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ON EXTERIOR DIFFERENTIAL IN PREMANIFOLDS OF FINITE DIMENSION

0. Introduction

In [V] there ie Introduced the concept of the exterior differential of
differential forms and the canonical correspondence between differential
k-forms and k-lInear mappings of local vector fields of premanifolds
(see [V] and [4) is examined. The present paper contains the proof of
the Stokes” formula for chains in s premanifold of finite dimension and
the de Rham mapping for de Rham cohomology.

1. Preliminaries

Let M be 8 real or complex premanifold. For any vector field X tan-
gent to M, i.e. a function X with the domain Dx 6 topM and such
that x(p) €T @) for p 6 0X. For ace M we have the function 3X<
defined on D”n Dx by the formula (@Bx<)(E) - x(p)(<*) for peDo(hDx.
By definition also we hsve Dg ”~ = D”n Dx. The set of all vector fields

X tangent to M such that for every e M we have 3x<*eM will be de-
noted bv V’Ioc (m). The set V’Ioc(m) together with the addition and the
multiplication by functions of M defined by the formulae: (X + YJ(pJ »
» X(p) + Y(p) for p 6 0X n Dyand (oC-X) » oe(p)x(p) TFfor peDxnDcC,
X, YeVloc( ), oteM is a semigroup with local zeros (see [V]). A system
(el#....e"), where belong to VIloc(M)* °e, " De and
(e1(p),--- ,em(p)) 1is a base for TpM is said to be a local vector base
in M. A premanifold for which any point of M has a neighbourhood with
local vector base in M is said to be of a finite dimension.

A function to such that D”etopM and to(p) 1is an element of Ak(TpM)
for p 6 Du is said to be adifferential k-form in M. A k-form u> is

said to be smooth in M iff for any Xj,...,Xi( evioc™M”~ the “unction ®

with the domain DEoix’\...";le(lual to On On| ...n0 I(defined by the formula

oHXj Xk)(p) =<X1(p)A...AXk(p) | <o(p)> for p e DES(Xi,...&K)(1.%)
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belongs to M. The set of all aaooth k-form* we denote by Ak(M). We adopt
also A°(M) - M.

The set of all17 : (vioc(M))k- * M auch thatfor any X1,...,Xk,
X e vioc’M) and d 6 M we have

Xj & UEXFXQ ....* k) m M (XM < |X|") ¢ 00 Tj(X tXg leee *Xjj) T -1)
miXj ..... Xj» ) « agni - rj(.xi, ... ,Xk)
1 k (1.2)
for any permutation 1 « (i . ..,ik),

will be denoted by Ak(M). We adopt also A°(m) - M. In [I] we find the

proof that if M ism-dimeneional then we have a one-one correspondence
wi-»-¢0 between Ak (M) and Ak(M) and the so called natural domain of tv
defined by (1.0) la equal to the domain of a). This fact allowed to

define the concept of the exterior differential dco of a>eAX(M) in the
following way:

k
*« (*0 v =2 FDX\ sxo XI-1"Xi*1 k> *
i-0 1
+ X0 " EF X B, XT+HT .. <o *XjAJ #XI+1" e (L3¢
1<3
for xo xk e vioc(m).

1.1. Proposition. In a premanifold M of finite dimension we have
(1) <Ev]dat(p)> « v(<*) when v is in TpM, peD”, *6«,

(ii) d(rj+tco) - d~ ¢ d&> for ry,o)GAL(M),

(iil) d(thAw) » dMA&>+ (-1)SMAdw for 176Ak(M), td€A1I (M),

(iv) d«d m 0.

For the proof see [V] and [Y].
The 1local property of the operation d plays an essential part in the
work with the exterior differential.

1.2. Lemma. If w6AkM), D”p U 6 topM, co]U - 0, then (dco)]U « O.
Proof. For any X1,...IX[( 6 Vioc(M) we have tviXj,.-.,Xk)(p) -
- <XX(P)A ... Axk(p) lo>(p)> - <X1(P)A ... AXKk(p)|(to]u)(p)> -

mjfuiXj Xk)(p) for pe Un oxn...npx”. We have than

H u(x1 Xk) = w(X1,...,Xk)]U. @.4)
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Applying (1.3) and (1.4) we get (dw)] U(Xo ... .x*) m d(o]U) QG .... .xk) » o.
Q.E.D.
As a consequence of 1.2 we get

1.3. Leeee. If w6AkM) and Dw 3 U e topM, (dco)]U = d(oo]U).
2. Pull beck of differential fores. Let fs M — » N where M and N are

preeanifolds of finite dinensions. We have the tangent linear napping

f. :T M- *—ch /\N defined by the _foreula f*,Pv(p) * v(!LS°f) for

jbeN(F(p))t v in TpM, where N(q) peN itp & D@/ f°r P 6 N. For
any coeAk(M) we define the f-pull-back a> of to by the foreula

NVjAa...a ()P = -.-afrvr L co (F(p))> 2.0)

for of TpM« P e f_ID® Fro" thl8 deflnition if follows
ineedietely that for any tJ6Ak(M), co6A1(M) and V e topN

f*(MACO) » F*~AF*CO, 2.1)
f*(oolv) <« (f*co)|f-1V. 2.2)

Thus we have
frojiXji... ,Xk)(p) - <Fxpx1l(p)A ... a FpXk()|co(F(p))> for p e D~n
...nDY n f-1D .. It is easy to see that for g: N - » P where P is of

finite dinension we have
@-FH*0n fxgx0 TA 0eAk().

We adopt also f*w » toof for 00&A°(m). Wewill prove the following
fact of inportance.

2.1. Leans. F(Lr f: M—’-N, where M and N are of finite dieenslon
end for any co 6A (n) we have

df*co- f*dco.
Proof. Let p e Then ftpleD” and there exists a local vec-
tor base (el,....en) in N, where ei"**“"en Bre defined in a neighbour-

hood V of the point f(p). Foe sny je N(f(p)) we set

I - CEiFmEIaN-----. n (FEMUT))-

We have then the functionl defined on the set N(f(p)) such that the
iaage IN(F(p)) of this set is containedinRn for reel preaanifolde
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or in C" for complex ones. It is easy to see that IN(F(p)) is a linear
subspace of Rn or Cn, respectively. If would be IN(F(p)) fFRn(In(F p)~
4Cn, resp.), then the set IN(f(p)) should be a subspace of a lower di-
mension than n. Then should exist numbers Cj,...,cn not vanishing si-
multanously such that clel(f(p)) (U3 * ... + cnen(F(p)) @) = 0 for
(ISN(F(p))- Hence it follows that ej(f(p)),--- ,en(f(p)) would be line-
arly dependent. Therefore there exist e N(F(p)) for which
@)= (qij ---- -, j=1. ...,n. Hence it follows that there is a neigh-
bourhood of f(p) such that for any q in this neighbourhood we have
non-singular matrix

[edgHpr* ); i, )< n]. (2.3)
We may assume that V is such a neighbourhood. Taking the matrix
[Y*(g)J h, i?*nj being inverse to (2.3) for qeV we have ~ig)elg) (I3M)*

= - h, j=1f....n. We may assume that functions have the set V
as their domains. Thus,

ffafs .61

We have (b@-*(SN, h, 3=1... .,n. Therefore ~ 6N. Setting
gh(@ sTh”" ?i”P? f@r Pev<h®*“l._...._. n

we get a vector base (gl,....gn) in M such that
3g" -6~ . h, 3-1 n.

Let us set for qeV

v — il i.
wo(a) “ Y I <9a (DA...Agi @Iw(a)dii  (DA,..ndii (@) (2.4)
il<.. <k 1 k
We have <g (q)ldjj*(ad> = g,(q) GV) = (d fFft"Kq) * for q£V.

For any qgeV we have then the base (d(Si(q)..r.]. dij (q)) for (TgN) *.
By (2.4), for qeV and h~<...<hk we have

<gh (g)A...Ag (@Dlcd (q)> «
1 k 0

/* 1 <9i.(q)A ... Ag. (q)loo(g)><'gh (g)A..Ag. (qg)|dft 1(q)a... Adftk(gq)> =
il ...<ik k nl r
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T o<gx (DA
Ak

N

=<gh (q)A...Agh (@]w(q)>. Hence It follows that ol (q)
for q e&V. Setting for q$V
@. i (@ -<g. (DA...Ag (@DIw(®)>

X k

we may rewrite (2.4) as

2 " 4
il< "k

or equivalently

ST
wlv = > Wt
il<...<ik 1

From (2.5) by (2.1)

f*(colv) »

For any p6 N and

« <F

gef

» <v |(df*p) (9)> for v
f*dp » df*p for
This yields
f*Mv) - |
I K

According to (ii)-(iv),

<gt (QA...Agi
k

*O/\

(@) |co(qi>det[<gh (q)|p8(a)>;
r

...Agi (9)]a)(ql>detph8; r, e~k] -

n L(@A --.A dG k(@

XT

in the form

i,
i A...AdPN
-

it follows that

i F#d6 WA AFIfrd” K.

in TgM* Thus

peM.

7 T daiijA.../AdPIk

(2.6) and (2.1) we get

r,

for

243

sg k] *

>0

qev,

2.5)

, by (2,0) and (i) we have <Cy|(f*dp)(qJ> »

v (dp) (F(a))> m dp(F(a))(fyaqV) » f v(p) » v(f*p) = (@FpP)()(Vv) «

(2.6)
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Fron 1.3 and (2.2) it follows that

@@fa>) f 1V - d((Frcd) f 1v) - df*(colv) « Fd(cilv) -
- F(dw)|v) = (Fdco) |F-1V.

This ends the proof of 2.1.

3. Chains in a premanifold. For any natural number n the set Rn of
all real-valued functions of C°° class on open sets in Rn is a prema-
nifold. The set An of all points (xl,...&n) such that 0 < x* 1,
i-1...... n and x1 + J.. + xn< 1 gives a premanifold An of the shape

Setting x » (xlt...,xn).

i-1

we have the baricentric coordinates of the point x.

Any smooth mapping s:An—- > M will be called a singular n-simplex
in M. The set of all simpllces in M will be denoted by Sn(M). Every
function c: Sn(m)— > R such that the set of all seSn(M) for which
c(s) #0 is finite will be called a singular n-chain in M or. shortly,
n-chain in M. The set of all n-chains in M will be denoted by Cn(m )-

For any s 6Sn(M) and any a6 R we set (as)(u) = a if u « s, and
(as)(u) -0 if s fu 6 Sn(M). In such a way we have defined the chain
aseCn(M). It is evident that any c e C~iM) may be written in the form
c = c(sl)sl + ... + c(sloak where si#...,sk are all of s eSn(M) for
which c¢(8) 70. It is convenient to write

For any smooth f: M- *aN and ceCn<M) setting

we get the mapping f : Cr(m)- » Cn(N). The set may be treated
in a natural way as a linear space. Now we take the standard inclu-
sions A A: An- » An+l setting for any x6 An
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tH x ) if J< i,
n

t+1(An.i(x)) “ ~ 0 i* J e 1.

1) if )> i
iao n and J = 0,...,n+l. This definition yields

n+l,h n,i n+1,i+l “n,h

For any= sesn(m) we define(n-1)-ohain 3s bythe formula

n
8e -J] (-D)18=An_1 i (3.2)
i-0
called the border of s. Forany c¢ 6.Cr (n ) wedefine its border by the
formula
3c - 'y c(s)3s. (3.3)
s

Equalities (3.1) - (3.3) yield 33c » 0.

4. Stokes” formula. At every point xe we have a base 3"... ,3kx
for of vectors defined by the formulae («) m BjCtCx) for
AGR™iIX), is the partial derivation with respect to i-th variable.

Taking the mapping
idv.. Ak- Rk

k k
we remark that there exists a unique system of vectors 3ix"*,,stx
being a vector base for TxAk such that

idAk*xdix ~ a"Ix"

L
For any aeSk(M) and odfA (m) the integral

f ,sk A .-k Is*a>(x)> dx
JA N X A 3kx'



246 W. Waliszewski

will be denoted by Jo. For any cgCk(M) we set

Too » "Jc(e) T co.
c c s

The nunber Just defined will be called the integral of the fora to
along the chain c.

Theorem (Stokes’r formula). If M is a premanifold of finite dimension,
then for any toeA (m) and any ¢ 6 CNj/11)

Proof. By linearity of the mapping it suf-
ficeeto prove that

k+1

or, what by 2.1 is equivalent to

3.4

where 0 « s*co and 1ik+1(z) m z for z £ The right-hand side of
(3.4) may be written asO. Formula (3.4) takes the form

This formula is nothing but the Stokes” formula known in advanced cal-
culus.

Linearity of 9 and the equality do 3 a o allows us to define the
k-th singular homology group Hj<M) *f the premanifold M. Stokes” formu-
la allows us to consider the de Rham mapping

(h, wYN<h, ws): HKQD x Hk(M) — > R

for a premanifold of finite dimension, where for any homology class h
in arl[d any cohomology class w in Hk(M) we set

<h, w>>= _ co, ceh, coew.
[
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