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Summary. Geometric and analytic conditions on the metric tensor 
g^ix.y) assuring the existance of a fundamental function of an
n-dimensional Finsler space (M,g) are discussed and investigated.

1. P. Finsler investigated variational problems of the form <5j!F(x,x )dt,
and this led him in his thesis [2] written at C. Caratheodory to a geome­
try with a generalized metric. The name of Finsler geometry was then gi­
ven by D.H. Taylor [7] in 1927. As a matter of fact the possibility of 
such a geometry had already been mentioned in the famous habilitation 
lecture of B. Riemann [V] in which he laid the fondations of Riemannlan 
geometry. However this has completely'been neglected and forgotten through 
the more than six decades which had elapsed from 1854.

The fundamental function <5(x,x) of this geometry is supposed to be on 
its domain except for x » 0 a) of class C"*, b) positive, and c) posi­
tively homoheneous of order 1 in x. The surface & ( x , x )  ■* 1 of the tan­
gent space T of M is called lndicatrix and denoted by D(x, ).

Finsler geometry was considered at the beginning as the theory of a 
point space (manifold) M. In this cocept however, a metrical linear con­
nection was not realizable. Let indeed P and Q be two arbitrary points
of M and C a curve connecting them. Then a linear connection It induces
a linear map *p: Tp — between the tangent spaces Tp and Tq. %  is 
called metrical if <p(3(Q)) for any P, Q and C. However 0(P)
and D(Q) may have quite different shapes and thus, except in special 
cases, they cannot be transformed into each other by any linear transfor­
mation «p. Hence for a Finsler geometry (M,?') in the above sense there 
exists in general no metrical linear connection, in order to assure the 
existence of a metrical linear connection Cartan [l] considered the 
2n-l dimensional space of the line elements, i.e. the space of points 
and directions as the underlying manifold of the Finsler geometry. This 
can be done also replacing M by the tangent space TM.

The metric tensor g ^  of an (M.30 is deduced from the fundamental 

function 3“(x,y) and has’the form
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 1---

, , 1 , g,.,(x.y) := s- — j— r (x,y). i,j = 1,2,...,n. (1)
* 3y 3yJ

However It turned out that starting directly with a metric tensor g^fx.y) 
in place of the fundamental function J^x.y) nearly the same edifice can 
be constructed [3], [4] , jjT]. A Finsler space over M built on the metric 
tensor g ^  is denoted by (M,g). Here one requires from g ^  the follo­
wing properties: a) g ^  is homogeneous of order 0 in y, b) it is a

(0,2) tensor of class C , c ) it is symmetric in i and j, and d) it is 
nondegenerate.

It is clear that (M,g) is somewhat more general than In the
following we want to discuss and investigate the geometric and analytic 
relations between the two spaces.

2. For a fixed line element (x ,y ) g,,(x ,y )yiy'̂  “ 1 is a quadricO O  Ij O o
in T , and

x o

■’f’Cv.c): gi;J(x0 ,c)yiy;i - 1  = 0 (2 )

is a family of quadrics depending on the parameters c e R n (c f  0).

$(c): y1 » yi (c): « ----------  (3)

(gr (x0 ,c)crcb )

is a surface | c T x in a parametrized form. We remark that the right
O j j

hand side of (3) is homogeneous of order o in c . Thus y (c) depends 
essentially on n-1 parameters. We want to show that.

Theorem, g ^  is deduced from an ?  by (1) iff $(c) is a second order 
envelope of Y(VtC).

This means a geometric characterization of the relation between (M,g) 
and (M,?).

is an envelope of Iff *) the point Y(c) determined by
(3) lies on the surface (2), and II) in these points they tangent each 
others.

Wa find a necessary and sufficient condition for this.
I ) is obviously true, for

Y ( y ( c ) , c )  ■ 0, (4)
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Oiffarentiation of (4) gives

l l (y(c ) . c ) ^ l r ( c ) + ^ ( ¥ (c).c) = 0. (5)
0y 0c 0 c

ay i
where M c ) . c )  * 29im(x0 #c)y are t*le comPonents of the normal

vector of ̂ ( y , c ) at Y(c). This normal vector never vanishes, for 
3 ®

detl 9j.Jfxo*c)l ̂  °* (c) are components of non vanishing tangents

of the parameter lines of <£(c). Hence in the case when is an enve­
lope of the family Y# the first term of (5) means the inner product of 
the perpendicular vectors Hiijr and in the tangent space equipped
with a euclidean metric. Thus, in this case 0

3 ¥
— r (y(c),c) = 0. (6)
3 c

Also conversely, if the second term of (5) vanishes, then the two 
nonvanishing vectors /H y a n d  Qq, are perpendicular in Tx , and hence, in 

, S W  o
view of (4) $  is an envelope of ^(y.c). Thus — (y(c),c) = 0 <  >  $

3c
is an envelope of Yfy.c). In view of (2) and (3)

. > < « „ . 0 ,   si— ™   si ™ . 0 .
I w ( 0  3c ( 9 r . < x 0 . c ) c r c * )  ( 9 , b ( x0 . c ) c * c b )

Multiplying with grg(xo ,c)crc3 and denoting the second variable of" gi;j 
again by y we obtain.

Proposition 1. $  is an envelope of y ( y , c )  iff

— b3- (x-y h \ 3 ** ° *  ^

ay

3 g , .

2 —-j~  is Cartan's torsion tensor denoted by
3 y i i

Thus the condition of Proposition 1 can be denoted also by c± .jhy yJ = 0.

3. We call $  a second order envelope of Y  If it is an envelope, i.e. 
it satisfies I) and II), and still III) Y(y.c) and $  osculate at Y(c) 
in the second order.
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Proposition 2 . <|> is a second order envelope of 1f’ iff

3glr i
— (x,y )y = 0. (8)

Let us consider the surface F : (xQ ,y )yiy^ = 1 of T^ . (3) easily

implies that any point Y(c) of <f> lies on T. i.e. $ c F.But both <|> and
F  have a single point on each ray in T through x . Hence $  is the

xo
same as T. <P = T .

Second order osculation between $  and Y  means the equality of

$7u° - , >  ‘  J T v  < v » > » V  * 2 *

♦ 2 (x .yjy1 ♦ 2 grs(x0 .y) (9)
3y

and

3 2 V

3y 3y
(x„.y) - 2 gr_(x ,c) (10)

at Y ( c \  Because of the homogeneity of order 0 of gpQ

9rs(xo'v(c)) = 9rs(xo'o)'
Now, if $  is a second order envelope of Y ,  then a ) $  is also an enve- 

^2
lope o f a n d  thus — ^  yiy^ = 0  by Proposition 1, and this term 

3y 3ys
drops out from (9); and b ) $  and Hf osculate in the second order, what 
means the equality of the derivatives (9) and (10). Hence we obtain (8). 
Conversely we assume (8). This implies (7), ^nd thus $  is an envelope ofY.

Moreover, in view of (7) and (8) the right hand side of (9) is 2 grs-
g 2 r  a2ur

Thus -------  = — r  at Y(c), which yields the second order osculation
3yr3y8 3y 3ys

between and Y .  These mean that $  is a second or;der envelope of Y .

4. Making use of Propositions 1 and 2 we prove our Theorem.

A) ( 1 ) = > $  is a seconf order envelope of''if.

According to (l)
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c-2 S^JF2
But & is homogeneous of order 2, and — r-- r of order 0 in y.

9 y 9yJ
Hence, by Euler's theorem on the homogeneous functions, the expression in 
the square bracket vanishes. Thus (8), and also (7) are satisfied. These 
mean that $  is a second order envelope of Y.

B) ( l ) « i = $  is a second order envelope of Y .

Consider the function f  (x,y): = gi.(x,y)y y3. In this case — r- (x,y) =

3<>ii i 1 1 ^* — FT" (x.y)y yJ + 2 g, ,(x,y)yJ. By Proposition 1 our assumption implies
3V , J 3^2 1

the relation (7), ans thus — ^ = 2 g^.y . After a repeated derivation
3y J

a2^  3gk
— r— - = 2 — yJ + 2 g. . By Proposition 2 our assumption implies the 
3y 9y 3y Kr
relation (8), and by using this we obtain (l).

The above considerations yield also a geometrical proof of

Proposition 3. g ^  can be deducef from an 2r by (1) iff

39ii i— 3U. y1 = 0
0y

Conditions (7) and (8) in form of = 0 and Cijhyi = 0

(C, ^  ) often occur in the investigations of an (M,g). Propo-
3 <■ avK

sitions 1 and 2 enlighten their geometrical contents.
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