Seria: MATEMATYKA-FIZYKA z. 64
Nr kol. 1070

DEDICATEU TO PROFESSOR MIECZYSとAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY

Pawel G. WALCZAK

ON THE MAP BETWEEN THE SETS OF POINTS AT INFINITY IN THE CASE OF 1-DIMENSIONAL FOLIATION OF THE TOURS

1. In $[W]$ we proved the non-existence of totally geodesic (moreover, close to totally geodesic) foliations of compact Riemannian manifolds of negative sectional curvature. The similar problem for a complete manifold M of bounded curvature and finite volume is still open. It seeme that the solution of this problem could be obtained by the following consideration: Lift a foliation F of M to the universal covering X of M. If F is totally geodesic (or, if F is reasonably close to totally geodesic) then the lifted foliation \tilde{F} consists of leaves wich are Hadamard manifolds, so one can try to define in a natural way a map

$$
\begin{equation*}
L(\infty) \longrightarrow x(\infty) \tag{1}
\end{equation*}
$$

for all the leaves L of \tilde{F}. The configuration of the sets $L(\infty)$ in $X(\infty)$ is invariant under the group $\Gamma=\pi_{1}(M)$ acting on $x(\infty)$. This action is ergodic. 80 one could expect that invariant configurations like that do not exist. Therefore, a question we should start with is whether the map
(1) could be defined. Ubviously, it is so when the leaves are totally geodesic. In this note, we consider a very simple case when $M=T^{2}$ is a flat tours and dimF $=1$.
2. Recall (see [BGS]) that if x is an Hadamard manifold, then two geodesics $\gamma_{1}, \gamma_{2}: R \longrightarrow x$ are asymptotic when the distance of $\gamma_{1}(t)$ and $\gamma_{2}(t)$ remains bounded when $t \longrightarrow+\infty \quad x(\infty)$ is defined es the set of all classes of asymptotic geodesics. When equipped with so called cone topology $x(\infty)$ is homeomorphic to $s^{n-1}, n=$ diax. Therefore, if L is a Hadamard submanifold of X, then the map (1) could be defined when for any L-geodesic $c: R \longrightarrow L$ the X-geodesics $\gamma_{t}(t>0)$ satisfying

$$
\gamma_{t}(0)=c(0) \text { and } \gamma_{t}(s)=c(t) \text {. }
$$

where $s=d_{X}(c(0), c(t))$. converge to a geodesic γ on x.
In fact, if \tilde{c} is a L-geodesic asymptotic to c, then the L-distance $d_{L}(c(t), \tilde{c}(t))$ remains bounded when $t \longrightarrow+\infty$. so the X-distance of $c(t)$ and $\tilde{c}(t)$ remains bounded as well since $d_{X} \leqslant d_{L}$ on $L X L$.

Absume that $\tilde{\gamma}_{t}$ is family of X-gaodeaics satisfying

$$
\tilde{f}_{t}(0)=\tilde{c}(0) \text { and } \tilde{\tilde{\gamma}}_{t}(s)=\tilde{c}(t)
$$

with $=d_{x}(\tilde{c}(0), \tilde{c}(t))$. Let $\tilde{\gamma}$ be the limit of $\tilde{\tilde{f}_{t}}$ when $t \longrightarrow+\infty$. The x-geodesics γ and \tilde{y} are asymptotic: For any $u>0$ and t big enough we have

$$
\begin{align*}
& d_{x}\left(\gamma^{\prime}(u), \tilde{\left.\gamma^{\prime}(u)\right)} \leqslant 1+d_{x}\left(\gamma_{t}(u), \tilde{\gamma}_{t}(u)\right) \leqslant\right. \\
& 1+\operatorname{Max}\left\{d_{x}(c(0), c(0)), d_{x}(c(t), c(t))\right\} \tag{2}
\end{align*}
$$

since the distance function on x is convex. The right hand side of (2)
is bounded.
So, in this case the map (1) can be defined by

$$
\begin{equation*}
L(\infty) 3[c] \longrightarrow \gamma \in X(\infty) \tag{3}
\end{equation*}
$$

where c and γ have the same meaning as above and [c] (reap.. [$\gamma \boldsymbol{\gamma}]$) denotes the aeymptoty clase of c (resp.. of γ).
3. Let F be a 1-dimensional C^{2}-foliation of the flat torus T^{2}. Following Kneser classification ([K]. compare [G]) we have two cases:
(1) T^{2} eplits into the countable union of annuli A_{1} bounded by closed leaves L_{i} and L_{i} and filled in either by closed leaves or by lines having L_{i} and L_{i} as limit sets (Figure 1). The number of Reeb componente (Figure 1c) is finite.
(11) All the leaves of F are dense.

Denote by \tilde{F} the lift of F to the universal covering $X=R^{2}$ of T^{2}.
LEMMA. If L is the lift of a closed leaf of F, then the map (3) is well defined.

PROOF. Let $c: R \rightarrow X$ be an arc-length parametrization of L. Then c satisfies

$$
\begin{equation*}
c\left(t+t_{0}\right)=c(t)+k \quad(t \in R) \tag{4}
\end{equation*}
$$

for some $t_{0}>0$ and $k \in z^{2}$. According to the provious arguments it is sufficient to show that the limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{c(t)}{\|c(t)\|} \tag{5}
\end{equation*}
$$

exists. Since (4) it is enough to show that the sequence

$$
c\left(n t_{0}\right) /\left\|c\left(n t_{0}\right)\right\|
$$

converges when $n \longrightarrow+\infty$. This is en elementary exercise to prove that the limit equal e to $k /\|k\|$.
a)

b)
c)

Figure 1

From our Leman it follows that in the case (i) the map (3) is well defined for any leaf L of \tilde{F}. In fact. the limit (5) is the same for all closed leaves of F because it depends only on the homotopy class of Roc, $\pi: x \longrightarrow T^{2}$ being the canonical projection. Therefore, if L_{1} and L_{2} are lifts of closed leaves of F bounding an annulus A_{1} and L is the lift of leaf of $F \mid A_{1}$. then L stays in the region bounded by L_{1} and L_{2}, and since $\pi(L)$ approximates $\pi\left(L_{i}\right)$ in infinity, the straight lines passing through the origin and point p of L converge to P_{1}, s when $p \longrightarrow \pm \infty$. Here, P_{1} and P_{2} are straight lines approximated in infinity by L_{1} and L_{2}, respectively.

Moreover, this shows that in the case (i) there are two points z_{1} and z_{2} of $x(\infty)$ such that the image of $L(\infty)$ under the map (3) is contained in $z=\left\{z_{1}, z_{2}\right\}$ for any leaf L. The image consists of single point when L lies in a Reeb component and of two points otherwise (Figure 2).

Figure 2

REMARK. Clearly, the configuration of Figure 2 cannot be invariant under ergodic actions on S^{1}, so the foliation \tilde{F} cannot be projected onto a closed surface of genus $g>1$. However, this observation is void: There are no follations of such surfaces.

In the case $(i i)$, assume that $\gamma: R \longrightarrow x,\left\|\gamma^{\prime}\right\|=1$, is a lift of a leaf of F and that the straight lines P_{t} through the origin and $\gamma(t)$ do not converge when $\tau \longrightarrow \infty$. Then there are r wo sequences $\left(t_{n}\right)$ and $\left(s_{n}\right)$ and two unit vectors v and w such that $t_{n} \longrightarrow \infty, s_{n}-\infty$,

$$
\frac{\gamma_{n}(t)}{\| \gamma_{n}\left(t \eta_{i}\right.} \rightarrow v \text { and } \frac{\gamma_{n}(s)}{\| \gamma_{n}^{2}(s)} \longrightarrow w
$$

when $n \rightarrow \infty$. Consequently, there exists a straight line P passing through the origin and intersecting the curve γ infinitely many times: there exists a sequence $\left(u_{n}\right)$ such that $u_{n} \rightarrow \infty$ and $\gamma\left(u_{n}\right) \in P$ for any n. Without loosing generality we may assume that P is given by $x_{2}=0$, where $\left(x_{1}, x_{2}\right)$ are Euclidean coordinates on x. The continuity argument shows easily that there are real numbers s and t for which $\gamma(s)$ and $\gamma(t)$ lie on a straight line parallel to P and $\|\gamma(s)-\gamma(t)\|=1$ (Figure 3). It follows that $\pi(\gamma(s))=\pi(\gamma(t))$ contradicting the assumption on F.

Therefore, we have the following.
PROPOSITION. If \tilde{F} is the lift to $X=R^{2}$ of a foliation F of T^{2}, then the map (3) is well defined for any leaf L of \tilde{F}.

Figure 3

REFERENCES

[BGS] W. Ballmann, M. Gromov, V. Schroeder: Manifolds of Non-positive Curvature, Birkhauser 1985.
[G] C. Godbillon: Dynamical Systems on Surfaces, Springer Verlag 1983.
[K] H. Kneser: Regulare Kurvenscharen aut den Ringflaechen, Math。Ann., 91 (1923). 125-154.
[w] P.G. Walczak: Dynamics of the geodesic flow of a folistion, Ergodic Th. \& Dyn. Sys.. 8 (1988). 637-650.

