ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

Seria: MATEMATYKA-FIZYKA z. 64

Nr kol. 1070

DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 70TH BIRTHDAY

Lajos TAMÁSSY

ON THE EXISTENCE OF A FUNDAMENTAL FUNCTION IN FINSLER SPACES

<u>Summary</u>. Geometric and analytic conditions on the metric tensor $g_{ij}(x,y)$ assuring the existence of a fundamental function of an n-dimensional Finsler space (M,g) are discussed and investigated.

1. P. Finsler investigated variational problems of the form $\delta \int \mathcal{F}(\mathbf{x}, \mathbf{x}) dt$, and this led him in his thesis [2] written at C. Caratheodory to a geometry with a generalized metric. The name of Finsler geometry was then given by J.H. Taylor [7] in 1927. As a matter of fact the possibility of such a geometry had already been mentioned in the famous habilitation lecture of B. Riemann [6] in which he laid the fondations of Riemannian geometry. However this has completely been neglected and forgotten through the more than six decades which had elepsed from 1854.

The fundamental function $\delta(x,x)$ of this geometry is supposed to be on its domain except for x = 0 a) of class C^3 , b) positive, and c) positively homoheneous of order 1 in x. The surface $\mathcal{F}(x,x) = 1$ of the tangent space T_x of M is called indicatrix and denoted by $J(x_x)$.

Finaler geometry was considered at the beginning as the theory of a point space (manifold) M. In this cocept however, a metrical linear connection was not realizable. Let indeed P and Q be two arbitrary points of M and C a curve connecting them. Then a linear connection \mathcal{K} induces a linear map $\varphi: T_P \xrightarrow{} T_Q$ between the tangent spaces T_P and T_Q . \mathcal{K} is called metrical if $\varphi(J(P)) = \varphi(J(Q))$ for any P, Q and C. However J(P) and J(Q) may have quite different shapes and thus, except in special cases, they cannot be transformed into each other by any linear transformation φ . Hence for a Finaler geometry (M. \mathcal{F}) in the above sense there exists in general no metrical linear connection. In order to assure the existence of a metrical linear connection Cartan [1] considered the 2n-1 dimensional space of the line elements, i.e. the space of points and directions as the underlying manifold of the Finaler geometry. This can be done also replacing M by the tangent space TM.

The metric tensor g_{ij} of an (M,F) is deduced from the fundamental function $\mathcal{F}(x,y)$ and has the form

$$g_{ij}(x,y) := \frac{1}{2} \frac{\partial^2 g^2}{\partial y^i \partial y^j} (x,y), \quad i,j = 1,2,...,n.$$
 (1)

However it turned out that starting directly with a metric tensor $g_{ij}(x,y)$ in place of the fundamental function $\mathcal{F}(x,y)$ nearly the same edifice can be constructed [3], [4],[5]. A Finsler space over M built on the metric tensor g_{ij} is denoted by (M,g). Here one requires from g_{ij} the following properties: a) g_{ij} is homogeneous of order 0 in y, b) it is a (0,2) tensor of class C^2 , c) it is symmetric in i and j, and d) it is nondegenerate.

It is clear that (M,g) is somewhat more general than (M,\mathcal{F}) . In the following we want to discuss and investigate the geometric and analytic relations between the two spaces.

2. For a fixed line element $(x_0, y_0) g_{ij}(x_0, y_0)y^{j}y^{j} = 1$ is a quadric in T_{x_0} , and

$$\Psi'(y,c): g_{11}(x_{0},c)y^{1}y^{1} - 1 = 0$$
 (2)

is a family of quadrics depending on the parameters $c \in \mathbb{R}^{n}$ ($c \neq 0$).

$$\underline{\Phi}(c): \quad y^{i} = y^{i}(c): = \frac{c^{i}}{(g_{r}(x_{o}, c)c^{r}c^{b})^{1/2}}$$
(3)

is a surface $\Phi \subset T_x$ in a parametrized form. We remark that the right hand side of (3) is homogeneous of order o in c^{i} . Thus $y^{i}(c)$ depends essentially on n-1 parameters. We want to show that.

Theorem. g_{ij} is deduced from an \mathcal{F} by (1) iff $\tilde{\Phi}(c)$ is a second order envelope of $\Psi(y,c)$.

This means a geometric characterization of the relation between (M,g) and (M,\mathcal{F}) .

 $\Phi(c)$ is an envelope of $\Psi(y,c)$ iff I) the point Y(c) determined by (3) lies on the surface (2), and II) in these points they tangent each others.

Wa find a necessary and sufficient condition for this. I) is obviously true, for

 $\Psi(\mathbf{y}(\mathbf{c}),\mathbf{c})\equiv \mathbf{0},$

(4)

On the existence of a fundamental...

Differentiation of (4) gives

$$\frac{\partial \Psi}{\partial y^{m}} (y(c),c) \frac{\partial y^{m}}{\partial c^{k}} (c) + \frac{\partial \Psi}{\partial c^{k}} (y(c),c) = 0, \qquad (5)$$

where $\frac{\partial \Psi}{\partial y^m}(y(c),c) = 2g_{im}(x_o,c)y^i(c)$ are the components of the normal vector \mathcal{M}_{Ψ} of $\Psi(y,c)$ at Y(c). This normal vector never vanishes, for $\det[g_{ij}(x_o,c)] \neq 0$. $\frac{\partial y^m}{\partial k}(c)$ are components of non vanishing tangents 4ϕ of the parameter lines of $\phi(c)$. Hence in the case when ϕ is an envelope of the family Ψ , the first term of (5) means the inner product of the perpendicular vectors \mathcal{M}_{Ψ} and 4ϕ in the tangent space T_{x_o} equipped with a euclidean metric. Thus, in this case

$$\frac{\partial \Psi}{\partial c^k} (y(c),c) = 0.$$
 (6)

Also conversely, if the second term of (5) vanishes, then the two nonvanishing vectors \mathcal{N}_{Ψ} and \oint_{Φ} are perpendicular in T_x , and hence, in view of (4) Φ is an envelope of $\Psi(y,c)$. Thus $\frac{\partial \Psi}{\partial c^h}(y(c),c) = 0 \iff \Phi$ is an envelope of $\Psi(y,c)$. In view of (2) and (3)

$$\frac{\partial \Psi}{\partial c^{k}}(y,c)\Big|_{y=y(c)} = \frac{\frac{\partial g_{i1}}{\partial c^{k}}(x_{0},c)}{\frac{c^{i}}{(g_{rs}(x_{0},c)c^{r}c^{s})^{2}}} \frac{c^{j}}{(g_{ab}(x_{0},c)c^{a}c^{b})^{2}} = 0.$$

Multiplying with $g_{rs}(x_0,c)c^{r}c^{s}$ and denoting the second variable of g_{ij} again by y we obtain.

Proposition 1. ϕ is an envelope of $\Psi(y,c)$ iff

$$\frac{\partial g_{ij}}{k}(x,y)y^{i}y^{j} = 0.$$
⁽⁷⁾

 $2\frac{\partial g_{ij}}{\partial y^k}$ is Cartan's torsion tensor denoted by C_{ijk} . Thus the condition of Proposition 1 can be denoted also by $c_{ijh}y^iy^j = 0$.

3. We call Φ a second order envelope of Ψ if it is an envelope, i.e. it satisfies I) and II), and still III) $\Psi(y,c)$ and Φ osculate at Y(c) in the second order.

225

Proposition 2. Φ is a second order envelope of Ψ iff

$$\frac{\partial g_{\pm r}}{\partial y^{s}} (x, y) y^{\pm} = 0.$$
(8)

Let us consider the surface $\Gamma : g_{ij}(x_0, y)y^{i}y^{j} = 1$ of T_{x_0} . (3) easily implies that any point Y(c) of Φ lies on Γ . i.e. $\Phi \subset \Gamma$. But both Φ and Γ have a single point on each ray in T_{x_0} through x_0 . Hence Φ is the same as Γ , $\Phi \equiv \Gamma$.

Second order osculation between Φ and Ψ means the equality of

$$\frac{\partial^2 \Gamma}{\partial y^r \partial y^s} (x_0, y) = \frac{\partial^2 g_{11}}{\partial y^r \partial y^s} (x_0, y) y^1 y^1 + 2 \frac{\partial g_{1r}}{\partial y^s} (x_0, y) y^1 + 2 \frac{\partial g_{1s}}{\partial y^s} (x_0, y) y^1 + 2 \frac{\partial g_{1s}}{\partial y^r} (x_0, y) y^1 + 2 \frac{\partial g_{1s}}{\partial y^r} (x_0, y) y^1 + 2 \frac{\partial g_{1s}}{\partial y^s} (x_0, y) y^1 + 2 \frac{\partial g_{1s}}{\partial y^s}$$

and

$$\frac{\partial^2 \Psi}{\partial y^2 \partial y^s} (x_0, y) = 2 g_{rs}(x_0, c)$$
(10)

at Y(c). Because of the homogeneity of order 0 of g_{rs} $g_{rs}(x_0, y(c)) = g_{rs}(x_0, c)$.

Now, if Φ is a second order envelope of Ψ , then a) Φ is also an envelope of Ψ , and thus $\frac{\partial^2 g_{ij}}{\partial y^{\Gamma} \partial y^{S}} y^{i} y^{j} = 0$ by Proposition 1, and this term drops out from (9); and b) Φ and Ψ osculate in the second order, what means the equality of the derivatives (9) and (10). Hence we obtain (8). Conversely we assume (8). This implies (7), and thus Φ is an envelope of Ψ . Moreover, in view of (7) and (8) the right hand side of (9) is 2 g_{rs}. Thus $\frac{\partial^2 \Gamma}{\partial y^{\Gamma} \partial y^{S}} = \frac{\partial^2 \Psi}{\partial y^{\Gamma} \partial y^{S}}$ at Y(c), which yields the second order osculation between Φ and Ψ . These mean that Φ is a second order envelope of Ψ .

4. Making use of Propositions 1 and 2 we prove our Theorem. A) (1) $\Longrightarrow \Phi$ is a seconf order envelope of Ψ . According to (1)

$$\frac{\partial g_{ij}}{\partial y^{k}} (x, y) y^{i} = \frac{1}{2} \frac{\partial^{3} g^{2}}{\partial y^{k} \partial y^{i} \partial y^{j}} (x, y) y^{i} = \frac{1}{2} \left[\left(\frac{\partial}{\partial y^{i}} \frac{\partial^{2} g^{2}}{\partial y^{k} \partial y^{j}} (x, y) \right) y^{i} \right]$$

But \mathfrak{F}^2 is homogeneous of order 2, and $\frac{\partial^2 \mathfrak{F}^2}{\partial y^k \partial y^j}$ of order 0 in y. Hence, by Euler's theorem on the homogeneous functions, the expression in the square bracket vanishes. Thus (8), and also (7) are satisfied. These mean that Φ is a second order envelope of Ψ .

B) (1) $\Leftarrow \Phi$ is a second order envelope of Ψ .

Consider the function $\mathscr{F}^2(x,y)$: = $g_{ij}(x,y)y^iy^j$. In this case $\frac{\partial \mathscr{F}^2}{\partial y^h}(x,y) = \frac{\partial g_{i1}}{\partial y^h}(x,y)y^jy^j + 2 g_{kj}(x,y)y^j$. By Proposition 1 our assumption implies the relation (7), and thus $\frac{\partial \mathscr{F}^2}{\partial y^h} = 2 g_{hj}y^j$. After a repeated derivation $\frac{\partial^2 \mathscr{F}^2}{\partial y^h \partial y^r} = 2 \frac{\partial g_{kj}}{\partial y^r}y^j + 2 g_{kr}$. By Proposition 2 our assumption implies the relation (8), and by using this we obtain (1).

The above considerations yield also a geometrical proof of

Proposition 3. g_{ij} can be deducef from an \mathcal{F} by (1) iff

$$\frac{\partial g_{ij}}{\partial y^k} y^i = 0$$

Conditions (7) and (8) in form of $C_{ijh}y^iy^j = 0$ and $C_{ijh}y^i = 0$ $(C_{ijh} \equiv \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k})$ often occur in the investigations of an (M,g). Propositions 1 and 2 enlighten their geometrical contents.

REFERENCES

- 1 Cartan E.: Les espaces de Finsler. Actualités 79. Paris 1934.
- [2] Finsler P.: Über Kurven und Flächen in allgemeinen Räumen. Dissertation, Göttingen 1918.
- [3] Matsumoto M.: Foundations of Finsler geometry and special Finsler spaces. Kaiseisha 1986.
- [4] Miron R., Anastasiai M.: Fibrate vectoriale spatii Lagrange aplicatii in teoria relativitatii, Bucuresti 1987.
- 5 Moór A.: Entwicklung einer Geometrie der allgemeinen metrischen Linienelementräume. Acta Sci. Math. Szeged 17 (1956), 85–120.
- [6] Riemann B.: Über Hypothesen, welche der Geometrie zugrunde liegen. Habilitationsvortrag 1854, Göttingen.
- [7] Taylor J.H.: Parallelism and transversality in a subspace of a general (Finsler) space. Ann. Math. 28 (1927), 620-628.