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Summary. In the paper we consider functional equation in the form:

where <p: (0,oo)— > R is a function such that y(x)e(0,x), x>0. Some 
conditons are given for any solution f: (0,») — > R of (1) such that 
l^gtf(x)-b)/x = ^lim f(x)/x for a constant b e R, solves the Jensen
equation

An example is also given showing that the assertion is no more valid 
when one assumes only differentiability of f at 0 as it is the case in 
an analogous problem related to the Cauchy equation.

Perhaps the most celebrated and intensively studied functional equation is 
the one which takes its name after Cauchy. Since the beginning of seventies 
the investigation of this equation on restricted domain has involved many 
mathematicians and a large number of results have been published. One of the 
interesting aspects of this investigation is the following problem. Let X be 
a set and let "+":X x X —> X be a binary operation. Suppose that h:X — > X 
is a function. Further, let Y be a set and "®":Y x Y — > Y a binary operation. 
The question is when a solution f:X — > Y of the equation

f(x + #>(x)) + f(x - < p M )  = 2f(x) ( 1 )

f(x+y) + f(x-y) = 2f(x) (2 )

f(x+h(x)) = f(x) © f(h(x)) (1)

which holds for x e X is additive i.e. fulfils
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f(x+y) = f(x) © f(y) (2)

for every x,y e X. Equation (1) is an example of Cauchy equation on 
restricted domain,the restricted domain here is the graph of the function h. 
Note that (1) expresses additivity of f postulated for some pairs (x,y)eXxY 
only, namely for (x,y) e Gr h = {(x,h(x)): x e X>.

Of course the results concerning (1) are obtained under some specific 
assumptions, usually in the case where X=Y=R, or X =(0,co) and binary 
operations are usual addition. Some assumptions are made also on the 
function h. The reader interested in the topic should address e.g. to 
Dhombres [1], Forti [3] and [4], Sablik [7], Zdun [8], Matkowski [6] and 
Jarczyk [5] (the last author deals with the case where h=f is unknown as 
well).

A natural extension of these results would be to answer similar questions 
for some other functional equations. In this paper we present an attempt to 
do it for Jensen functional equation which we write in the following from

f(x+y) + f(x-y) = 2 f(x) (3)

and assume to hold for x,y e R.
We will restrict ourselves to the case where x e (0,co) and ask for the 

conditions quaranteeing that a solution of

f(x + ¥>(x)) + f(x “ V>(x)) = 2 f(x), (4)

where ip : (0,ro) — > R is a function such that ip(x) e (0,x), x>0, solves (3)
is a sum of an additive function and a constant. Thus one might think that
our problem should be very close to the one mentioned above. This is not
quite true. In the study of (1) it is usually assumed that h is rather a
regular function, e.g. such that id+h is a homeomorphism. Even in this case
solutions of (1) are not additive in general. Therefore the authors look for
the equivalence of (1) and (2) in some specific classes of functions. Many
results establish the equivalence in the class A = {f: (0,oo) — > R: lim f(x)/x

x->0
exists}. However, the class Aq happens to be too large to assure the 
equivalence of (3) and (4). To show this we exhibit the following
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xExample. Let <p: (0,co) — > R be given by ¥>(x) = ^ and consider the set
k 1G = {xe(0,m): \/ x=2 3 }. Define a function g-,:G— ^  bY

k, leZ

0 if (kaOAlal) V (k+ls-1).

31)
(_k ) 4~k 3 1 if (k+l£0 A l s o ) ,

4~k 3 1 if (k+1 = 0 A i > 0),
(5)

( ,1_h(-l)1+k 4 k 3_1 if (k+UO A ks-l) -k-1

!|G gl g | (0,oo)\G
Finally let f: (O.oo) — be given by f(x) = x g(x) e [0,oo). Of course f is not
solution of (3) for, as it is well known, g should be constant then. On the
other hand f e A . To show this it is sufficient to check that lim g (x)=0.

° x-+0 1
IN kn *nLet us take a sequence (x ) e G such that lim x = 0. Write x = 2 3 ,n neiN n nn— >oo

n € IN. Divide (x ) into two subsequences (x ) and (x suchn ne!N P nelN q nelNn n

that 1 >0, nelN, and 1 s 0, nelN. Observe that lim x = 0  impliesP <1 p*n n n— xo *n

k + 1 < 0 for n sufficiently large. Thus g, (x ) = 0 for large n which p P i p*n *n n

proves our conjecture in this case. To deal with the other case we may assume
without loss of generality that k + 1  ^ 0. Convergence of (x )ns^ to

qn qn qnn

zero implies now that lim 1 = -oo. Thus lim k = «.ci qn— >co nn n— xxj n

Writing g ^ x  ) in the form (cf. (5)) 
qn

k -1 k + 1
, . , qn, ,3. qn ,1. qn qn

gl(Xq 5 =(-l 3 4 4
qn

we see that lim g^(x ) = 0 (cf. Feller [2]). It remains to show that f 
qn

actually stisfies (4).
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This can be done by a straightforward although tedious calculation showing
that x — » xgj(x) satisfies (4) for x € G and observing that f|(Q = 0
satisfies (4) as well (note that x e G if and only if ^ x € G ana
i X € C).

The above example makes it reasonable to look for the equivalence of (3)
and (4) in a class different from Aq. Actually consider first the class

A = Jf: (0,o>) — > [R: b is bounded in a neighbourhood of 0 and
a;b 1

lim i M  = a xX— >00

where a e [-co, +oo] and b e R are some fixed constants.
We have the following

Theorem 1. Let a e (0,1). If f:(0,a>) — > R is a solution of the equation

2 f(x) = f(x + a x) + f(x - a x )  (6)

and belongs to A , for some a € [ —oo, +oo] and b e R then a e R anda; b
f(x) = ax+b, x e (0,-m) (and hence solves (3)).

Proof. This is a straight forward matter to check that f solves (6) if 
i only 

equation
and only if g:(0,co) — > R given by g(x) = f x̂) b, x 6 (0,a>) solves the

g (x ) = ^ g(cx) + ^ g(dx) (7)

where c=l+a, d=l-a. Moreover, if f e A thena; b

g is bounded in a neighbourhood of 0 and lim g(x) = a. (8)
x— x»

We show first that

for every R > 0 there exists a > 0 such that |g(y)|—

for y i R. (9)

Indeed, by (8) |g(x)|s B for x e (0,r), where B > 0 and r > 0 are some 
constants. Now, from (7) we get
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g(cx) = ^ g(x) - ^ g(dx) 

for x > 0. Taking into account that

0 < d < l < c < 2  (10)

we get

|g(cx)J i 2|g(x)| + |g(dx)|

whence

|g(y)| s 3B

for every y € (0,cr). An easy induction shows that 

|g(y)| - 3n b

n Nfor every y e  (0,c r). To show (9) it is enough to put B = 3 B, where N
N Ris such that c r a R.

The following two relations can be easily proved by a simple calculation 
(cf.(10))

for every n e IN, k e (0,1,.....,n), x > 0 and R > 0,
inequalities (i) k/n ^ (1/n)(ln(R/x)/ln((c/d)) - (lnd)/ln(c/d) (12)

and

, . .  , k ,n-k _ „(n) c d x i R

are equivalent.
Now, we show that a e (R. Indeed, suppose that a = +oo. Let D > 0 be an 
arbitrary number and choose R > 0 so that

g(y) ^ D for y a R. (13)
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Fix x 6 (0,oo) arbitrarily and let 8  > 0 be such that (cf. (11))

A: = ~ w  I n  + 5 < | - 6. (14)In(c/d) 2

Finally, let N e IN be so large that

i iln (R/x)/ln(c/d)j < 6 (15)

for every n a N. By (14) and (15) we get inequality (12) (i) for every
n £ N and k 6 (0,1,.....n> such that k a A * n. Thus (12)(ii) holds as
well.

From (7) we obtain by an easy induction 
n

, . ^  ' , n . , c . k , d . n - k  , k  ,n -k  . , , , ,
g(y) = ) (k )(2 2 g y

k=0

for every y € (O.ra) and n e IN.
Using the last equality for n s N we obtain in view what has been written 
above (cf.(9), (12) and (13))

n-k ,, x) -i i 1 1  ^ i \  ' , n ,  . c . k . d . n - k  , k . n -
lg(x)l I / k 2 2 g(c

k^nA

V ' , n , . c . k . d . n - k ,  , k ,n-k
/  k 2 2 ' g  X '

k<nA

D ¿ 2 -  BB £ 0 .c.k.d.n-k 
• 2 2

k£nA k<nA

Using Bernoulli’s law of large numbers and (14) we get by (17) 

|g(x)| s limsup [d • P (£ * A) - Br P(^ < A)1 a
n— >oo l J

limsup [d P(£ * I  -  8 )  -  Br P(£ <| - 6)] *
n— >co

limsup [d • P(|£ - || £ 5)- Br • P(|£ - >6)1 = D.
n— *co L J
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Thus |g|a; D because x has been arbitrary. But D has been arbitrary, 
too, whence |g| = »  contrary to (8).

If a = —00, then we can repeat the above argument for -g to get a 
contradiction.

To prove our assertion it remains to show, that g(x) = const = a. To this 
aim fix x e (O.co) and e > 0 arbitrarily. Choose > 0  so that (cf. (8))

|g(y) - a| < e for y 2 R. (18)

We can choose a 5 > 0 such that (14) holds. Similary as above we have (12) 
(ii) for n large enough and k 2 nA (k e (0,1,...,n}). By (16) and (18) we 
obtain

|g(x) - a| s ^  C^)(|)k (|)n_k(BR+2|a|+e)+c ^  (£)(H)k(|)n"k, 
k<nA k2nA

whence, similarly as above, the inequality

Ig(x) -aI ^ e

follows. Hence g(x) = a because c has been arbitrary. This ends the proof.
In the case where <p is not linear we look for the equivalence of (3) and

(4) in the class

a; b, a’ f 6 A : lim - X)~b = a’ 
a:b x— >0 X

with a 6 [-co, m], a’, b 6 IR.
We have the following

Theorem 2. Let y>:(0,a>)— >(0,») be such a mapping that <p(x) e (0,x) for
every x > 0 and x — > x + ^(x) maps homeomorphically (0,oo) onto itself. If
f:(0,oo) — -> R belongs to A , for some a,b e R and f solves (4) thena; b, a
f(x) = ax+b (and hence f solves (3)).

Proof. Define g: (0,oo) — > R putting g(x) = — - -a for x > 0. Then
it is easy to check that f e A , and f solves (4) iff lim g(x) =

a; ,a x->0= lim g(x) = 0 and g solves
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g (x ) = g(u(x)) + g(v(x)) (19)

for x > 0, where u(x) = x +vj(x ) and v(x) = x-<p(x). In a very similar way
as in the proof of Theorem 1 we can prove that (9) holds for g and thus g is
bounded in (0, co) for lim g(x) exists.

X-*n

Suppose that B = sup |g(x): x e (0,oo)|
g

> 0 and fix an c < g. Then
there exist r > 0 and R > 0 such that r ^ R and

|g(x)| < c for x £ [r,R]. (20)

Put N = min {n 6 IN: u n (R) < r}.We will show now that
for every n e {1 N} there exists a constant c < B such thatn

>(x) i cn

for all x e (u n (R), co).
(2 1 )

B -1Indeed, for x > R we have g(x) < c < g anc* f°r x 6 (u (R),Ri we get by
(15), (20) and the choice of e

, . u(x) v(x) d - d  |u(x) . v(x) g(x) s e + - r —  B £ B2x 2x 4x 2x
fu(x) 
[ 4x

3
because v(x) e (0,x), x > 0. Thus, putting c^ = ^ B we obtain (21) for
n = 1. Suppose (21) holds for some n e(l..... N— 1 > and take any xe(u^n ^(R),
u n (R)). Then u(x) e (u n (R),oo) and we get from (19) by induction
hypothesis

, , u(x) v(x) _
8(x) s cn + -2ST B-

The function fu *'n+^(R), u n (R)l a x  —> c + B is continuous and
L J 2x n 2x

hence (cf. induction hypothesis) bounded above by a constant d^ < B. Putting
c . = max (c ,d ) we get the assertion which ends the proof of (21).n+1 n n
Now, by (21), choice of c, r, R and N we get for every x e (0,co) =

-N
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which contradicts the definition of B. Thus g(x) i 0 for every x > 0. 
Since -g is also a solution of (19) with the same asymptotic properties as g, 
we get also -g £ 0. Thus g=0 which means that f(x) = ax+b, x > 0 and ends 
the proof.

From the above theorem we get

Corollary. Let ip be as in Theorem 2 and fix a,b,a’eR, a*a’ . Then (4) has
at most one solution f: (0,a>)— >R belonging to the class A , ,.a; b, a

Proof. Let f,,f_ e A , , be two solutions of (4). Then f. - f_ e A„ „ „1 2 a; b. a 1 2 0; 0,0
is also a solution of (4) and hence = 0 by Theorem 2.

Remark 1. It follows from Theorem 1 that in the case where <p is linear
there is no solution of (4) which belongs to A , for some a,b,a’e R anda; b, a
a * a .

We can give a direct argument to prove this fact. Indeed, suppose that
there is a solution f of (4) which belongs to A , One can easilya; b, a
calculate that then for every y > 0 the function f :(0,oo)— >iR given by f (x) =

1 y  y
= (f(yx) + b(y-l)) • - for x > 0, solves (4) and belongs to Aa.t,.a'- Thus> 
by Corollary, f = f for every y > 0 which means that

yf(x) = f(yx) + b(y-l)

for every x,y > 0. Putting x=l in the above equality we obtain

f(y) = (f(1) - b)y + b

for every y > 0. Hence a = a ’ =f(l) - b  contrary to our assumption.

Remark 2. Observe that any solution of (19) which is bounded in a nejgh 
bourhood of 0 and in a neighbourhood of + m is bounded in (0,co).

The proof of this statement is analogous to the argument we have used in 
Theorems 1 and 2.

Remark 3. Suppose g:(0,m) — > R is a continuous solution of (19) and
lim g(x) = a, lim g(x) = b. Then values of g lie (sharply) between a and b. 
x->0 x-*o
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Indeed, assume without loss of generality that a < b. If a = -ra then 
g(x) > a for every x > 0. Suppose that a € R and g(x) a a for some 
x > 0. It is obvious that g attains its minimum at a point x q > 0 and 
g(x ) a a. Let y > 0 be any point such that g(y) = g(xQ ). Then we infer 
from (19) that g(y) = g(v(y)) = g(u(y)) for otherwise minimality of g(y) 
would be contradicted. An easy induction shows that in particular g(u (XD )) =
= g(x ) for n e IN. Hence taking into account that lim un (xQ ) = +co we

° n-*»obtain

lim g(x) a g(x ) a a < b = lim g(x), 
x-*x> x-x»

a contradiction proving that g(x) > a,x > 0. Similarly we obtain g(x)< b,x>0, 
which ends the proof.

Remark 4. It remains an open question whether a similar conclusion as in 
Remark 1 can be obtained in the case of nonlinear ip. The authors conjecture 
an affirmative answer to this question. However, no answer is known even if 
we additionally restrict ourselves to continuous solution of (4).
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RÓWNANIE JENSENA NA WYKRESIE 

S t r e s z c z e n i e

W pracy rozpatrujemy równanie funkcyjne

gdzie: <p: (.O.ra) — > IR jest taką funkcją, że >̂(x) e (0,oo), x > 0. Podane są 
warunki na to, by każde takie rozwiązanie f:(0,a>) — > IR równania (1), że 
lim (f(x)-b)/x = lim f(x)/x dla pewnej stałej b 6 IR było rozwiązaniem

f(x + <p(x)) + f(x - i>(x)) = 2f(x), ( 1 )

x->0

równania Jensena

f(x+y) + f(x-y) = 2f(x). (2 )

Podany jest również przykład pokazujący, że nie wystarczy zakładać dla 
otrzymania tezy różniczkowalności f w 0, jak to ma miejsce w podobnym 
zagadnieniu dotyczącym równania Cauchy’ego.
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.yPABHEHME EHC3HA HA TPA3?E

Pe3iOMe. B nacTosmefi paöoTe paccMaTpHBae-rca syHKUHOHajibHoe ypaBHeHne

f (X + <pU11 + f i x  - <p(x)) = 2f(x),

f a e  ip: ( 0 ,m) —> IR T a x a s  asyracuns, mto ¥ ¡(x )  e  ( 0 , o o ) , x  > 0 .  HaHbt ycJioBMs
HJia T oro , m to6u  BCHKoe pemeHHe f : ( 0 , c o )  —> IR ypasHeHHfl (1 )  HcnoJi- 
Haiouiee Um  ( f ( x ) - b ) / x  = l i m f ( x ) / x  c  HeKOTopoPi i ioctohhhom

x->0 x-xo
bhjjio T axxe pemeiiiicM ypaBHeHHS

f(x+y) + f(x-y) = 2f(x).

ripHBOHHTCs npHMep yKa3biBaioii(nfi Ha TO, mto nns» noJiyneHHS Te3nca He a o c T a -  
TOHHO npennOJlOXHTb JIMUIb TOJTbKO HHäSEepeHUHpyeMOCTb f  B 0 , KaK 3TO HMeeT 
B aHajiorHHHoii npoÖJieMe CBS3aHH0H c ypaBHeHHeM Kouih.


