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ON COMPOSITION OPERATORS

The theory of functional equations is inseparably intertwined with the 
notion of operators on appropriate functions spaces. We are going to 
discuss a class we shall call composition operators.

To fix our ideas, we shall work in the Banach algebra A(I) of conti­
nuous real-valued functions on the clased unit interval. The algebra A(I) 
arises from the space C(I) by endowing it with pointwise multiplication. 
Everything we prove will be in this framework. At the end we shall 
mention results by R. Liedl and 0. Schwaiger in a different setting.
We start with.

Definition. A substitution (right composition) operator is a 

mapping (1)

defined for every 'peA(I) where |i is a fixed continuous self-mapping 
of I. It is seen that B is linear and multiplicative, that is an endo­
morphism of A ( I ), in particular, a bounded linear operator on C(I).

The opposite is also true:

Proposition. Every non-trivial endomorphism of A(I) is a substituion
operator. (3)

This has been known for a long time; for a proof see e.g. [ja 70].

Definition. A superposition (left composition) operator is 
a mapping (4)

K<p : = k 0 <p (5)

of A(I ) into itself, where k is a continuous mapping of IR into I.
It is seen that K is in general neither linear nor multiplicative.

We note that the product of two substituions is not a substitution, 

while the product of two superpositions is a superposition.
We notice an obvious fact:

Proposition. Every substitution commutes with every superposition (6)

/

B<p :=  <p o p (2 )
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Definition. A composition operator on A(I) is a mapping of A(I) 
into itself of the form (7)

C<p := KB<p = B K y -  k{«p[jl(x)]} (8)

where K is a superposition and B is a substitution.

Thus substitutions and superpositions are special compositions. An 
example of (8) is ot-*■ t*-1° o<A, a "conjugation operator".

Substitution operators wer discovered by C. Bourlet (Bo 97, Bo 97,,). 
For results on substitutions see [ja 67], [ja Si]. The latter reference 
also lists literature up to the end of 1980.

Superposition operators are usually defined in a more general form, as 
Nemytskij operators by «p(x) — >■ f (x.'pix)). There exists a vast literature 
on these. Results up to 1987 are surveyed in [Ap 87]. A recent result is 

[Ma 87].
In this paper we shall investigate connections between substitutions 

and superpositions.
We already noted the commutation property (6).

Proposition. If a linear bounded operator on A(I) commutes with the 
superposition Q (where (Q'pHx) := y(x)Z 1 then it is a substitution 
operator.

Proof. (Cf. [ja 73]) Let u,v be arbitrary elements of A(I). Intro­
ducing <p:= I  (u + v), «p : = \  (u - v) we find u =  'P+'p, v='p-'l>. thus

2 2 uv = <p -  cp and

T (u v  ) = T(tf£  - t p 2 ) = TQ<f>- TQcp = 0 T < p -  QTcp = (T<p)2  -  (Tip)2 =

= (T«p + Ttp) ( T<p -  Ttp) = T(tp + tp)T(«p -  tp) = TuTv.

Thus T is an endomorphism and, by (3) a subsitution operator, QEO.

If we demand a stronger commutation property we can drop the condition 

of linearity:

Proposition. If a self-mapping ("nonlinear operator") of A(I) 
commutes with every superposition, then it is a substitution, thus 
linear, bounded and continuous. (10)

Proof. Let <f eA(I) be arbitrary. Introducing the superposition 
<j>cp:=tpocp we find ^ “ ^(x) where x now stands for the identity 
mapping on I. Denoting the mapping in question by T, we have, writign 

Tx = : t, T<P = T$x * $Tx = X  , QED.
If we demand the commuting property only on a dense subset of A(I), 

we need a stronger condition on the mapping.
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By "a dense set of superpositions" we shall mean a set of superposi­
tions K such that the functions K(id. ) = : k form a set dense in A(I).

Proposition. If a uniformly continuous (not necessarily linear) self­
mapping of A ( I ) commutes with a dense set of superpositions, then it 
is a substitution, and thus linear. (11)

Proof. Denote the mapping by T, let <p6A(I) be arbitrary and 6 > 0 .C
Then by assumption there exists a k 6A(I) such that | <p - k|| <■ ^ adn
|T(«p) - T ( k ) | ^  moreover T(k)(x) = k(Tx) =: kiîifx)) thus = k » t . 

Then

||t (<P) -<pot||<|T(«p) - T(k)|| + IT ( k ) - kotfl ♦ ||k°t =

- ||T(v) - T ( k ) || + II (k - < p) ot || <£ (12)

since for every 6 c (1 )»||'l,0'li||tS||t|>||*The in (11) does not depend on
T QED.
We note that in the proofs for (10) and (11) we used the fact that 

id(x) 6 A( I). In function algebras which do not contain the identity 
mapping, the situation is more difficult.

The reverse of (10) is also truei

Proposition. If a 3elf-mapping of A(I) commutes with all substitu­
tions, then it is a superposition. (13)

Proof. Let S be the self-mapping of A(I), and $6A(I). We can intro­
duce the substitution operator $  by $<)> = ®*p where ranges over A(I).
Then we can represent f  in the form <p(,0  Since S commutes with $
we have, by putting Sx » : 6>(x)

(Stf)(x) « S$x = $ S x  = ($6)(x) ■ (6°f>)(x)
(13)

V

which was to be proven.
Let us conclude by pointing out some unsolved problems. We wanted to 

characterize the basic composition operators, substitutions and superpo­
sitions by their commutation proporties. We did so in the following pro­
positions, stated informally:

2
in (9): “linearity and commuting with x implies substitution"

in (10): "commuting with all superpositions implies substitution"

in (13): "commuting with all substitutions implies superposition"

There are obviously two things here to be improved. Linearity in (9) 
is alien to the spirit of our approach: everything should be formulated 
in terms of commutation only. On the other hand, “commuting with all..."



232 G. Targoński

is much too strong. Here (11) already points to an improvement. Since the 
Weierstrass approximation theorem can be formulated in terms of polyno­
mials with rational coefficients, we have from (11): "commuting with a 
certain countably infinite set of superpositions implies substitution".

We are now able to formulate our

Question v (15)

(a) is it possible to show that a bounded operator on A(I) is a substi- 
tion (and thus linear), if it commutes with certain, finitely many, 
superpositions?

(b) is it possible to show that a bounded operator on A(I) is a super­
position, if it commutes with certain, finitely many substitutions?

Two questions probably leading farther afield are the following:

Question. Is it possible to show linearity of a uniformly continuous 
selfmapping of A(I) from the condition that it commutes with certain, 
finitely many composition operators (cf. (7))? (16)

Question. In what way can the condition of additivity (one of the 
constituent parts of linearity) be replaced by the condition of 
multiplicativity? (17)

As a comment on Question (17) let us analyze Proposition (9). It says 
the following:

If a self-mapping T of A(I) is additive (T(«p^ + <p2 ) = Ttp̂  + T<p2 ) 
and commutes with the superposition A ( A tp:=^'p) and Q(Q(tp) =■ <p2 ) then 
A is a substitution. Here we singled out one constituent of linearity, 
namely additivity, while the other constituent, homogeneity, was written 
as commutation with the superposition A .

We can prove a result in a sens "dual" to (9), thereby contributing 
towards an answer to Question (17)

Proposition. If a uniformly continuous self-mapping T on A(I) is 
multiplicative: ( T ( ^ ^  ) = T ^ T ^  ) and commutes with the superpositions 
A(A'p:=A.'f>) and E ((E«p)(x) = 'f(x) + 1) then it is a substituion, thus 
linear.

Proof. We have the conditions

(a) T t y ^ )  = T ^ m ^ )  (19)

( b )  T(X<p) *  A,T(vj)
fceR

(c) T[<p(x) + l] = (T«p)(x) + 1

We first show by induction that T is a substitution when acting on 
a polynomial. Denoting by 1 the constant function with value 1, we have
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by (19) (a) T(l) = T(l2 ) = (Ti )2 thus either T(l) = 0 or T(i) = 1; 
the former is not possible, since then by (19) (a) T(<p) = T(l , <p) =
= T(l)T(<p) = 0 and T were the trivial zero operator; but then (19) (c)
would result in 0 = 1 .  Thus

T(l) = 1 (20)

In the sequel let us again define Tx = t(x).
Let now Pp be a polynomial of degree n; every such polynomial is of 

the form

Pn (x) = xk [a+x"lpn,_m_k^x 0  where a + 0.

From here

T[Pn (x)] = t(x)kT[a ♦ x V „ _ k (x)] * ^(x)kaT[l ♦ i~ pn-m-k(x)l =

= t(x)ka[l ♦ i  T(xmPn.m_k (x)] = t( x ) k [att(x)"T[Pn.,.k (x'|

Applying the same procedure to the polynomial pn_m_|, (unless it i3 
a constant) we find in finitely many steps (TP)(x) = p[l((xf| thus

TP = P ° t (21 ■

for every polynomial in A(I). Now the proof is analogous to the proof 

of (ll).
Since the set of all polynomials is dense in A(I), we have for every 
6 A(I) and every f i > 0  a polynomial P such the|j'p-P||<  j  and

l|T(«p) - T(P)|| <  §.

Then

||t («P) - «pot II |t (<p) - T (P ) || + IIT (P ) - pot II + II P»t - II (22)

Since the middle term is zero, we have ||T(«p) - *potH^E for Proposition 

(18) is proven.
The idea of characterizing substitutions by means of commutation pro­

perties originated with P.. Liedl and 3. Schwaiger, who have unpublished 
results on this in the context of C°° - mappings of n-dimensional mani­

folds ([lS 87]).

/
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