# DEDICATED TO PROFESSOR MIECZYSŁAW KUCHARZEWSKI WITH BEST WISHES ON HIS 7OTH BIRTHDAY 

## Włodzinierz WALISZEWSKI

ON EXTERIOR DIFFERENTIAL IN PREMANIFOLDS OF FINITE DIMENSION
O. Introduction

In [1] there is introduced the concept of the exterior differential of differential forms and the canonical correspondence between differential
 (see [3] and [4]) is exsmined. The present paper contains the proof of the Stokes' formula for chains in a presanifold of finite dimension and the de Rham mapping for de Rham cohonology.

## 1. Preliminaries

Let $M$ be a real or complex premanifold. For any vector field $X$ tangent to $M$, 1.e. a function $X$ with the domain $D_{X} \in$ topM and such that $x(p) \in I_{p}(M)$ for $p \in D_{x}$. For $\alpha \in M$ we have the function $\partial_{x} \propto$ defined on $D_{\alpha} \cap D_{x}$ by the formula $\left(\partial_{x} \alpha\right)(p)=x(p)(\alpha)$ for $p \in D_{\alpha} \cap D_{X}$. By definition also we have $D_{\partial_{X}}=D_{\alpha} \cap D_{x}$. The get of all vector fields $x$ tangent to $M$ such that for every $\mathcal{A} \in M$ we have $\partial_{X}$ of $\in i l l$ be denoted by $V_{10 c}(M)$. The set $V_{l o c}(M)$ together with the addition and the multiplicetion by functions of $M$ defined by the formulae: $(X+Y)(p)=$ $=X(p)+Y(p)$ for $p \in D_{X} \cap D_{Y}$ and $(\alpha \cdot X)=\alpha(p) X(p)$ for $p \in D_{X} \cap D_{\alpha}$. $X$. $Y \in V_{l o c}(M), \alpha \in M$ is a semigroup with local zeros (see [5]). A system $\left(e_{1} \ldots . . \theta_{m}\right)$ where $e_{1} \ldots . . e_{m}$ belong to $V_{l o c}(M), D_{e_{1}} \ldots D_{e_{m}}$ and ( $\left.\theta_{1}(p) \ldots, \theta_{m}(p)\right) 1$ a base for $T_{p} M$ is said to be a local vector base in M. A premanifold for which any point of $M$ has a neighbourhood with local vector base in $M$ is said to be of a finite dimension.
$A$ function $\omega$ such that $D_{\omega} \in t o p M$ and $\omega(p)$ is an element of $\Lambda^{k}\left(T_{p} M\right)^{*}$ for $p \in D_{\omega}$ is said to be a differential $k$-formin $M$. $A$ k-form $\omega$ is said to be smooth in $M \quad 1 f f$ for any $X_{1} \ldots \ldots, X_{k} \in V_{l o c}(M)$ the function $\bar{\omega}$


$$
\bar{\omega}\left(x_{1} \ldots . . x_{k}\right)(p)=\left\langle x_{1}(p) \wedge \ldots \wedge x_{k}(p) \mid \omega(p)\right\rangle \text { for } p \in D \bar{\omega}_{\left(x_{1} \ldots \ldots x_{k}\right)}(1.0)
$$

belongs to $M$. The set of all smooth $k$-forme we denote by $A^{k}(M)$. We adopt also $A^{0}(M)=M$.

The set of all $\eta:\left(V_{100}(M)\right)^{k} \longrightarrow M$ such that for any $X_{1}, \ldots, X_{k}$, $X \in V_{10 c}(M)$ and $\in \in M$ we have

$$
\begin{align*}
& \eta\left(x_{1}+o x, x_{2} \ldots \ldots x_{k}\right)=\eta\left(x_{1}, \ldots, x_{k}\right)+\omega \eta\left(x, x_{2} \ldots \ldots, x_{k}\right)  \tag{1.1}\\
& \eta\left(x_{i_{1}} \ldots \ldots, x_{1_{k}}\right)=\operatorname{gni} \eta\left(x_{1} \ldots, x_{k}\right)  \tag{1.2}\\
& \text { for any permutation } 1=\left(1_{1} \ldots \ldots, i_{k}\right) .
\end{align*}
$$

w111 be denoted by $\bar{A}^{-k}(M)$. We adopt also $\bar{A}^{-0}(M)=M$. In $[1]$ we find the proof that if $M$ ie $m$-dimensional. then we have anemone correspondence $\omega \longmapsto \bar{\omega}$ between $A^{k}(M)$ and $\bar{A}^{k}(M)$ and the called natural domain of $\bar{\omega}$ defined by $(1,0)$ ie equal to the domain $D_{\omega}$ of $\omega$. This fact allowed to define the concept of the exterior differential d $\omega$ of $\omega \in A^{k}(M)$ in the following way:

$$
\begin{align*}
& \bar{d}\left(x_{0}, \ldots, x_{k}\right)=\sum_{1=0}^{k}(-1)^{1} \partial_{x_{1}} \bar{\omega}\left(x_{0}, \ldots, x_{1-1}, x_{i+1}, \ldots, x_{k}\right) \\
& +\sum_{i<j}(-1)^{1+j} \bar{\omega}\left(\left[x_{1}, x_{j}\right], x_{0} \ldots \ldots, x_{1-1}, x_{1+1} \ldots \ldots x_{j-1}, x_{j+1} \ldots, x_{k}\right) \tag{1,3}
\end{align*}
$$

for $x_{0} \ldots \ldots x_{k} \in V_{l o c}(M)$.
1.1. Proposition. In premanifold $M$ of finite dimension we have
(1) $\langle v \mid \operatorname{dod} p\rangle=v(\infty)$ when $v$ is in $T_{p} M, p \in D_{\alpha}, \alpha \in M$,
(11) $d(\eta+\omega)=d \eta+d \omega$ for $\eta, \omega \in A^{k}(M)$.
(11i) $d(\eta \wedge \omega)=d \eta \wedge \omega+(-1)^{k} \eta \wedge d \omega$ for $\eta \in A^{k}(M), \omega \in A^{1}(M)$.
(iv) dod $=0$.

For the proof see $[2]$ and $[5]$.
The local property of the operation $d$ plays en essential part in the work with the exterior differential.
1.2. Lena. If $\omega \in A^{k}(M)$. $D_{\omega} \supset U \in \operatorname{top} M, \omega \mid U=0$, then $(d \omega) \mid U=0$.

Proof. For any $x_{1} \ldots \ldots x_{k} \in v_{10 c}(M)$ we have $\bar{\omega}\left(x_{1} \ldots \ldots x_{k}\right)(p)=$
$=\left\langle x_{1}(p) \wedge \ldots \wedge x_{k}(p) \mid \omega(p)\right\rangle=\left\langle x_{1}(p) \wedge \ldots \wedge x_{k}(p) \mid(\omega \mid u)(p)\right\rangle$

- $\overline{\omega \mid U}\left(x_{1} \ldots ., x_{k}\right)(p)$ for $p \in U \cap D_{x_{1}} \cap \ldots \cap D_{x_{k}}$. We have than

$$
\begin{equation*}
\overline{\omega \mid} \bar{u}\left(x_{1}, \ldots, x_{k}\right)=\omega\left(x_{1}, \ldots, x_{k}\right) \mid u \tag{1.4}
\end{equation*}
$$

Applying $(1,3)$ and $(1.4)$ we get $\overline{(d \omega) \mid U}\left(x_{0} \ldots \ldots, x_{k}\right)=\overline{d(\omega \mid u)}\left(x_{0} \ldots \ldots x_{k}\right)=0$. Q.E.D.

As consequence of 1.2 we get
1.3. Lemme. If $\omega \in A^{k}(M)$ and $D_{\omega} \supset U \in \operatorname{top} M$, ( $\left.d \omega\right) \mid U=d(\omega \mid U)$.
2. Pull beck of differential forme. Let $f: M \rightarrow N$ where $M$ and $N$ are prenanifolds of finite dimensions. We have the tangent linear mapping $f_{* p}: T_{p} M \longrightarrow T_{f i p ;}{ }^{N}$ defined by the formula $f_{* p} v(p)=v(\beta \circ f)$ for $\beta \in N(f(p)), v$ in $T_{p} M$, where $N(q)=\left\{\beta ; \beta \in N \& \& \in D_{\beta}\right\}$ for $q \in \mathbb{N}$. For any $\omega \in A^{k}(M)$ we define the $f$-pull-back $f^{*} \omega$ of $\omega$ by the formula

$$
\begin{equation*}
\left\langle v_{1} \wedge \ldots \wedge v_{k}\right|\left(f^{*} \omega\right)(p)=\left\langle f_{* p} v_{1} \wedge \ldots \wedge f_{* p} v_{k} \mid \omega(f(p))\right\rangle \tag{2,0}
\end{equation*}
$$

for $v_{1}, \ldots, v_{k}$ of $T_{P} M, p \in f^{-1} D_{\omega}$. From this definition it follows immediately that for any $\eta \in A^{k}(M), \omega \in A^{l}(M)$ and $V \in$ topN

$$
\begin{align*}
& f^{*}(\eta \wedge \omega)=f^{*} \eta \wedge f^{*} \omega  \tag{2.1}\\
& f^{*}(\omega \mid \vee)=\left(f^{*} \omega\right) \mid f^{-1} v \tag{2,2}
\end{align*}
$$

Thus we have
$\overline{f^{\#} \omega}\left(x_{1} \ldots, x_{k}\right)(p)=\left\langle f_{* p} x_{1}(p) \wedge \ldots \wedge_{* p} x_{k}(p)\right| \omega\left(f(p) \gg\right.$ for $p \in D_{x_{1}} \cap \ldots$ $\ldots \cap D_{X_{k}} \cap f^{-1} D_{\omega}$ It is easy to see that for $g: N \rightarrow P$ where $P$ is of finite dimension we have

$$
(g \circ f)^{*} 0=f^{*} g^{*} \theta \quad \text { for } \quad \Theta \in A^{k}(p)
$$

We adopt also $f^{*} \omega=\omega$ of for $\omega \in A^{0}(M)$. We will prove the following fact of importance.
2.1. Lemme For $f: M \longrightarrow N$, where $M$ and $N$ are of finite dimension and for any $\omega \in A^{k}(N)$ we have
$d f^{*} \omega=f^{*} d \omega_{0}$
Proof. Let $p \in f^{-1} D_{\omega}$. Then $f(p) \in D_{\omega}$ and there exists local voctor base $\left(\theta_{1} \ldots \ldots, \theta_{n}\right)$ in $N$, where $\theta_{1} \ldots . . \theta_{n}$ are defined in a neighbourhood $V$ of the point $f(p)$. For any $\beta \in N(f(p))$ we set

$$
l(\beta)=\left\langle e_{1}(f(p))(\beta) \ldots, \theta_{n}(f(p))(\beta)\right) .
$$

We have then the function 1 defined on the set $N(f(p))$ such that the image $1 N(f(p))$ of this set is contained in $R^{n}$ for real promanifolde
or in $C^{n}$ for complex ones. It is easy to see that $\operatorname{lN}(f(p))$ is a linear subspace of $\boldsymbol{R}^{n}$ or $C^{n}$, respectively. If would be $\operatorname{lN}(f(p)) \notin \mathbf{R}^{n}\left(\ln \left(f^{\prime} p\right)\right) \neq$ $\neq C^{n}$, resp.). then the set $I N(f(p))$ should be a subspace of a lower dimention than $n$. Then should exist numbers $c_{1}, \ldots, c_{n}$ not vanishing simultanously such that $c_{1} e_{1}(f(p))(\beta)+\ldots+c_{n} e_{n}(f(p))(\beta)=0$ for $\beta \in N(f(p))$. Hence it follows that $e_{1}(f(p)) \ldots e_{n}(f(p))$ would be lineearly dependent. Therefore there exist $\beta^{2} \ldots \beta^{n} \in N(f(p))$ for which $I\left(\beta^{j}\right)=\left(\beta_{1}^{j} \ldots, \beta_{n}^{j}\right), j=1 \ldots . .$. . Hence it follows that there is a neighbourhood of $f(p)$ such that for any $q$ in this neighbourhood we have non-singular matrix

$$
\begin{equation*}
\left[e_{i}(q)\left(\beta^{j}\right): i, j \leqslant n\right] . \tag{2,3}
\end{equation*}
$$

We way assume that $V$ is such a neighbourhood. Taking the matrix $\left[\gamma_{h}^{1}(q): h, i \leqslant n\right]$ being inverse to (2.3) for $q \in V$ we have $\gamma_{h}^{1}(q) e_{i}(q)\left(\beta^{j}\right)=$ $=\delta_{h}^{j}, h, j=1, \ldots, n$. We may assume that functions $\gamma_{h}^{v_{h}^{i}}$ have the set $V$ as their domains. Thus,

$$
\gamma_{h}^{i} \partial_{e_{i}} \beta^{j}=\delta_{h}^{j}
$$

We have $\partial_{e_{i}} \beta^{j} \in N, h, j=1, \ldots, n$. Therefore $\gamma_{h}^{i} \in N$. Setting

$$
g_{h}(q)=r_{h}^{i}(q) e_{1}(q) \text { for } q \in V, h=1 \ldots n
$$

we get a vector base $\left(g_{1} \ldots . . g_{n}\right)$ in $M$ such that

$$
\partial_{g_{h} \beta^{j}}=\delta_{h}^{1}, h, j=1 \ldots, n .
$$

Let us set for $q \in V$

$$
\begin{equation*}
\omega_{0}(q)=\sum_{i_{1}<\ldots<i_{k}}<g_{i_{1}}(q) \wedge \ldots \wedge g_{i_{k}}(q) \mid \omega(q) d \beta^{i_{1}}(q) \wedge \ldots \wedge d \beta^{i_{k}}(q) \tag{2.4}
\end{equation*}
$$

We have $\left\langle g_{i}(q) \mid d \beta^{j}(q)\right\rangle=g_{i}(q)\left(\beta^{j}\right)=\left(\partial_{g_{i}} \beta^{j}\right)(q)=\delta_{i}^{j}$ for $q \in V$. For any $q \in V$ we have then the base $\left(d \beta^{\prime}(q) \ldots, d \beta^{n}(q)\right)$ for $\left(T_{q} N\right)^{*}$. By (2.4), for $q \in V$ and $h_{1}<\ldots<h_{k}$ we have

$$
\left\langle g_{h_{1}}(q) \wedge \ldots \wedge g_{h_{k}}(q) \mid \omega_{o}(q)\right\rangle
$$

$=\sum_{i_{1}<\ldots<i_{k}}<g_{i_{1}}(q) \wedge \ldots \wedge g_{i_{k}}(q)|\mu(q)\rangle\left\langle g_{h_{1}}(q) \wedge_{\ldots} . . \wedge q_{n_{k}}(q) \mid d \beta^{i}(q) \wedge \ldots \wedge d \beta^{i}(q)\right\rangle=$

$$
\begin{aligned}
& =\sum_{i_{1}<\ldots<i_{k}}\left\langle g_{i_{1}}(q) \wedge \ldots \wedge_{g_{k}}(q) \mid \omega(q)\right\rangle \operatorname{det}\left[\left\langle g_{h_{r}}(q) \mid \beta^{i} g(q)\right\rangle ; r, s \leqslant k\right]= \\
& =\sum_{i_{1}}<g_{i_{1}}(q) \wedge \ldots \wedge g_{i_{k}}(q) \mid \omega\left(q \mid>\operatorname{det}\left[\delta_{h_{r}}^{i} ; r, s \leqslant k\right]=\right. \\
& =\left\langle g_{h_{1}}(q) \wedge \ldots \wedge g_{h_{k}}(q) \mid \omega(q)\right\rangle \text {. Hence it follows that } \omega_{0}(q)=\omega(q)
\end{aligned}
$$

for $q \in V$. Setting for $q \in V$

$$
\omega_{i_{1} \ldots i_{k}}(q)=\left\langle g_{1_{1}}(q) \wedge \ldots \wedge g_{i_{k}}(q) \mid \omega(q)\right\rangle
$$

we may rewrite (2.4) as

$$
\omega(q)=\sum_{i_{1}<\ldots<i_{k}} \omega_{i_{1} \ldots i_{k}}(q) d \beta^{i}(q) \wedge \ldots \wedge d \beta^{i} k(q) \quad \text { for } q \in V .
$$

or equivalently in the form

$$
\begin{equation*}
\omega \mid v=\sum_{i_{1}<\ldots<i_{k}} \omega_{1_{1}} \ldots i_{k} d \beta^{i_{1}} \ldots \ldots \wedge d \beta^{i_{k}} . \tag{2.5}
\end{equation*}
$$

From (2.5) by (2.1) it follows that

$$
f^{*}(\omega \mid v)=\sum_{i_{1}<\ldots<i_{k}} f^{*} \omega_{i_{1}} \ldots i_{k} f^{*} d \beta^{i} i_{\wedge} \ldots \wedge f^{*} d \beta^{i_{k}}
$$

For any $\beta \in N$ and $q \in f^{-1} D_{\beta}$, by $(2,0)$ and ( 1 ) we have $\left\langle v \mid\left(f^{*} d \beta\right)(q)\right\rangle=$ $=\left\langle f_{* q} v \mid(d \beta)(f(q))\right\rangle=d \beta(f(q))\left(f_{* q} v\right)=f_{* q} v(\beta)=v\left(f^{*} \beta\right)=\left(d f^{*} \beta\right)(q)(v)=$ $=\left\langle v \mid\left(\alpha f^{*} \beta\right)(q)\right\rangle$ for $v$ in $T_{q} M^{*}$. Thus

$$
\begin{equation*}
f^{*} d \beta=d f^{*} \beta \quad \text { for } \quad \beta \in M . \tag{2.6}
\end{equation*}
$$

This yields

$$
f^{*}(\omega \mid v)=\sum_{i_{1}<\ldots<i_{k}} f^{*} \omega_{i_{1}} \ldots i_{k} d f^{*} \beta^{i^{1} \wedge \ldots \wedge d f^{*} \beta^{i} k .}
$$

According to (ii) -(iv). (2.6) and (2.1) we get
$d f^{*}(\omega \mid v)=\sum_{i_{1}<\ldots<i_{k}} d f^{*} \omega_{i_{1} \ldots i_{k}} d f^{*} \beta^{i} \wedge_{1} \ldots \lambda^{\prime} f^{*} \beta^{i} k=$
$=f^{*} \sum_{i_{1}<\ldots<i_{k}} d \omega_{i_{1}} \ldots i_{k} \wedge d \beta^{i_{1}} \wedge \ldots \wedge d \beta^{i} \ldots f^{*} d(\omega \mid v)$.

From 1,3 and (2.2) it follows that

$$
\begin{aligned}
& \left(d f^{*} \omega\right) f^{-1} V=d\left(\left(f^{*} \omega\right) f^{-1} V\right)=d f^{*}(\omega \mid V)-f^{*} d(\omega \mid V)= \\
& =f^{*}((d \omega) \mid V)=\left(f^{*} d \omega\right) \mid f^{-1} V
\end{aligned}
$$

This ends the proof of 2.1.
3. Chains in premanifold. For any natural number $n$ the set $R^{n}$ of all real-valued functions of $C^{\infty}$ class on open sets in $R^{n}$ is a premanifold. The set $\Delta_{n}$ of all points $\left(x^{1} \ldots \ldots x^{n}\right)$ such that $0 \leqslant x^{1} \leqslant 1$. $1=1 \ldots, n$ and $x^{1}+\ldots+x^{n} \leqslant 1$ gives a premanifold $\Delta_{n}$ of the shape $R_{\unlhd_{n}^{n}}$. Setting $x=\left(x_{1} \ldots \ldots x^{n}\right)$.

$$
t_{n}^{0}(x)=1-\sum_{i=1}^{n} x^{i} \text { and } t_{n}^{i}(x)=x^{i}, i=1 \ldots, n
$$

we have the bericentric coordinates of the point $x$.
Any smooth mapping $\quad: \Delta_{n} \longrightarrow M$ will be called a singular n-simplex in M. The set of all simplices in $M$ will be denoted by $S_{n}(M)$. Every function $c: S_{n}(M) \longrightarrow R$ such that the set of all $\operatorname{s} \in S_{n}(M)$ for which $c(s) \neq 0$ is finite will be called a singular n-chain in $M$ or. shortly, $n$-chain in $M$. The set of all $n$-chains in $M$ will be denoted by $C_{n}(M)$.

For any $s \in S_{n}(M)$ and any a $R \quad R$ we set (as)(u) a $1 f u$ a a a $(a s)(u)=01 f 8 \notin u \in S_{n}(M)$. In such a way we have defined the chain as $\in C_{n}(M)$. It is evident that any $c \in C_{n}(M)$ may be written in the form $c=c\left(s_{1}\right) s_{1}+\ldots+c\left(s_{k}\right) s_{k}$ where $s_{1} \ldots \ldots s_{k}$ are all of $\quad \ldots \in S_{n}(M)$ for which $c(s) \neq 0$. It is convenient to write

$$
c=\sum_{s} c(s) s
$$

For any smooth $f: M \longrightarrow N$ and $c \in C_{n}(M)$ setting $f_{*} c=\sum_{s} c(s) \circ s$ we get the mapping $f_{*}: C_{n}(M) \longrightarrow C_{n}(N)$. The set $C_{n}(M)$ way be treated in a natural way as a linear space. Now we take the standard inclusions $\Delta_{n, 1}: \Delta_{n} \longrightarrow \Delta_{n+1}$ setting for any $x \in \triangleq_{n}$

$$
t_{n+1}^{j}\left(\Delta_{n, 1}(x)\right)=\left\{\begin{array}{lll}
t_{n}^{j(x)} & \text { if } & j<i \\
0 & \text { if } & j=1 \\
t^{j-1}(x) & \text { if } & j>1
\end{array}\right.
$$

$i=0, \ldots, n$ and $j=0, \ldots, n+1$. This definition yields

$$
\begin{equation*}
\Delta_{n+1, h^{\circ}}^{\circ} \Delta_{n, 1}=\Delta_{n+1, i+1} \circ \Delta_{n, h} \text { if } h \leqslant 1 \tag{3.1}
\end{equation*}
$$

For any $s \in S_{n}(M)$ we define $(n-1)$-chain $\partial a$ by the formula

$$
\begin{equation*}
\partial s=\sum_{1=0}^{n}(-1)^{i} s \circ \Delta_{n-1,1} \tag{3.2}
\end{equation*}
$$

called the border of 8 . For any $c \in C_{n}(M)$ we define its border by the formula

$$
\begin{equation*}
\partial c=\sum_{s} c(s) \partial s . \tag{3.3}
\end{equation*}
$$

Equalities (3.1) - (3.3) yield $\partial \partial c=0$.
4. Stokes' formula. At every point $x \in \mathbf{R}^{k}$ we have a base $\partial_{1 x}^{\prime k} \ldots, \partial^{\gamma^{k}} k x$ for $T^{T} R^{k}$ of vectors defined by the formulae $\partial_{i x}^{\prime k}(\alpha)=\partial_{1} \alpha(x)$ for $\alpha \in R^{k}(x), \partial_{i}$ is the partial derivation with respect to 1-th variable. Taking the mapping

$$
{ }^{1 d_{\Delta_{k}}}: \Delta_{k} \rightarrow R^{k}
$$

we remark that there exists a unique system of vectors $\partial_{1 x}^{k} \ldots \ldots \partial_{k x}^{k}$ being a vector base for $T_{x} \Delta_{k}$ such that

$$
{ }^{1 d_{\Delta_{k}} * x} \partial_{1 x}^{k}=\partial_{1 x^{\prime}}^{i k} \quad i=1, \ldots, k .
$$

For any $a \in S_{k}(M)$ and $\omega \in A^{k}(M)$ the integral

$$
\int_{\Delta_{k}}<\partial_{1 x}^{k} \wedge \ldots \wedge \partial_{k x}^{k} \mid s^{*} \omega(x)>d x
$$

will be denoted by $\int_{g} \omega$. For any $c \in C_{k}(M)$ we set

$$
\int_{c} \omega=\sum_{c} c(B) \int_{s} \omega .
$$

The number $\int_{c} \omega$ just defined will be called the integral of the form $\omega$ along the chain c.

Theorem (Stokes' formula). If $M$ is a premanifold of finite dimension, then for any $\omega \in A^{k}(M)$ and any $c \in C_{k+1}(M)$

$$
\int_{c} d \omega=\int_{\partial c} \omega
$$

Proof. By linearity of the mapping $\left(c \mapsto \int_{C} \omega\right): C_{k}(M) \longrightarrow R$ it supficesto prove that

$$
\int_{s} d \omega=\sum_{h=0}^{k+1}(-1)^{h} \int_{s \circ \Delta_{k, h}} \omega
$$

or, what by 2.1 is equivalent to

$$
\begin{equation*}
\int_{i_{k+1}} 0=\sum_{h=0}^{k+1}(-1)^{h} \int_{\Delta_{k, h}} \tag{3.4}
\end{equation*}
$$

where $0=s^{*} \omega$ and $1_{k+1}(z)-z$ for $z \epsilon \Delta_{k+1}$. The right-hand side of (3.4) way be written as $\int_{\partial i_{k+1}} 0$. Formula (3.4) takes the form

$$
\int_{i_{k+1}} d O=\int_{\partial_{k+1}} 0
$$

This formula is nothing but the Stokes' formula known in advanced calculus.

Linearity of $\partial$ and the equality $\partial 0 \partial=0$ allows us to define the $k-t h$ singular homology group $H_{k}(M)$ of the premanifold M. Stokes, formela allows us to consider the de Rham mapping

$$
((h, w) \mapsto<h, w\rangle): H_{k}(M) \times H^{k}(M) \longrightarrow R
$$

for a premanifold of finite dimension, where for any homology class $h$ in $H_{k}(M)$ and any cohomology class $w$ in $H^{k}(M)$ we set

$$
\langle h, w\rangle=\int_{c} \omega, c \in h, \omega \in w .
$$

## REFERENCES

[1] H. Matuszczyk: Exterior differential forms in premanifolds (to appear).
[2] H. Matuszczyk, W. Waliszewski: Stokes' formula for chains in a differential space of finite dimension, Colloq. Math. 53(1987). pp. 211--218.
[3] W. Waliszewski: Analytical premanifolds, Zeszyty Naukowe Politechniki Sleskiej, Seria: Matenatyka-Fizyka 48 (1986). pp. 217-226.
[4] - Complex premanifolds and foliations, Seminar on Deformations, Lu-blin-Łódz 1985/87, D. Reidel Publishing Company, Dordrecht.
[5] - Abelian imverse semigroups and sone skew-differential operstions in senigroups (to appear).

