Seria: MATEMATYKA-FIZYKA z. 64
Nr kol. 1070

DEDICATED TO PROFESSOR MIECZYSとAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Lajos TAMÅSSY

ON THE EXISTENCE OF A FUNDAMENTAL FUNCTION
IN FINSLER SPACES

> Sumary. Geometric and analytic conditions on the metric tensor $g_{i j}(x, y)$ assuring the existance of a fundamental function of an n-dimensional finsler space (M, g) are discussed and investigated.

1. P. Finsler investigated variational problems of the form $\delta \int \mathcal{F}(x, \dot{x}) d t$. and this led him in his thesis [2] written at C. Caratheodory to a geometry with a generalized metric. The name of Finsler geometry was then given by J.H. Taylor [7] in 1927. As a matter of fact the possibility of such a geometry had already been mentioned in the famous habilitation lecture of B. Riemann [6] in which he laid the fondations of Riemannian geometry. However this has completely been neglected and forgotten through the more than six decades which had elapsed from 1854.

The fundamental function $\delta(x, \dot{x})$ of this geometry is supposed to be on its domain except for $\dot{x}=0$ a) of class $\left.c^{3}, b\right)$ positive, and c) positively homoheneous of order 1 in \dot{x}. The surface $\mathscr{F}(x, \dot{x})=1$ of the tangent space T_{x}, of M is called indicatrix and denotad by $J(x$,$) .$

Finsler geometry was considered at the beginning as the theory of a point space (manifold) M. In this cocept however, a metrical linear connection was not realizable. Let indesd P and Q be two arbitrary pointe of M and C a curve connecting them. Then a linear connection \mathcal{H} induces a linear map $\varphi: T_{P} \rightarrow T_{Q}$ between the tangent spaces T_{P} and $T_{Q} \mathcal{H}$ is called metrical if $\varphi(J(P))=\varphi(J(Q))$ for any P, Q and C. However $J(P)$ and $J(Q)$ may have quite different shapes and thus, except in special cases, they cannot be transformed into each other by any linear transformation φ. Hence for a Finsler geometry (M, \mathcal{F}) in the above sense there exists in general no metrical linear connection. In order to assure the existence of a metrical linear connection Cartan [1] considered the $2 n-1$ dimensional space of the line elements. i.e. the space of points and directions as the underlying manifold of the finsler geometry. This can be done also replacing M by the tangent space TM.

The metric tensor $g_{i j}$ of an (M, F) is deduced from the fundamental function $\mathcal{F}(x, y)$ and has the form

$$
\begin{equation*}
g_{1, j}(x, y):=\frac{1}{2} \frac{\partial^{2} \mathcal{F}^{2}}{\partial y^{i} \partial y^{j}}(x, y) . \quad i, j=1,2, \ldots, n \tag{1}
\end{equation*}
$$

However it turned out that starting directly with a metric tensor $g_{i j}(x, y)$ in place of the fundamental function $\mathcal{f}(x, y)$ nearly the same edifice can be constructed [3], [4], [5]. A Finsler space over M built on the metric tensor $g_{i j}$ is denoted by (M,g). Here one requires from $g_{i j}$ the following properties: a) $g_{i j}$ is homogeneous of order 0 in $\left.y, b\right)$ it is a $(0,2)$ tensor of class $\left.c^{2}, c\right)$ it is symmetric in i and j, and d) it is nondegenerate.

It is clear that (M, g) is somewhat more general than (M, \mathcal{F}). In the following we want to discuss and investigate the geometric and analytic relations between the two spaces.
2. For a fixed line element $\left(x_{0}, y_{0}\right) g_{i j}\left(x_{0}, y_{0}\right) y^{i} y^{j}=1$ is a quadric in $T^{\top} x_{0}$. and

$$
\begin{equation*}
\Psi(y, c): \quad g_{1 j}\left(x_{0}, c\right) y^{1} y^{j}-1=0 \tag{2}
\end{equation*}
$$

is a family of quadrics depending on the parameters $c \in R^{n}(c \notin 0)$.

$$
\begin{equation*}
\Phi(c): \quad y^{i}=y^{i}(c):=\frac{c^{i}}{\left(g_{r}\left(x_{0}, c\right) c^{r} c^{b}\right)^{1 / 2}} \tag{3}
\end{equation*}
$$

is a surface $\Phi \subset T_{x_{0}}$ in a parametrized form. We remark that the right hand side of (3) is homogeneous of order 0 in c^{i}. Thus $y^{i}(c)$ depends essentially on $n=1$ parameters. We want to show that.

Theorem. $g_{i j}$ is deduced from an \mathcal{F}^{\prime} by (1) iff $\Phi(c)$ is a second order envelope of $\Psi(y, c)$.

This means a geometric characterization of the relation between (M, g) and (M, \mathcal{F}).
$\Phi(c)$ is an envelope of $\Psi(y, c)$ iff I) the point $Y(c)$ determined by (3) lies on the surface (2), and II) in these points they tangent each others.

Wa find a necessary and sufficient condition for this.
I) is obviously true, for

$$
\begin{equation*}
\Psi(y(c), c) \equiv 0 \tag{4}
\end{equation*}
$$

Oifferentiation of (4) gives

$$
\begin{equation*}
\frac{\partial \Psi^{0}}{\partial y^{m}}(y(c), c) \frac{\partial y^{m}}{\partial c^{k}}(c)+\frac{\partial \Psi}{\partial c^{k}}(y(c), c)=0 . \tag{5}
\end{equation*}
$$

where $\frac{\partial \Psi}{\partial y^{m}}(y(c), c)=2 g_{i m}\left(x_{0}, c\right) y^{1}(c)$ are the components of the normal vector χ_{Ψ} of $\Psi(y, c)$ at $Y(c)$. This normal vector never vanishes, for $\operatorname{det}\left|g_{j . j}\left(x_{0}, c\right)\right| \neq 0 . \frac{\partial y^{m}}{\partial k}(c)$ are components of non vanishing tangents Ψ_{Φ} of the parameter lines of $\Phi(c)$. Hence in the case when Φ is an envelope of the family Ψ, the first term of (5) means the inner product of the perpendicular vectors \mathbb{N}_{Ψ} and \mathcal{T}_{Φ} in the tangent space $T_{x_{0}}$ equipped with a euclidean metric. Thus, in this case

$$
\begin{equation*}
\frac{\partial \Psi}{\partial c^{k}}(y(c), c)=0 \tag{6}
\end{equation*}
$$

Also conversely, if the second term of (5) vanishes, then the two nonvanishing vectors \mathcal{N}_{Ψ} and \mathcal{H}_{Φ} are perpendicular in $T_{x_{0}}$, and hence, in view of (4) Φ is an envelope of $\Psi(y, c)$. Thus $\frac{\partial \Psi}{\partial c^{h}}(y(c), c)=0 \Longleftrightarrow \Phi$ is an envelope of $\Psi(y, c)$. In view of (2) and (3)

$$
\left.\frac{\partial \Psi}{\partial c^{k}}(y, c)\right|_{y=y(c)}=\frac{\partial g_{i j}}{\partial c^{k}}\left(x_{0}, c\right) \frac{c^{i}}{\left(g_{r s}\left(x_{0}, c\right) c^{r} c^{s}\right)^{1 / 2}} \frac{c^{j}}{\left(g_{a b}\left(x_{0}, c\right) c^{a} c^{b}\right)^{i / 2}}=0
$$

Multiplying with $g_{r s}\left(x_{0}, c\right) c^{r} c^{s}$ and denoting the second variable of gij again by y we obtain.

Proposition 1. Φ is an envelope of $\Psi^{\prime}(y, c)$ iff

$$
\begin{equation*}
\frac{\partial g_{i, i}}{\partial y^{k}}(x, y) y^{i} y^{j}=0 \tag{7}
\end{equation*}
$$

$2 \frac{\partial g_{i j}}{\partial y}$ is Cartan's torsion tensor denoted by $c_{i j k}$. Thus the condition of Proposition 1 can be denoted also by $c_{i, j h^{y}} y^{j}=0$.
3. We call Φ a second order envelope of Ψ if it is an envelope. i.e. it setisfies I) and II), and still III) $\Psi(y, c)$ and Φ osculate at $Y(c)$ in the second order.

Proposition 2. Φ is a second order envelope of Ψ iff

$$
\begin{equation*}
\frac{\partial g_{\underline{i} r}}{\partial y^{s}}(x, y) y^{\frac{1}{2}}=0 \tag{8}
\end{equation*}
$$

Let us consider the surface $\Gamma: g_{i j}\left(x_{0} \cdot y\right) y^{i} y^{j}=1$ of $T_{x_{0}}$. (3) easily implies that any point $\gamma(c)$ of Φ lies on Γ. i.e. $\Phi \subset \Gamma$. But both Φ and Γ have a single point on each ray in $T_{x_{0}}$ through x_{0}. Hence Φ is the same as $\Gamma, \bar{\Phi} \equiv \Gamma$.

Second order osculation between Φ and Ψ means the equality of

$$
\begin{align*}
& \frac{\partial^{2} \Gamma}{\partial y^{r} \partial y^{s}}\left(x_{0}, y\right)=\frac{\partial^{2} g_{11}}{\partial y^{r} \partial y^{s}}\left(x_{0}, y\right) y^{i} y^{j}+2 \frac{\partial g_{i r}}{\partial y^{s}}\left(x_{0}, y\right) y^{i}+ \\
& +2 \frac{\partial g_{i s}}{\partial y^{r}}\left(x_{0}, y\right) y^{1}+2 g_{r s}\left(x_{0}, y\right) \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \Psi}{\partial y^{r} \partial y^{s}}\left(x_{0}, y\right)=2 g_{r a}\left(x_{0}, c\right) \tag{10}
\end{equation*}
$$

at $Y\left(c\right.$. Because of the homogeneity of order 0 of $g_{r s}$ $g_{r s}\left(x_{0}, y(c)\right)=g_{r s}\left(x_{0}, c\right)$.

Now, if Φ is a second order envelope of Ψ, then a) Φ is also an envelope of Ψ^{ρ}, and thus $\frac{\partial^{2} g_{i, j}}{\partial y^{r} \partial y^{s}} y^{1} y^{j}=0$ by Proposition 1 , and this term drops out from (9): and b) Φ and Ψ osculate in the second order, what means the equality of the derivatives (9) and (10). Hence we obtain (8). Conversely we assume (8). This implies (7), and thus Φ is an envelope of Ψ. Moreover, in view of (7) and (8) the right hand side of (9) is $2 \mathrm{~g}_{\mathrm{rs}}$. Thus $\frac{\partial^{2} \Gamma}{\partial y^{r} \partial y^{s}}=\frac{\partial^{2} \Psi^{n}}{\partial y^{r} \partial y^{s}}$ at $Y(c)$. which yields the second order osculation between Φ and Ψ. These mean that Φ is a second order envelope of Ψ.
4. Making use of Propositions 1 and 2 we prove our Theorem.
A) $(1) \Longrightarrow \Phi$ is a seconf order envelope of Ψ.

According to (1)

$$
\frac{\partial g_{i, 1}}{\partial y^{k}}(x, y) y^{i}=\frac{1}{2} \frac{\partial^{3} z^{2}}{\partial y^{k} \partial y^{i} \partial y^{j}}(x, y) y^{i}=\frac{1}{2}\left[\left(\frac{\partial}{\partial y^{i}} \frac{\partial^{2} \mathscr{f}^{2}}{\partial y^{k} \partial y^{j}}(x, y)\right) y^{i}\right]
$$

But \mathcal{F}^{2} is homogeneous of order 2, and $\frac{\partial^{2} \mathcal{F}^{2}}{\partial y^{k} \partial y^{j}}$ of order 0 in y. Hence, by Euler's theorem on the homogeneous functions, the expression in the square bracket vanishes. Thus (8), and also (7) are satisfied. These mean that Φ is a second order envelope of Ψ.
B) (1) $\longleftarrow \Phi$ is a second order envelope of Ψ.

Consider the function $\mathcal{F}^{2}(x, y):=g_{i j}(x, y) y^{i} y^{j}$. In this case $\frac{\partial \mathcal{F}^{2}}{\partial y^{h}}(x, y)=$ $=\frac{\partial g_{i j}}{\partial y^{h}}(x, y) y^{i} y^{j}+2 g_{k j}(x, y) y^{j}$. By Proposition 1 our assumption implies the relation (7), ans thus $\frac{\partial \mathcal{f}^{2}}{\partial y^{h}}=2 g_{h j} y^{j}$. After a repeated derivation $\frac{\partial^{2} \mathcal{F}^{2}}{\partial y^{k} \partial y^{r}}=2 \frac{\partial g_{k i}}{\partial y^{r}} y^{J}+2 g_{k r^{*}}$. By Proposition 2 our assumption implies the relation (8), and by using this we obtain (1).

The above considerations yield also a geometrical proof of
Proposition 3. $g_{i j}$ can be deducef from an \mathcal{F} by (1) iff

$$
\frac{\partial g_{i j}}{\partial y^{k}} y^{i}=0
$$

Conditions (7) and (8) in form of $C_{i j h} y^{i} y^{j}=0$ and $C_{i j h} y^{i}=0$ $\left(C_{i j h} \equiv \frac{1}{2} \frac{\partial g_{i, i}}{\partial y^{k}}\right.$) often occur in the investigations of an (M, g). Propositions 1 and 2 enlighten their geometrical contents.

REFERENCES

[1] Certan E.: Les espaces de Finsler. Actualitës 79. Paris 1934.
[2.] Finsler $P_{\text {. }}$: Über Kurven und Flächen in allgemeinen Räumen. Dissertation, Göttingen 1918.
[3] Matsumoto M.: Foundations of Finsler geometry and special Finsler spaces. Kaiseisha 1986.
[4] Miron R.. Anastasiei M.: Fibrate vectoriale spatii Lagrange aplicatii in teoria relativitatii, Bucuresti 1987.
[5] Moór A.: Entwicklung einer Geometrie der allgemeinen metrischen Linienelementräume. Acta Sci. Math. Szeged 17 (1956). 85-120.
[6] Riemann B.: Über Hypothesen, welche der Geometrie zugrunde liegen. Habilitationsvortrag 1854, Göttingen.
[7] Taylor J.H. : Parallelism and transversality in a subspece of a general (Finsler) space. Ann. Math. 28 (1927). 620-628.

