(xQ ) e 9  seqcl V

for x 6 X \ ( x q + T + xQ )

(2 0 )

c*(x) - f(x+xQ ) - cC(xQ ) + g(xo ) + h(xQ ) e 9 seqcl V

for x e X \ ( x Q + T)

Conditions (14) and (21) yield

( 2 1 )

t*(x) - g(x) - <*(xo ) + g(xQ ) e 10 seqcl V

for x e x \  [rV v (xQ + T)]
o

(22)

Inserting in (20) xQ+x In the place of x we get

<*(x) - f(xQ+x) - <*(xQ ) + g(xQ ) + h(xQ ) e 9  seqcl Vo (23)

for x 6X \  (T + xQ ).

Interchanging in (15) y on x we obtain

f(x0+x) - g(x0 ) - h ( x ) e v  for x e x \ l V  ,

which, together with (23), leads to

dt(x) - h(x) + h(xQ ) e l O  seqcl V (24)

for x e x \  [ V  u (T + xo 0
o
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Put:

W: = (xQ + T + x q )u (T + X0 ) u ( x Q + T ) U M '  ,
o

p: » - t*(xQ ) + g(xQ ),

q: » - <*(x0 ) + h(xQ ),

F(x): ■ c*(x) + p + q,

G(x): = <*(x) + p,

H(x): = ot(x) + q.

Clearly, W el and the triplet (F,G,H) satisfies the Pexider equation
(cf, [l], p. 142).

Applying the above denotations, we get now from (20), (22) and (24)

F(x) - f(x) E9 seqcl V for x e X \ W ,

G(x) - g(x) el O seqcl V for x 6 X \ W ,

H(x) - h(x) e 10 seqcl V for x e X \ W ,

which completes the proof. □  '

Now we shall prove an analogue of Theorem 2 for the Pexider equation.

Theorem 4 . Let all the assumptions of Theorem 3 be fulfilled and let, 
additionally, there exists an xo 6 X e u ( M l) such that

| x 6 X :  (xQ+x,x+x0 ) e el.

Then there exist a solution F,G,H: X — ►Y of the Pexider equation 
and a set W el such that /

F(x) - f(x) e 3  seqcl V for x e X \ W ,  '

G(x) - g(x) e 4  seqcl V for x e X \ W ,

H(x) - h(x) e 4 seqcl V for x eX \ W.

Proof. The proof runs similarly to the proof of Theorem 3. Only on 
essential change is needed. Using the denotations of the previous proof, 
we get from our additional assumption

[S <xo 0 d “ ( x &Xi (x0+x,x+xQ ) e M }

» |x eX: xo+ x e l V  or x+xo e Mx or (x0+x,x+x0 ) e m J »
o o

“ (-xo + Mx ’u <Mx " xo )u {x e X s  (xo+X,X+X0 ) e M j  el.
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Henca, M ( x q ) satisfies condition (H8). Therefore, instead of Theorem 
1, we may apply, to the function cj), Theorem 2. Then, instead of (19), we 
obtain

<*(x) - c|>(x) 6 3 seqcl V for x £ X \ T .  (19')

The remaining part of the proof runs analogusly as before; we should 
only keep in mind consequences of (19f). CD

Theorem 5 . If Y is a T-l space then the functions F, G, H occuring
in Theorems 3 and 4 are determined uniquely up to additive constants.

Proof. The general solution of the Pexider equation has the form 

(cf. [l], p. 142)

F(x) = tf(x) + p + q,

G(x) = <*(x) + p,

H(x) = cfc(x) + q,

where at is an additive function and p, q are constants.
Consider any two solutions of the Pexider equation

FL (x) » ^ ( x ) + pA +9].; F2 (x) = (*2 ( x ) + ?2

Ga (x ) = cĈ  (x ) + px { G2 (x ) * <*2 (x) * P2

Hj (x ) = Otj^x) + 9!? H2 (x ) = 0t2  ( X ) ♦ P2

Suppose that these solutions satisfy Theorem 3. Then there exist W^,W2 eI 

such that

F^ (x ) - f( x ) e 9  seqcl V for x e X \ W lt

F„(x) - f ( x ) £ 9 ssqcl V for x e X \ » 2,

Thus we have

F2 (x ) - F^ (x ) £ 18 seqcl V for x 6X XOfl^UW2 )

i.e.

ot2 (x) - dt^x) + p2 + q2 - px - q1 e l 8  seqcl V for x £ X \ W ,  

where W: = V^ u W2<
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Since V is bounded, the last condlstion means that <*2 (x) - oc^fx) 
is bounded on X \ W .  Hence, there exists a bounded set Z c Y  such that

<*2 (x) - oCjfx) e z  for x e x  \ W . (25)

Take now an x e x \ w * .  Then, by Lemma 1, 2nx e X \ W *  for n e N Q . According 
to (25) we have now

2n [<*2 (x) - o61 (x)] = c*2 (2nx) - c*1 (2nx)SZ, 

i.e. <*2 (x) - <*i(x ) 6 ^ -  Z.

Letting n-»-oo, making use of the boundedness of Z and of the fact that 

Y is a T-l space, we get

<*2 (x) - <*^(x) 6 seqcl {o} Ccl{o} » {0}.

Thus

<*2 (x) = «^(x) for x 6 X \ w * .

But, in view of Lemma 3 of [V], x \ w *  generates X, so

<*2 (x ) = (x )
•

for all x ex.

i, we obtain

F£ (x ) - F^x) = cl for all x ex

G2(x ) - Gjix) = c2 for all x eX

H2 (x ) - (x ) « C3 for all x ex

where c ^  c2> c3 are respective constant. CZ1

Remark 6 . The assumptions of Theorems 3 and 4 cari/be slightly weakened. 
Namely-} the crucial step is the application of Theorem- 1 to the functionc|> 
defined by (18). Therefore, instead of assuming that J is a 5-ideal, it 
is sufficient to assume that hypothesis (H4) with M replaced by M(x0 ) 
holds. Similarly, instead of (H7f), we may assume that the function tj) 
satisfies (H7). Then we would get respective conditions on f, xQ , M, 
g(x0 ), h (x0 )* However, it is clear that such assumptions^ are inconvenient 

to formulate.
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Remark 7. Analogues of Theorems 4 and 5 for a semigroup S are not 
true. Put

for x e (1.2)

x for xe<2,oo),

G( x) = H(x) » x for x 6(1,0°). 

x
Let I c 2  be a family of countable sets. Then

F(x+y) - G(x) - H(y) » 0 for all x.ySS, 

but none additive function at exists such that 

F(x) - ot(x) + c for x 6 S \W, 

where W e I.

5. Open problems

The following problems remain open.

1) To characterize groups (or semigroups) satisfying the following so 
called "weak commutativity condition"

y  y  3  2m (x+y) . 2mx ♦ 2my.
x . y e X  n 6 N Q iieN^, m > n

2) To determine whether the estimation of oC(x) - f(x) in Theorem 1 
can be improved. We mean here if 3 can be replaced by some K e Q ,  0 < K < 3 .

3) To give an example of a group X and a non-trivial p.l.i. ideal I 
in X (if there exists any) such that the Cauchy equation is stable but 
not I-stable.
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