DEDICATED TO PROFESSOR MIECZYSLAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Józef TABOR

RESTRICTED STABILITY OF THE CAUCHY AND THE PEXIDER EQUATIONS
D.H. Hyers [7] introduced the notion of stability of a functional equation. Lately this notion has been generalized [9]. [8] and combined with the notion of "almost everywhers" [6]. The purpose of this paper is to show that the Cauchy and the Pexider equations are "ideally stable". Here "ideally stable" means that the respective inequality and equality hold everywhere except of elements of some "small" sets.

1. Introduction

Let ($\mathrm{X},+$) be a group (not nocessarily commutative). By a proper linearly invariant ideal or in short p.1.i. ideal [4] we mean a nonempty family $I \subset 2^{X}$ satisfying the following conditions:

1. $A, B \in I \Rightarrow A \cup B \in I$.
2. $A \in I, B \subset A \Rightarrow B \in I$,
3. $x \in X, A \in I \Rightarrow X=A \in I$.
4. $X \notin I$ 。

If we replace 1 in the above definition by

1. $A_{1} \in I, i=0,1,2 \ldots \Rightarrow \bigcup_{i=0}^{\infty} A_{1} \in I$.
then I will be called a p.1.i. 6 -ideal.
For $A \subset X, n=0,1,2 \ldots$ we put

$$
A_{n}:=\left\{x \in x: 2^{n} x \in A\right\}, \quad A^{*}:=\bigcup_{n=0}^{\infty} A_{n}
$$

In the sequel we shall assume the following condition
(c) $A \in I \Rightarrow A^{*} \in I$.

Following notations of [4]. we put for given p.I.i. ideal I in X :

$$
\begin{aligned}
& \Omega(I):=\left\{M \subset x \times x: \mathcal{M}_{U(M) \in I} \quad \forall \quad \forall \quad M_{x}:=\{y \in X:(x, y) \in M \in I\} .\right. \\
& \Omega(I) \text { is a p.l.i. ideal in }(X \times X,+) .
\end{aligned}
$$

Thoroughout the paper $U(M)$ and M_{x} will denote the sets distinguished in the definition of $\Omega(I)$.

Let Y be a sequentially complete linear topological space over the filed Q of rationals. Following [9]. Hyers' definition of stability ${ }^{1)}$ may be formulated as follows:

Definition 1. The Cauchy equation

$$
\begin{equation*}
f: X \rightarrow Y, f(x+y)=f(x)+f(y) \text { for } x, y \in X \tag{1}
\end{equation*}
$$

is said to be stable if there exists a constant $K \in Q, K \neq O$ such that for every Q-convex set $V \subset Y$, symmetric with respect to zero, containing $z e r o$ and bounded and every $g: X \rightarrow Y$ satisfying the condition

$$
g(x+y)-g(x)-g(y) \in V \text { for } x, y \in X
$$

there exists a solution f of equation (1) such that

$$
f(x)-g(x) \in K \text { seqcl } V \text { for } x \in X \text {. }
$$

where seqcl V denotes the sequential closure of V.
We propose the following definition of the ideal stability.
Definition 2. The Cauchy equation is said to be ideally etable or in short I-stable if thers exists a constant $K \in Q, K \neq O$ such that for every, $V \subset Y$ possesing in Definition 1 specified properties, for every $M \in \Omega(I)$ and every $g: X \rightarrow Y$ satisfying the condition

$$
g(x+y)-g(x)-g(y) \in V \text { for }(x, y) \in x^{2} \backslash M
$$

there exist a set $W \in I$ and a solution f of equation (1) such that

$$
f(x)-g(x) \in K \text { seqcl } V \text { for } x \in X \backslash W
$$

Observe that if $I=\{\varnothing\}$, where \varnothing denotes the empty set, then I-stability coincides with stability.
1 There are also other definitions of the stability in use (cf. [2].
$[3],[8]$).

The main purpose of the paper is to prove that the Cauchy and the Pexider equation

$$
f, g, h: X \rightarrow Y, \quad f(x+y)=g(x)+h(y) \text { for } x, y \in X
$$

are I-stable. Cauchy's equation is Instable not only in X but also in some class of subsemigroups of X.

2. I-stability of the Cauchy equation

In our considerations we shall apply some properties of ideals. One can prove easily that if I is a p.l.i. ideal in X then

$$
x \in X, A \subset I \Rightarrow-x+A, x+A, A+x, A=x \in I .
$$

For further considerations we need the following general hypotheses:
(HI) ($\mathrm{X},+$) is a group, I is a p.l.i. ideal in X satisfying condition (c).
(HR) S is a subsemigroup of $X, S-S=X, S \notin I$.
(H 3) $M \in \Omega(I)$.

- (HA) $\bigcup_{k=0}^{\infty}\left[M_{2} k\right]^{*} \in I \quad$ for $x \in S \backslash[U(M)]^{*}$.
(H5) Y is a sequentially complete linear topological space over the field Q. $V \subset Y$ is a Q-convex set, symmetric with respect to zero bounded and containing zero.
(HG) $f: S \rightarrow Y, f(x+y)-f(x)-f(y) \in V$ for $(x, y) \in S^{2} \backslash M$.

We start with some useful lemmas.
Lemma 1. If (H1) holds and $A \subset X$ then

$$
x \in X \backslash A^{*} \Rightarrow 2^{n} x \in X \backslash A^{*} \quad \text { for } n \in N_{0}:=N \cup\{0\}
$$

Proof. If $2^{k} x \in A^{*}$ for some $k \in N_{0}$ then there exists an $n \in N_{0}$ such that $2^{n} \cdot 2^{k} x=2^{n+k} x \in A$, which means that $x \in A^{*} . \square$

Lemma 2. If (H1) and (H3) hold then

$$
x \in x \backslash[U(M)]^{*} \Rightarrow M_{x} \cup M_{2 x} \cup\left(-x+M_{x}\right) \in I_{.}
$$

Proof. Let $x \in X \backslash[U(M)]^{*}$. But $U(M) \subset[U(M)]^{*}$. hence $x \in X \backslash U(M)$. Therefore, in view of the definition of $\Omega(I), M_{x} \in I$ and further - $x+M_{x} \in I$. By Lemma $12 x \in X \backslash U(M)$, so, again by the definition of $\Omega(I)$. $M_{2 x} \in I$.

Lemma 3. If (H 1), (H 2), (H 3), (H 4) hold then
(1) $\tilde{M}:=\left\{(x, y) \in s^{2}: x \in[U(M)]^{*}\right.$ or $y \in[U(M)]^{*}$ or $x+y \in[U(M)]^{*}$

$$
\text { or } \left.\left(x \notin[U(M)]^{*} \text { and } y \in \bigcup_{k=0}^{\infty}\left[M_{2^{k}}\right]^{*}\right)\right\} \in \Omega(I) \text {. }
$$

(ii) $(x, y) \in S^{2} \backslash \tilde{M} \Rightarrow\left(2^{n} x, 2^{n} y\right) \in S^{2} \backslash M_{0}$

Proof. (1). Consider any $x \in S \backslash[U(M)]^{*}$. We have

$$
\begin{aligned}
\tilde{M}_{x} & =\left([U (M)] ^ { * } U \left\{y \in x: x+y \in[U(M)]^{*} U\left\{y \in x: y \in \bigcup_{k=0}^{\infty}\left[M 2^{k} x^{*}\right) \cap s\right.\right.\right. \\
& =\left[[U(M)]^{*} U\left(-x+[U(M)]^{*} U \bigcup_{k=0}^{\infty}\left[M_{2} k_{x}\right]^{*}\right) \cap s .\right.
\end{aligned}
$$

By (H4) $\bigcup_{k=0}^{\infty}\left[M_{2 k}\right]^{*} \in I$, hence $\tilde{M}_{x} \in I$, which proves that $\tilde{M} \in \Omega(I)$.
(ii). Let $(x, y) \in S^{2} \backslash \tilde{M}_{.}$Then $x \in S \backslash[U(M)]^{*}$ and $y \in S \backslash \bigcup_{k=0}^{\infty}\left[M_{2^{k}}\right]^{*}$. Suppose, for an indirect proof, that $\left(2^{n} x, 2^{n} y\right) \in M$ for some $n \in N_{0}$. By Lemma $12^{n} x \in S \backslash[U(M)]^{*}$ and hence $2^{n} y \in M_{2^{n}}$. Thus $y \in\left[M_{2^{n}}\right]^{*} \subset \bigcup_{k=0}^{\infty}\left[M_{2^{k}}\right]^{*}$. which leads to a contradiction. \square

Lemma 4. If (H1), (H2), (H3), (H5), (H6) hold then

$$
\begin{equation*}
f(2 x)-2 f(x) \in 3 V \text { for } x \in S \backslash[U(M)]^{*} \text {. } \tag{2}
\end{equation*}
$$

Proof. Consider an arbitrary $x \in S \backslash[U(M)]^{*}$. On account of Lemma 2 $M_{x} \cup M_{2 x} \cup\left(-x+M_{x}\right) \in I$, so $S \backslash\left(M_{x} \cup M_{2 x} \cup\left(-x+M_{x}\right)\right) \neq \varnothing$. Choose arbitral-
rily a $y \in S \backslash\left(M_{x} \cup M_{2 x} \cup\left(-x+M_{x}\right)\right)$. Then $(x, y) \in S^{2} \backslash M_{,}(2 x, y) \in S^{2} \backslash M$ and $y \in S \backslash\left(-x+M_{x}\right)$ i.e. $(x, x+y) \in S^{2} \backslash M_{\text {. Now applying (H6) we get }}$

$$
\begin{aligned}
& f(2 x+y)-f(2 x)-f(y) \in V \\
& f(2 x+y)-f(x)-f(x+y)=f[x+(x+y)]-f(x)-f(x+y) \in V \\
& f(x+y)-f(x)-f(y) \in V
\end{aligned}
$$

These three conditions yield

$$
\begin{aligned}
f(2 x) & -2 f(x)=-f(2 x+y)+f(2 x)+f(y)+f(2 x+y)-f(x)- \\
& -f(x+y)+f(x+y)-f(x)-f(y)=-V+V+V=3 V
\end{aligned}
$$

Lemma 5. If (H1), (H2), (H3), (H5), (H6) hold then

$$
\begin{equation*}
2^{-n} f\left(2^{m} x\right)-f\left(2^{m-n} x\right) \in 3\left(1-2^{-r!}\right) V \tag{3}
\end{equation*}
$$

for

$$
x \in S \backslash[U(M)]^{*}, \quad n, m \in N_{0}, \quad n \leqslant m
$$

Proof. We shall use induction with respect to n. For $n=0$ condition (3) evidently holds. Consider now an $x \in S \backslash[U(M)]^{*}, n, m \in N_{0}, n+1 \leqslant m$ and suppose that

$$
2^{-n} f\left(2^{m} x\right)-f\left(2^{m-n} x\right) \in 3\left(1-2^{-n}\right) v
$$

Then we have

$$
\begin{equation*}
2^{-n-1} f\left(2^{m} x\right)-2^{-1} f\left(2^{m-n} x\right) \in \frac{3}{2}\left(1-2^{-n}\right) v \tag{4}
\end{equation*}
$$

On account of Lemma $12^{m \infty-n-1} x \in S \backslash[U(M)]^{*}$. Applying now Lemma 4 (with x replaced in (2) by $2^{m-n-1} x$) we get

$$
f\left(2^{m-n} x\right)-2 f\left(2^{m-n-1} x\right) \in 3 v
$$

which yields

$$
\begin{equation*}
2^{-1} f\left(2^{m-n} x\right)-f\left(2^{m-n-1} x\right) \in \frac{3}{2} v \tag{5}
\end{equation*}
$$

Relations (4) and (5) together give

$$
2^{-n-1} f\left(2^{m} x\right)-f\left(2^{m-n-1} x\right) \in \frac{3}{2}\left(1-2^{-n}\right) v+\frac{3}{2} v=3\left(1-2^{-n-1}\right) v
$$

which completes the inductive proof of (3). \square

The following theorem is the main result of the paper. It generalizes the result of R. Ger [6] p. 265. Theorem. However the method of our proof is different from R. Ger's one.

Theorem 1. If (H 1), (H 2), (H 3), (H 4), (H 5), (H 6), (H 7) hold then there exists an additive mapping $\alpha: X \rightarrow Y$ and a set $T \in I$ such that

$$
\begin{equation*}
\alpha(x)=f(x) \in 3 \text { eeqcl } V \text { for } x \in S \backslash T \tag{6}
\end{equation*}
$$

where seqci V denotes sequential closure of V. Moreover, if Y is a $T-1$ space then α is unique.

Proof. Consider an $x \in S \backslash[U(M)]^{*}$. Following D.H. Hyers $[7]$ we are going to show that $\frac{f\left(2^{n} x\right)}{2^{n}}$ is a Cauchy sequence. Let V_{0} be a neighbourhood of zero. Replacing in Lease $5 n$ by mon we get for $m, n \in N_{0}, n \leqslant m:$

$$
\frac{f\left(2^{m} x\right)}{2^{m}}-\frac{f\left(2^{n} x\right)}{2^{n}}=\frac{2^{n-m} f\left(2^{m} x\right)-f\left(2^{n} x\right)}{2^{n}} \in \frac{3\left(1-2^{n-m}\right)}{2^{n}} v_{0}
$$

Since V is bounded, for sufficiently large $n, m \in N_{0}, m \geqslant n$

$$
\frac{3\left(1-2^{n-m}\right)}{2^{n}} v \in v_{0}
$$

Thus $\frac{f\left(2^{n} x\right)}{2^{n}}$ is a Cauchy sequence and hence there exists its limit (generally not unique).

We set

$$
h(x)=\left\{\begin{array}{lll}
\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}} & \text { for } & x \in S \backslash[U(M)]^{*} \\
g(x) & \text { for } & x \in[U(M)]^{*}
\end{array}\right.
$$

where $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ denotes any one limit of the sequence $\frac{f\left(2^{n} x\right)}{2^{n}}$ and $g:[U(M)]^{*} \rightarrow Y$ is an arbitrary function.

Consider the set \tilde{M} defined as in Lemma 3. By this lemma $\tilde{M} \in \Omega(I)$. We are going to show that

$$
\begin{equation*}
h(x+y)-h(x)-h(y) \in c \mathcal{L}\{0\} \text { for }(x, y) \in s^{2} \backslash \tilde{M}_{0} \tag{7}
\end{equation*}
$$

Take for the proof a pair $(x, y) \in S^{2} \backslash \tilde{M}$. In virtue of (H7) there exists a sequence of positive integers $\left\{n_{k}\right\}, n_{k} \rightarrow \infty$ as $k \rightarrow \infty$, such that

$$
f\left(2^{n^{n}}(x+y)\right)=f\left(2^{n_{k}} x+2^{n_{k}} y\right) \text { for all } n_{k} \text {. }
$$

By Leman 3 (ii) $\left(2^{n^{n}} x, 2^{n} k y\right) \in S^{2} \backslash M$ and hence, in view of (H6)

$$
f\left(2^{n} k^{n}+2^{n}{ }^{n} y\right)-f\left(2^{n^{k}} x\right)-f\left(2^{n} k y\right) \in V
$$

Thus

$$
f\left(2^{n} k(x+y)\right)-f\left(2^{n} k x\right)-f\left(2^{n^{n}} y\right) \in v
$$

and so

$$
\begin{equation*}
\frac{f\left(2^{n} k(x+y)\right)}{2^{n^{n}}}-\frac{f\left(2^{n^{n}} x\right)}{2^{n^{n}}}-\frac{f\left(2^{n^{n}} y\right)}{2^{n_{k}}} \in \frac{1}{2^{n_{k}}} v . \tag{8}
\end{equation*}
$$

It results from the definition of \tilde{M} that $x, y, x+y \in S \backslash[U(M)]^{*}$. Therefore, by the first part of the proof, the sequences of the left hand side of (7) are convergent. Letting $n_{k} \rightarrow \infty$ in (8) and making use of boundedness of V we get directly (7).

Following the method used in [9] we write Y as the direct sum of cl $\{0\}$ (which is a subspace of V) and some subspace Y_{1} :

$$
Y=Y_{1}+c l\{0\}
$$

Let π_{1}, π_{0} be the projections of Y on Y_{1} and cl\{0\}, respectively. Evidently π_{1} and π_{0} are additive and

$$
\begin{equation*}
y=\pi_{1}(y)+\pi_{0}(y) \quad \text { for } \quad y \in Y_{0} \tag{9}
\end{equation*}
$$

We set

$$
A(x):=\pi_{1}[h(x)] \quad \text { for } x \in S
$$

From (7) and additivity of π_{1}, we get now for $(x, y) \in S^{2} \backslash \tilde{M}$
$A(x+y)-A(x)-A(y)=\pi_{1}[h(x+y)-h(x)-h(y)]=\pi(0)=0$.
Thus A is almost $\Omega(I)$-additive and hence in consequence of Theorem 1 of [5] there exist an additive mapping $\alpha: X \rightarrow Y$ and a set $W \in I$ such that

$$
\begin{equation*}
\alpha(x)=A(x) \quad \text { for } \quad x \in S \backslash W \text {. } \tag{10}
\end{equation*}
$$

Put

$$
T:-W^{*} U[U(M)]^{*}
$$

Setting in (3) m $=n$. we obtain

$$
\begin{equation*}
\frac{f\left(2^{n} x\right)}{2^{n}}-f(x) \in 3\left(1-2^{-n}\right) v \quad \text { for } \quad x \in S \backslash T \tag{11}
\end{equation*}
$$

Making use of (9), we get

$$
h(x)-A(x)=h(x)-\pi_{1}[h(x)]=\pi_{0}[h(x)] \in \operatorname{cl}\{0\}
$$

and hence, as the translation is a homeomorphism.

$$
A(x) \in h(x)+c l\{0\}=c l\{h(x)\}
$$

Since $\frac{f\left(2^{n} x\right)}{2^{n}} \rightarrow h \rightarrow \infty$, for $x \in S \backslash T$ and $A(x) \in c l\{h(x)\}$. we have

$$
\frac{f\left(2^{n} x\right)}{2^{n}} \underset{n \rightarrow \infty}{ } A(x) \text { for } x \in S \backslash T
$$

This condition and (11) yield

$$
A(x)=f(x) \text { eseqcl } 3 V=3 \text { seqcl } V \text { for } x \in S \backslash T
$$

which, in view of (10), gives (6) and hence completes the proof of the first part of the theorem.

An easy proof of uniqueness of of is given in 6.
Under some additional assumption on the exceptional set M, the proof of Theorem 1 can be shorten and better estimation than in (6) can be found.

Theorem 2. Let ell assumptions of Theorem 1 be fulfilled and let additionally
(H8) $M_{D}:=\{x \in S:(x, x) \in M\} \in I$.
Then there exist an additive mapping $\alpha: Y \rightarrow Y$ and a set $i \in I$ such that

$$
\alpha(x)=f(x) \in \operatorname{seqcl} V \text { for } x \in S \backslash T
$$

Before we shall give an idea of the proof of this theorem, we have to do some modifications in Lemmas 4 and 5.

Lemma 4. Under assumptions of Theorem 2

$$
f(2 x)-2 f(x) \in V \quad \text { for } \quad x \in S \backslash\left[U(M) \cup M_{D}\right]^{*}
$$

Proof. Let $x \in S \backslash\left[U(M) \cup M_{D}\right]^{*}$. Then $x \in S \backslash M_{D}$, and hence $(x, x) \in S^{2} \backslash M$. Applying (H6) we get

$$
f(2 x)=2 f(x) \in v . \square
$$

Lemma 5'. Under assumptions of Theorem 2

$$
2^{-n} f\left(2^{m} x\right)-f\left(2^{m-n} x\right) \in\left(1-2^{-n}\right) v
$$

for $x \in S \backslash\left[U(M) \cup M_{D}\right]^{*}, n, m \in N_{0}, n \leqslant m$.
Proofs of Lemma 5^{\prime} and that of Theorem 2 run analogusly as the proofs of Lemma 5 and Theorem 1. respectively. We should only replace, in respecrive places: 3 by $1, U(M)$ by $U(M) \cup M_{D}$. Lemmas 4 and 5 by Lemmas 4^{\prime} and 5', respectively.

As it can be seen in the previous theorems, the estimation of the expression $\alpha(x)-f(x)$ depends strongly on the shape of the exceptional set M. In the case when the exceptional set M has the shape of a cross, $c(x)-f(x)$ can be estimated for all x, instead of "almost all" x, as it occurs in the preceding theorems. It leads to the following corollary which is a generalisation of Proposition of R. Ger [6], p. 273.

Corollary. Let (H1), (H5) hold and let the following conditions (H9), (H1O) be fultilled.

$$
\begin{equation*}
f: X \rightarrow Y, f(x+y)-f(x)-f(y) \in V \text { for } x, y \in X \backslash W \tag{H9}
\end{equation*}
$$ where $W \in I$,

(H1O)

$$
\begin{array}{ll}
\forall & \forall \\
x, y \in x \quad & \exists \in N_{0} m \in N_{0} \cdot m \geq n
\end{array}
$$

Then there exists an additive mapping $\alpha: X \rightarrow Y$ such that

$$
\alpha(x)-f(x) \in 3 \text { seqcl } V \text { for } x \in x
$$

Moreover, if Y is a $T-1$ space then α is unique.
Proof. Put $S:=X, M:=W \times W$. Obviously $M \in \Omega(I)$ and $M_{D}=W \in I$, ie. (H3) and (H8) hold. Furthermore, in our case, $W \subset C(M)$ and so $M_{x}=W$ for $x \in X \backslash U(M)$, which proves that

$$
\bigcup_{k=0}^{\infty}\left[M_{2^{k} x}\right]^{*} \in I \quad \text { for } \quad x \in X \backslash[U(M)]^{*}
$$

Thus the assumptions of Theorem 2 are fulfilled. Therefore there exist an additive mapping $\alpha: X \rightarrow Y$ and a set $T \in I$ such that

$$
\begin{equation*}
x(x)-f(x) \in \text { saqcl } v \text { for } x \in x \backslash T \tag{12}
\end{equation*}
$$

Without loss of generality we may assume that $W \subset T$. Since $T \in I$, we have (cf. [4] Lemma 3)

$$
(X \backslash T)+(X \backslash T)=X
$$

Let us write $x \in X$ in the form $x=x_{1}+x_{2}$ with $x_{1}, x_{2} \in X \backslash T$. Then, as $W \subset T ; x_{1}, x_{2} \in X \backslash W$. Making use of (H7), additivity of of and (12) we get

$$
\begin{aligned}
\alpha(x)-f(x)= & \alpha\left(x_{1}+x_{2}\right)-f\left(x_{1}+x_{2}\right)=\alpha\left(x_{1}\right)+\alpha\left(x_{2}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)-v \\
= & {\left[\alpha\left(x_{1}\right)-f\left(x_{1}\right)\right]+\left[\alpha\left(x_{2}\right)-f\left(x_{2}\right)\right]+v } \\
& \text { cseqcl } v+\text { seqcl } v+v c 3 \text { seqcl } v . \square
\end{aligned}
$$

3. Remarks and comments

Remark 1. If I is a p.1.i. 6 -ideal in X such that

$$
A \in I \Longrightarrow A_{n} \in I
$$

then (H4) holds.
In fact, if $A \in I$ than $A^{*}=\bigcup_{n=0}^{\infty} A_{n} \in I$. Further, if $x \in X \backslash[U(M)]^{*}$ then, according to Lemma $1,2^{k} x \in X \backslash[U(M)]^{*}$ and hence $M_{2^{k}} \in I$ and $s 0$ does $\left[M_{2^{k}}\right]_{x}^{*}$. Since I is a 6-ideal, $\bigcup_{k=0}^{\infty}\left[M_{2^{k}}\right]^{*} \in I$ i.e. (HA) holds

But on the other hand, it may happen that (H4) holds, howevob, I is not a 6 -ideal. To see this, put
$(X,+)=(R,+), I-t h e f a m i l y$ of bounded sets,
W - a bounded set, $M=W \times W$.
This example also shows that a p.l.i. ideal satisfying condition (c) need not be a 6 - ideal.

Remark 2. From the stability point of view hypothesis (H7) may seem a little inconvenient. One way prefer to make assumptions rather on X
and Y than on f. Hypothesis (H7) results directly from the following "weak commutativity condition"
(HT')

The converse implication is not true, oven if we assume hypothesis (H6) additionally. To prove it put. similarly as in [9]:

$$
(X,+)=(S,+)=(G L(2, R), \cdot),(Y,+)=(R,+),
$$

$f(x)=c$ (constant), $x_{0}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), y_{0}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
Then (H6) and (H7) hold but (H7) is not fulfilled for x_{0}, y_{0}. Condition (H7) also results from the following one.

$$
{\underset{\mathrm{J}}{\mathrm{E}} \mathrm{~N}_{0} \quad}^{x, y \in S} \quad \forall\left(2^{k}(x+y)\right)=f\left(2^{k} x+2^{k} y\right)
$$

In fact, by induction we derive from ($\mathrm{H} 7^{\prime \prime}$)

$$
f\left(2^{k n}(x+y)\right)=f\left(2^{k n} x+2^{k n} y\right) \text { for } x, y \in x, n \in N_{0} \text {. }
$$

which simply implies (H7).
Similarly, if we cancel f in ($H 7^{\prime \prime}$) we get a condition, which implies ($\mathrm{H} 7^{\prime}$).

There exist noncomutative groups satisfying (H7) egg. multiplicative group of quaternions $\{1,-1, i,-i, j,-j, k,-k\}$. Observe also that if each group of the family $\left\{G_{1}\right\}_{1 \in L}$ satisfies $(H 7)$ then $\underset{1 \in L}{ } G_{1}$ satisfies it, too.

Remark 3. If we replace in Theorem 1 (H7) by (H7) then, in view of Remarks 1 and 2, this theorem proves that the Cauchy equation on the semigroup S is I-stable with respect to every p.1.1. 6 -ideal satisfying (H1) and (H2).

Remark 4. It is assumed in the Corollary, contrary to Theorems 1 and 2. that the function f is defined on X. For $f: S \rightarrow Y$ the Corollary 18 not true, oven if we replace 3 by any constant $k \in Q, k \neq 0$. Set

$$
\begin{aligned}
& (x,+)=(Y,+)=(R,+), \quad S=<0, \infty) \\
& f(x)= \begin{cases}c \neq 0 & \text { for } \\
x=0 \\
x & \text { for } \\
x>0\end{cases}
\end{aligned}
$$

Then

$$
f(x+y)-f(x)-f(y)=0 \quad \text { for } \quad x, y>0
$$

but $f(0)=c \neq 0$.
4. I-stability of the Pexider equation
R. Ger proved in [4] that if $(X,+)$ and $(Y,+)$ are abelian groups, I is a p.l.i. ideal in $(x,+), M \in \Omega(I), M^{-1}:\left\{(y, x) x^{2}:(x, y) \in M\right\} \in \Omega(I)$, $F, G, H: X \rightarrow Y$ are functions such that $F(x+y)=G(x)+H(y)$ for $(x, y) \in$ $X \times X \backslash M$, then
there exists a unique homomorphism $f: X \rightarrow Y$ constants $a, b \in Y$ and a set $W \in I$ such that

$$
\begin{array}{ll}
F(x)=f(x)+a+b & \text { for } x \in X \backslash W, \\
G(x)=f(x)+a & \text { for } x \in X \backslash W, \\
H(x)=f(x)+b & \text { for } x \in X \backslash W .
\end{array}
$$

Following some ideas of the proof of this theorem we shall obtain now anelogous results for the Pexider equation

$$
F(x+y)=G(x)+H(y)
$$

as in section 3 for the Cauchy equation.
Consider the following hypotheses:
($H 1^{\prime}$) $\left(X_{0}+\right.$) is a group. I is a p.l.i. 6- ideal in X satisfying condition (c).
$\left(H 3^{\prime}\right) \quad M \in \Omega(I), M^{-1}:=\left\{(y, x) \in x^{2}:(x, y) \in M\right\} \in \Omega(I)$.
(H7) $\quad \forall \quad \forall \quad \exists^{\forall}, y \in x \quad n \in N_{0} \quad 2^{m}(x+y)=2^{m} x+2^{m} y$.
(H11) $f, g, h: X \rightarrow Y, f(x+y)-g(x)-h(y) \in V$ for $(x, y) \in X^{2} \backslash M_{0}$
Theorem 3. If $\left(H_{1}^{\prime}\right),\left(H_{3}^{\prime}\right),(H 5),\left(H 7^{\prime}\right),(H 11)$ hold then there exist a solution $F, G, H: X \rightarrow Y$ of Pexider equation and a set $W \in I$ such that

```
F(x)-f(x)\ing seqcl v for }x\inX\W\mathrm{ ,
G(x)-g(x)\in10 seqcl V for }x\in\inX\W\mathrm{ ,
H(x)-h(x)\in10 seqcl V for }x\inX\W
```

Proof. We set

$$
M^{\prime}:=M U M^{-1} .
$$

By $\left(H 3^{\prime}\right) M^{\prime} \in \Omega(I)$. Take now $U\left(M^{\prime}\right)$ and $f i x$ an $x_{0} \in X \in U\left(M^{\prime}\right)$. Put

$$
\begin{aligned}
\bar{M}: & =\left\{(x, y) \in x^{2}: x \in M_{x_{0}}^{\prime} \text { or } y \in M_{x_{0}}^{\prime} \text { or }(x, y) \in M\right\} \\
& =\left(M_{x_{0}}^{\prime} x x\right) \cup\left(x \times M_{x_{0}}^{\prime}\right) \cup M_{0}
\end{aligned}
$$

It is a routine matter to chack that $\bar{M} \in \Omega(I)$. In view of (H11) we have

$$
\begin{equation*}
f(x+y)-g(x)-h(y) \in V \quad \text { for } \quad(x, y) \in x^{2} \backslash M_{0} \tag{13}
\end{equation*}
$$

If $x \in X \backslash M_{x_{0}}^{\prime}$ then $\left(x_{0} x_{0}\right) \in X^{2} \backslash M_{\text {. }}$ Therefore, making use of (H11) we get

$$
\begin{equation*}
f\left(x+x_{0}\right)-g(x)-h\left(x_{0}\right) \in V \text { for } x \in x \backslash M_{x_{0}}^{\prime} . \tag{14}
\end{equation*}
$$

Similarly, if $y \in X \backslash M_{x_{0}}^{\prime}$ then $\left(x_{0}, y\right) \in X^{2} \backslash M_{\text {. Hence, again by (H11) }}$

$$
\begin{equation*}
f\left(x_{0}+y\right)-g\left(x_{0}\right)-h(y) \in V \quad \text { for } y \in X \backslash M_{x_{0}}^{\prime} . \tag{15}
\end{equation*}
$$

(13). (14) and (15) imply directly

$$
\begin{align*}
f(x+y)-f\left(x+x_{0}\right)-f\left(x_{0}+y\right)+ & g\left(x_{0}\right)+h\left(x_{0}\right) \in 3 V \tag{16}\\
& \text { for }(x, y) \in x^{2} \backslash \bar{M}_{.}
\end{align*}
$$

Consider now the set

$$
\bar{M}\left(x_{0}\right):=\left\{(x, y) \in x^{2}:\left(x_{0}+x_{0}, y+x_{0}\right) \in \bar{M}\right\}=\left(-x_{0}, 0\right)+\bar{M}+\left(0,-x_{0}\right)
$$

Since $\Omega(I)$ is a p.l.i. ideal, $\bar{M}\left(x_{0}\right) \in \Omega(I)$.
Replacing in (16) x by $x_{0}+x$ and y by $y+x_{0}$, we obtain

$$
\begin{gathered}
f\left(x_{0}+x+y+x_{0}\right)-f\left(x_{0}+x+x_{0}\right)=f\left(x_{0}+y+x_{0}\right)+g\left(x_{0}\right)+h\left(x_{0}\right) \in 3 V \\
\text { for }(x, y) \in x^{2} \backslash \bar{M}\left(x_{0}\right)
\end{gathered}
$$

Put

$$
\begin{equation*}
\psi(x):=f\left(x_{0}+x+x_{0}\right)-g\left(x_{0}\right)=h\left(x_{0}\right) \tag{18}
\end{equation*}
$$

(17) and (18) imply directly the following condition

$$
\psi(x+y)=\phi(x)-\psi(y) \in 3 \vee \text { for }(x, y) \in x^{2} \backslash \bar{M}\left(x_{0}\right)
$$

Since I is a $\quad \mathbf{6}$-ideal satisfying condition (c) condition (H4) (with $S=X$) holds (seo Remark 1).

Thus, on account of Theorem 1, there exist an additive function $\alpha: X \rightarrow Y$ and a set $T \in I$ such that

$$
\begin{equation*}
\alpha(x)=\varphi(x) \in 3 \text { seqci } 3 V=9 \text { seqcl } V \text { for } x \in X \backslash T \tag{19}
\end{equation*}
$$

Replacing in this condition x by $-x_{0}+x-x_{0}$. applying additivity of α and (18). we get

$$
\begin{align*}
\alpha(x)-f(x)-\alpha\left(x_{0}\right)-\alpha\left(x_{0}\right)+ & g\left(x_{0}\right)+h\left(x_{0}\right) \in g \text { seqcl } V \tag{20}\\
& \text { for } x \in X \backslash\left(x_{0}+T+x_{0}\right) .
\end{align*}
$$

By the similar argument, substituting in (19) x by $x+x_{0}$, we obtain

$$
\begin{array}{r}
\alpha(x)-f\left(x+x_{0}\right)-\alpha\left(x_{0}\right)+g\left(x_{0}\right)+h\left(x_{0}\right) \in 9 \text { seqcl } V \tag{21}\\
\text { for } x \in X \backslash\left(x_{0}+T\right) .
\end{array}
$$

Conditions (14) and (21) yield

$$
\begin{align*}
& \alpha(x)-g(x)-\alpha\left(x_{0}\right)+g\left(x_{0}\right) \in 10 \text { seqcl } V \tag{22}\\
& \quad \text { for } x \in X \backslash\left[M_{x_{0}}^{\prime} \cup\left(x_{0}+T\right)\right] .
\end{align*}
$$

Inserting in (20) $x_{0}+x$ in the place of x we get

$$
\begin{align*}
d(x)=f\left(x_{0}+x\right)-\alpha\left(x_{0}\right)+g\left(x_{0}\right) & +h\left(x_{0}\right) \in 9 \text { seqcl } V \tag{23}\\
& \text { for } x \in x \backslash\left(T+x_{0}\right) .
\end{align*}
$$

Interchanging in (15) y on x we obtain

$$
f\left(x_{0}+x\right)-g\left(x_{0}\right)-h(x) \in V \quad \text { for } x \in X \backslash M_{x_{0}}^{\prime}
$$

which, together with (23), leads to

$$
\begin{align*}
& \alpha(x)-h(x)+h\left(x_{0}\right) \in 10 \text { seqcl } V \tag{24}\\
& \text { for } x \in X \backslash\left[M_{x_{0}^{\prime}}^{\prime} u\left(T+x_{0}\right)\right] .
\end{align*}
$$

Put:

$$
\begin{aligned}
& W:=\left(x_{0}+T+x_{0}\right) \cup\left(T+x_{0}\right) \cup\left(x_{0}+T\right) \cup M_{x_{0}}^{\prime} \\
& p:=-\alpha\left(x_{0}\right)+g\left(x_{0}\right) . \\
& q:=-\alpha\left(x_{0}\right)+h\left(x_{0}\right), \\
& F(x):=\alpha(x)+p+q, \\
& G(x):=\alpha(x)+p, \\
& H(x):=\alpha(x)+q .
\end{aligned}
$$

Clearly, $W \in I$ and the triplet (F,G,H) satisfies the Pexider equation (cf. [1], p. 142).

Applying the above denotations, we get now from (20), (22) and (24)

$$
\begin{aligned}
& F(x)-f(x) \in 9 \text { seqcl } V \text { for } x \in X \backslash W, \\
& G(x)-g(x) \in 10 \text { seqcl } V \text { for } x \in X \backslash W, \\
& H(x)-h(x) \in 10 \text { seqcl } V \text { for } x \in X \backslash W,
\end{aligned}
$$

which completes the proof. \square
Now we shall prove an analogue of Theorem 2 for the Pexider equation.
Theorem 4. Let all the assumptions of Theorem 3 be fulfilled and let. additionally, there oxists an $x_{0} \in X \in U\left(M^{H}\right)$ such that

$$
\left\{x \in X:\left(x_{0}+x, x+x_{0}\right) \in M\right\} \in I .
$$

Then there exist a solution $F, G, H: X \rightarrow Y$ of the Pexider equation and a set $W \in I$ such that

```
F(x) - f(x) & 3 seqcl V for }x\inX\W\mathrm{ .
G(x) - g(x) €4 seqcl V for }x\inX\W\mathrm{ .
H(x) - h(x) € 4 seqcl V for }x\inX\W\mathrm{ .
```

Proof. The proof runs similarly to the proof of Theorem 3. Only on essential change is needed. Using the denotations of the previous proof. we get from our additional assumption
$\left[\bar{M}\left(x_{0}\right)\right]_{D}=\left\{x \in X:\left(x_{0}+x_{1} x+x_{0}\right) \in \bar{M}\right\}$
$=\left\{x \in x: x_{0}+x \in M_{x_{0}}^{\prime}\right.$ or $x+x_{0} \in M_{x_{0}}^{\prime}$ or $\left.\left(x_{0}+x, x+x_{0}\right) \in M\right\}=$
$=\left(-x_{0}+M_{x_{0}}^{\prime}\right) \cup\left(M_{x_{0}}^{\prime}-x_{0}\right) \cup\left\{x_{\in} \in x_{8}\left(x_{0}+x_{1} x^{+x_{0}}\right) \in M\right\} \in I$.

Hence, $\bar{M}\left(x_{0}\right)$ satisfies condition (H8). Therefore, instead of Theorem 1. we may apply, to the function φ. Theorem 2. Then, instead of (19), we obtain

$$
\begin{equation*}
\alpha(x)-\psi(x) \in 3 \text { seqcl } V \text { for } x \in X \backslash T \tag{19'}
\end{equation*}
$$

The remaining part of the proof runs analogusly as before; we should only keep in mind consequences of (19').

Theorem 5. If Y is a $T-1$ space then the functions F. G. H occuring in Theorems 3 and 4 are determined uniquely up to additive constants.

Proof. The general solution of the Pexider equation has the form (cf. [1]. p. 142)

$$
\begin{aligned}
& F(x)=\alpha(x)+p+q, \\
& G(x)=\alpha(x)+p, \\
& H(x)=\alpha(x)+q,
\end{aligned}
$$

where of is an additive function and p, q are constants. Consider any two solutions of the Pexider equation

$$
\begin{array}{ll}
F_{1}(x)=\alpha_{1}(x)+p_{1}+q_{1} ; & F_{2}(x)=\alpha_{2}(x)+p_{2}+q_{2} \\
G_{1}(x)=\alpha_{1}(x)+p_{1} ; & G_{2}(x)=\alpha_{2}(x)+p_{2} \\
H_{1}(x)=o_{1}(x)+q_{1} ; & H_{2}(x)=\alpha_{2}(x)+q_{2}
\end{array}
$$

Suppose that these solutions satisfy Theorem 3 . Then there exist $W_{1}, W_{2} \in I$ such that

$$
\begin{aligned}
& F_{1}(x)-f(x) \in 9 \text { seqcl } v \text { for } x \in X \backslash W_{1}, \\
& F_{2}(x)-f(x) \in 9 \text { seqcl } v \text { for } x \in X \backslash W_{2} .
\end{aligned}
$$

Thus we have

$$
F_{2}(x)-F_{1}(x) \in 18 \text { seqcl } V \text { for } x \in x \backslash\left(w_{1} \cup w_{2}\right)
$$

1.0.

$$
\alpha_{2}(x)-\alpha_{1}(x)+p_{2}+q_{2}-p_{1}-q_{1} \in 18 \text { seqcl } v \text { for } x \in x \backslash w
$$

where $W:=W_{1} \cup W_{2}$.

Since V is bounded, the last condistion means that $\alpha_{2}(x)-\propto_{1}(x)$ is bounded on $X \backslash W$. Hence, there exists a bounded set $Z \subset Y$ such that

$$
\begin{equation*}
\alpha_{2}(x)-\alpha_{1}(x) \in Z \quad \text { for } \quad x \in X \backslash W \text {. } \tag{25}
\end{equation*}
$$

Take now an $x \in X \backslash W^{*}$. Then, by Lemma 1, $2^{n} x \in X \backslash W^{*}$ for $n \in N_{0}$. According to (25) we have now

$$
2^{n}\left[\alpha_{2}(x)-\alpha_{1}(x)\right]=\alpha_{2}\left(2^{n} x\right)-\alpha_{1}\left(2^{n} x\right) \in z,
$$

i.e.

$$
\alpha_{2}(x)-\alpha_{1}(x) \in \frac{1}{2^{n}} z .
$$

Letting $n \rightarrow \infty$, making use of the boundedness of Z and of the fact that Y is a T-1 space, we get

$$
\alpha_{2}(x)-\alpha_{1}(x) \in \text { seqcl }\{0\} \subset c \lambda\{0\}=\{0\} .
$$

Thus

$$
\alpha_{2}(x)=\alpha_{1}(x) \quad \text { for } \quad x \in x \backslash w^{*} .
$$

But, in view of Lemme 3 of [4], $x \backslash w^{*}$ generates x, so

$$
\alpha_{2}(x)=\alpha_{1}(x) \text { for all } x \in x \text {. }
$$

whence, we obtain

$$
\begin{array}{lll}
F_{2}(x)-F_{1}(x)=c_{1} & \text { for all } x \in x, \\
G_{2}(x)-G_{1}(x)=c_{2} & \text { for all } x \in x, \\
H_{2}(x)-H_{1}(x)=c_{3} & \text { for all } x \in x,
\end{array}
$$

where c_{1}, c_{2}, c_{3} are respective constant. \square
Remark 6. The essumptions of theorems 3 and 4 can be slightly weakened. Namely the crucial step is the application of Theor 1 to the function φ defined by (18). Therefore, instead of assuming that I is a σ-ideal, it is sufficient to assume that hypothesis (H4) with M^{-}feplaced by $M\left(x_{0}\right)$ holds. Similarly, instead of (H 7) , We may assume that the function ψ satisfies ($H 7$). Then we would get respactive conditions on f, x_{0}, M, $g\left(x_{0}\right), h\left(x_{0}\right)$. Howevar, it is clear that such assumptions are freorvenient to formulate.

Remark 7. Analogues of Theorems 4 and 5 for a semigroup S are not true. Put

$$
\begin{aligned}
& (X,+)=(Y,+)=(R,+), \quad S=(1, \infty), \\
& F(x)= \begin{cases}\frac{1}{x-1} & \text { for } \\
x \in(1,2) \\
x & \text { for } \\
x \in<2, \infty)\end{cases} \\
& G(x)=H(x)=x \quad \text { for } \quad x \in(1, \infty)
\end{aligned}
$$

Let $I \subset 2^{X}$ be family of countable sets. Then

$$
F(x+y)-G(x)-H(y)=0 \quad \text { for all } x, y \in S
$$

but none additive function oxists such that

$$
F(x)=a(x)+c \text { for } x \in S \backslash W
$$

where $W \in I$.

5. Open problems

The following problems remain open.

1) To characterize groups (or semigroups) satisfying the following so called "weak commutativity condition"

2) To determine whether the estimation of $\alpha(x)=f(x)$ in Theorem 1 can be improved. We mean here if 3 can be replaced by some $K \in Q, 0<K<3$.
3) To give an example of a group x and a non-trivial p.l.i. ideal I in X (if there existe any) such that the Cauchy equation is stable but not I-stable.

REFERENCES
[1] Aczél J.: Lectures on functional equations and their applications, New York and London 1966.
[2] Baker J.A. Lawrence J.. Zorzitto F.: The etability of the equation $f(x+y)=f(x) f(y)$, Proc. Aler. Math. Soc. 74 (1979), 242-246.
[3] Brydak $0_{0}:$ On the stability of the linear functional equation
45[f(x)]. $g(x) \Phi(x)+F(x)$. Proc. Amer. Math. Soc. 26 (1970).
[4] Ger R.: On some functional equation with the restricted domein, Fund. Meth. 89 (1975), 131-149.
[5] Ger R.: Almost additive functions on semigroups and a functional equation, Publ. Math. 26 (1979), 219-228.
[6] Ger R.: Almost aproximately additive mappings, General inequalities 3. Birkhauser Verlag, Basel-Boston-Stuttgart 1983, 263-276.
[7] Hyers D.H.: On the stability of the linear functional equation, Proc. Math. Acad. Sci. USA 27 (1951), 222-224.
[8] Moszner Z.: Sur la stabilité de l'équation d'homomorphisme, Aeq, Math. 29 (1985), 290-306.
[9] Rätz J.: On approximately additive mappings. General Inequalities 2. B1rkhauser Verlag, Basel-Boston-Stuttgart 1980, 233-251.
[10] Schaefer $H_{.} H_{4}$: Topological vector spaces, New York and London 1966.

