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ON THE MAP BETWEEN THE SETS OF POINTS AT INFINITY 

IN THE CASE OF 1-DIMENSIONAL FOLIATION OF THE TOURS

1. In [w] we proved the non-existence of totally geodesic (moreover, 

close to totally geodesic) foliations of compact Riemannian manifolds of 

negative sectional curvature. The similar problem for a complete manifold 

M of bounded curvature and finite volume is still open. It seems that 

the solution of this problem could be obtained by the following conside

ration: Lift a foliation F of M to the universal covering X of M. 

If F is totally geodesic (or, if F is reasonably close to totally 

geodesic) then the lifted foliation F consists of leaves which are 

Hadamard manifolds, so one can try to define in a natural way a map

for all the leaves L of F. The configuration of the sets L(°°) in x(«>) 

is invariant under the group T  » T ^ C m ) acting on x(«>). This action is 

ergodic, so one could expect that invariant configurations like that do 

not exist. Therefore, a question we should start with is whether the map

(l) could be defined. Obviously, it is so when the leaves are totally
2

geodesic. In this note, we consider a very simple case when M = T is 

a flat tours and dlmF » 1.

2. Recall (see [b g s ] ) that if X is an Hadamard manifold, then two 

geodesics x are asymptotic when the distance of tf^t) and
■¡î (t ) remains bounded when t — >- too. x(°°) is defined as the set of 

all classes of asymptotic geodesics. When equipped with so called cone 

topology x(°°) is homeomorphic to S0 - 1 , n « dimX. Therefore, if L 

is a Hadamard submanifold of X, then the map (l) could be defined when 

for any L-geodesic c:R ■ * L the X-geodeslcs t > 0 )  satisfying

•¡ft (o) » c(o) and ^ ( o )  * e(t),

where s » dx (c(0),c(t )), converge to a geodesic f  on X.
In fact, if c is a L-geodesic asymptotic to c, then the L-distance

d^(c(t) ,c(t ) ) remains bounded when t  *■ too, so the X-distance of

c(t) and c(t) remains bounded as well since d^ ^  d L on L * l .

l ( o o ) — x(«0 (l)
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Assume that ^  is a faaily of X-gaodaalca satisfying

ft (o) - c(0) and - c(t)

with a » dx (c(0) ,c(t)). Let f  be the liait of ft when t — »-+00.
The X-geodeaics f  and f  are asymptotic: For any u > 0  and t big 
enough we have

dx (t'(u).f(u)) ^  1 + dx (tt (u).ft(u))<

1 ♦ Max{dx (c(0) ,c(0)), dx (c(t) ,c(t))} (2 )

since the distance function on X is convex. The right hand side of (2) 

ie bounded.
So, in this case the aap (l) can be defined by

L(°o) 3 [c]  *- f  GX(oo) (3)

where c and f  have the saae meaning as above and jV] (reap., [ y ] ) de

notes the asyaptoty class of c (resp. , off).

2 23. Let F be a 1-diaenaional C -foliation of the flat torus T .

Following Kneser classification (JV|, coapare [g ] ) we have two cases:

(i) T2 splits into the countable union of annuli bounded by
closed leaves L 1 and L^/ and filled in either by closed leaves
or by lines having L^ and L^i as H a l t  sets (Figure l). The

nuaber of Reeb components (Figure lc) is finite.

(li) All the leaves of F are dense.
a / 2 2

Denote by F the lift of F to the universal covering X » R of T .

LEMMA. If L ie the lift of a closed leaf of F, then the aap (.3) is

well defined.

PROOF. Let c:R  X be an arc-length parametrization of L. Then

c satisfies

c(t + tQ ) » c(t).+ k (t 6 R) (4)

for some tQ >  0 and k e Z2. According to the previous arguments it is

sufficient to show that the limit

llm
t-»<* c( t )

fcTTm
(5 )
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exists. Since (4 ) It Is enough to show that the sequence

c (n t0 ) / | |c (n t0 )||

converges when n ----» - + 0 0 . This Is an eleaentery exercise to prove that
the H a l t  equals to k/||k||.

<s> b)  c )

Figure 1

From our Lemaa It follows that In the case (l) the aap (3) Is well 
defined for any leaf L of F. In fact, the llait (s )  la the saae for
all closed leaves of F because it depends only on the hoaotopy class of

o
Tt°c, Tt:X --->■ T being the canonical projection. Therefore, If and
t_2 ere lifts of closed leaves of F bounding an annulus A^ and L is 
the lift of a leaf of F|a1( then L stays in the region bounded by 
and Lg, and since it(L) approxiaetes TCCL.^) in infinity, the straight 
lines passing through the origin and a point p of L converge to s
when p  *- - 1>°. Here, Pj and ?2 are straight lines approxinated in
infinity by Lj and L2> respectively.

Moreover, this shows that in the case (i) there are two points and 
z2 of x(°°) such that the iaage of L(°°) under the aap (3) is contained 
in Z « {zj.Zg} for any leaf L. The iaage consists of a single point 
when L lies in a Reeb coaponant and of two points otherwise (Figure 2).

Figure 2
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REMARK. Clearly, the configuration of Figure 2 cannot be invariant

under ergodic actions on S , so the foliation F cannot be projected

onto a closed surface of genus g >  1. However, this observation is void:

There are no foliations of such surfaces.

In the case (ii), assume that jT.-R  *■ X , || f' ¡| = 1, is a lift of a

leaf of F and that the straight lines R through the origin and "¡fit)

do not converge when t — *■ °° . Then there are two sequences ( tn ) and

(s ) and two unit vectors v and w such that t----- *■ oo , s ■■■•*■ oo ,n n n

f n (t) . ^ n (9) .

üï n m ü V l!fnU ; l!

when n — ►  oo . Consequently, there exists a straight line P passing

through the origin and intersecting the curve f  infinitely many times:

there exists a sequence (u ) such that u — ►  oo and '¡('(u ) £ P for^ n n u n
any n. Without loosing generality we may assume that P is given by 

x„ » 0, where (x^.Xg) are Euclidean coordinates on X. The continuity 

argument shows easily that there are real numbers s and t for which

•f(s) and ■¡f'(t) lie on a straight line parallel to P and j|•jf'Cs )— 7ftt )|| = 1 

(Figure 3). It follows that il(tf"(s)) = TCf'jf'C t ) ) contradicting the assump

tion on F.

Therefore, we have the following.

PROPOSITION. If F is the lift to X = R 2 of a foliation F of T2 ,
. . A/

then the map (3) is well defined for any leaf L of F.

Figure 3

)
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