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WITH STUDYING THE GLOBAL CONVERGENCE OF ITERATION METHOD 

APPLIED TO SOLVING NONLINEAR EQUATIONS

Summary. Global convergence of iteration methods of solving nonlinear 
equations is studied in this paper. Newton, König, Schröder and Döring 
methods applied to looking for zeros of polynomials are considered. 
This involves the iteration of rational functions over the complex 
Riemann sphere, which is described by the classical theory of Julia and 
Fatou. The investigations of existence of attractive and indifferent 
extraneous fixed points or cycles of the iteration functions are 
presented. It is shown that such fixed points always exist for Döring 
iteration method used for solving polynomial of degree greater than 2. 
The existence of extraneous fixed points is also demonstrated for 
Schroder iteration functions. König iteration methods have nly 
repulsive fixed points. Theoretical considerations are helped by 
microcomputer plots of Julia sets and basins of attraction of fixed 
point and cycles. Also existence of attractive and indifferent 
extraneous fixed points or cycles of Newton and Schroder method applied 
to finding zeros of cubic polynomials is examined experimentally. It is 
made by detecting orbits of the free critical points of these 
functions.

INTRODUCTION

More than hundred years ago lord Cayley [3], who was studying the Newton’s
method of solving nonlinear equations posed the following question: What is
the set W(z*) of all initial values z e C for which the iterationo
sequence zn+j = zn ~ §(znM g ’ converges to a given root z* of g(z).
Two French mathematicians - Julia and Fatou [9], [11] - took up this problem.
To answer Cayley’s question they developed their fascinating theory of the 
iteration of rational functions in the complex plane. Curry [4] applied this 
theory to investigate a global convergence of Newton’s method. Vrscay and 
Gilbert [19] used the Julia-Fatou theory to study a global convergence of 
Schroder and König iteration functions. They found that the König method of 
order three had never attractive or indifferent fixed points besides the 
roots of the solving polynomial. In this paper we’ 11 show that their
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statement may be extended for Konig functions of any order. Apart from 
iteration methods considered in previous papers we shall examine convergence 
of iteration method due to Do'ring. We shall prove that this iteration 
function applied to solving polynomial of degree greater than two has always 
indifferent fixed points. In Curry’s and Vrscay’s papers a lot of 
observations are based on computer experiments. We have repeated some of this 
experiments and made some new ones concerning with Doring method and basins 
of attraction of iteration methods applied to solving cubic polynomials.

1. RATIONAL ITERATION FUNCTIONS AND JULIA-FATOU THEORY

Let C = C u {00} denote the Riemann sphere with suitably defined spherical 
metric. We now consider a rational function R(z) = P(z)/Q(z), where
P: C — > C and Q: C — > C are polynomials with complex coefficients and no 
common factors, and d=deg(R)=max{degP,degQ}^2. Since we are interested in 
the iteration of functions, for the convenience we introduce the notation:

R°(z) = z, Rn(z) = R(Rn_1 (z)). (1 )

Given a point z0eC, the sequence ^z n 0̂ defined by

Zn+1 = Rn(zo} (2)

is called the forward orbit of z and is denoted 0+(z ). 
n 0 0

If R (z )=z for some n, then z is a periodic point and 0 (z ) is0 0  o o
a periodic orbit (often called a cycle). If n is the first natural number 
such that R ( z q ) = z  , then n is called the period of the orbit (or cycle). 
If n=l, zq is simply called a fixed point of R. The cycle of period n 
is attractive, indiferent, or repulsive, depending on whether the multiplier 
|R (z^)’I Is less than, equal to or greater than one, respectively. Attrac
tive cycle (z^ zn-l^ suct> that the multiplier |Rn(z.)’| equels to 0 is
also called superattractive cycle.

Let p be an attractive fixed point of R(z). The basin of attraction of 
p is defined as the set of all initial values z^eC for which the sequence 
(zn ) converges to p:
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Let r  = ■fP1 "P2  pn-l^ be ar‘ attractive cycle. The basin of attraction
of this cycle is given by:

n-i _
W(y) = U W(p.), where W(p. ) = {z sC: Rn (z )— ip. , k— *x>}. (4)i=l 1 0 0  i

Let U be an open subset of C, let T  ={f^|iel} be a family of rational 
functions defined on U with values in C. We say that jF is the normal
family if every sequence •{f^> contains a subsequence which converges
uniformly on compact subsets of U. The set of points in C for which the 
family of maps is not normal is called the Julia set. A more working
description is that J(R) is the closure of all repulsive cycles of R.

Some important properties of Julia sets are listed below.
(1) J* 0

(2) The repulsive cycles are dense in J.
(3) if z*eJ, then J=cl{zeC : 3 Rn(z*)=z*>.

n^l

(4) J is invariant with respect to R, i.e., R(J) = J = R *(J).
If(5) The Julia sets with respect to R and with respect to R , ksN, are the 

same.
(6 ) If J has interior points, then J=C.
(7) If D is any domain such that D n J = J* *  0, then there exists an

integer n such that J=Rn(J*).
(8) If zeJ and U is any neighborhood of z, then {Rn(U)} covers C except

for at most two points.
(9) If p is an attractive fixed point of R, then 5W(p)=J.

To illustrate the definitions we have just introduced we make few obser
vations about the Julia sets of the family of quadratic polynomials

2 2 Pc(z)=z +c. The polynomial R^(z)=z has two superattractive fixed points
p^=0 and p2= c». All other periodic points are repulsive and belong to the
unit circle l={z: |z|=l} is the boundary of the two basins of attraction
W(0) = {z: | z | <1} and W (co) = {z: | z j > 1}. The Julia set of the polynomial R ^ [ z ) = z ^ ~ 2

is the interval [-2;2 ].The basin of attraction of the unique attractive fixed
point is the complement of the Julia set W(oo)=C\[-2; 2]. For all other values
of c the Julia sets J(P^(z)) are nonstandard sets, namely fractals [2].
Examples of such sets are in fig. 1. The topology and the shape of Julia sets
of P (z) greatly depend on the value of c. This set can be a loop-free curves,
a curves with multiple points, a tree that does not surround a domain or a
totally disconnected dust. The set in center of fig. 1 consists of those
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values of c for which J(P ) is connected. This set is called Mandelbrot setc
and will be denoted by M. The central part of this M-set which has the
shape of cardioid consists of those values of c for which pc(z  ̂ has an
attractive or indifferent fixed point besides co. The circle straight to the
left from the cardioid contains all c’s for which P (z) has attractive orc
indifferent cycle of period 2 , and the nearest circle that follow to the left 
corresponds to attractive or indifferent cycles of periods 4, 8 etc. Other
circles that touch the cardioid correspond to cycles of order n>2. Fig. 1 
shows dependence between position of value of c in M-set and shape of Julia
set J(P ).c

2. ITERATION FUNCTIONS OF ORDER TWO, THREE AND FOUR

Let f:C— >C be analytic on a compact subset T of the complex plane C, 
having fixed point peT, i.e. f(p)=p. Let e^ denote the error associated 
with nth iterate

e = z - p (5)n n

Ien+iIIf there exist a number m and C(C*0) such that lim ------ = C, then f isi imn— xx> e
1 n 1

said to be an iteration function of order m. By Taylor’s formula we have

e = F(e + p) = n+1 n

= -¡- f (p)e + 0 [(e ) ], (6 )m! n n

where m is the smallest integer for which fm(p)*0. So the condition

I V i  Ilim -----  = C (00) implies. , mn-*» e 
1 n 1

f’ (p) = f"(p) = .. . f(m l5(p) = 0.

If g(zQ) = 0 and g’(zo)*0, then the Newton iteration function



58 E. Olszowska

N(z) = z - lrf?T' (7>

constructed to solve the equation g(z)=0,is an iteration function of order two 
The Schroder iteration function

m- 1
Sm(z) = z + E c n [-g(z)]n, (8)

n=l

where the coefficients cn ẑ  ̂ are given by

n- 1
c (z) n

i_ r i d_i i
n! [g’ (z) dzj g’ (z)’

is a generalization of Newton’s one.
If zq is a simple root of g(z), then

S'(z ) = S"(z ) = ... = Sm_1(z ) = 0. o o o

The Schroder iteration functions of order two S^(z ) correspond to Newton’s
Z o

method. The higher order Schroder functions are presented below:

S (z) = S (z) ---g"(z)' [g(z)]2, (1 0)
2 [g’(z)]

S. (z) = S.(z) - l£g?g"(z)]2 - W ( z ) g - ( z )  m )
[g'(z) ] 3

The Konig iteration functions of order m [19] corresponding to g are given by 

Km(z) = z ♦ (m-i)
[1/gCz)] 1J

The case m=2 again corresponds to Newton’s method. The Konig functions of 
order 3 or 4 are presented below:

K3 (z) = z + ----^ (z)g,(z)-- * . (13)
g(z)g"(z)-2 (g’(z))

3g(z) [g(z)g"(z)-2(g'(z) ) 2

K4 (z) = 2 + ------- 3---------------------------ô-----  • (14)
6 (g’(z)) - 6g(z)g’ (z)g"(z) + (g(z) ) g'" (z)
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The function ^(z) Is also Doring iteration function of order 3. Doring 
iteration function of order 4 is given by

„ f(f"f-2 (f' )2 )2 ,1C,D^(z) z - 5 2  2 3 2 2 (15)
4(f') +2f f'(f") - 6f(f') f"+2/3f (f') f'"

3. FIXED POINTS OF ITERATION FUNCTIONS APPLIED 
TO SOLVING NONLINEAR EQUATIONS

For all methods presented in the previous section roots of g are super- 
atractive fixed points of iteration functions. The point 00 is the repulsive 
fixed point for all those functions. Newton’s method has no other fixed 
points, because in this case the fixed point condition N(p)=p implies that 
g(p)=0. For higher order Schroder iteration functions ^m(z) (m^3) the
condition Sm(p)=p implies that either (1 ) g(p)=0 or (2 ) Tm(p)=0, where

m- 1 . .
T (z) = [ c  (z)[—g(z)] # (16)m „ nn=l

Fixed points of iteration functions, which are not roots of g, will be called
extraneous fixed points. Such points have also Doring and Konig iteration
functions of higher order (order greater than 2 ).

If an extraneous fixed point is attractive or indifferent, then it may trap
an iteration sequence, giving erroneous result for a root of g. It often 
takes place in the case of Doring iteration function, because this function 
usually has indifferent fixed points.

THEOREM 1. Let point zq be an extraneous fixed point of D. Suppose that 
f'(z q )*0 . Then the point z^ is an indifferent fixed point.

Proof. We introduce the following notations:

m(z) = 4(f'(z) ) 5 + 2f2 (z)(f"(z) ) 2 - 6f(z)(f'(z))3f"(z) +
(17)

+ | f2 (z)(f'(z))2f"'(z),

g(z) = f(z)f"(z) - 2 (f'(z))2. (18)
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Then we can write (15) in the form

2
(19)

Derivative of D is given by

D' (z)=l g(z) [f' (z)g(z? - 2f(z)g'(z)]m(z) - f(zig2 (z)m'(z)
2 , . m (z)

(2 0)

Expression (17) may be written as

m(z) = 2g2 (z)f'(z) + g f2 (z)(f'(z))2f"'(z). ( 2 1 )

Since z is an extraneous fixed point, it follows that g(z )-0. By o °
assumptions that f'(z )*0 and f"'(z )*0, we have m(z)*0, Then D'(z )=1 o o o
follows from (2 0).

COROLLARY. Let f be a polynomial of degree n̂ 3. Then the function D 
constructed from the polynomial f has at least 3 indifferent fixed points.

Proof. If the assumptions of Theorem 2 are satisfied for all roots of the 
polynomial g then the function D has 2n-2 extraneous indifferent fixed
points. Now suppose that any root of g is also a root of f' then it would
have to be a root of f"(z), too. So there would be at most 2n-5 points z 
such that the assumptions of Theorem 2 would not be fulfilled. This result is 
in a sharp contrast with K'dnig iteration functions.

THEOREM 2. For m^3 all fixed points of K (z) which are not roots of g(z)m
are repulsive.
Proof, The extraneous fixed point condition implies

[l/g(z)](m-2 ) = 0. (2 2 )

The derivative of K (z) is given bym

K' (z) = 1 +(m-1 ) m
[(l/g(z)) (m~1}] - (l/g(z))(m 2 )(l/g(z))m

[d/g(z) ) ( m_1)] 2
(23)

If [l/g(z )]'m ^  * 0 then K'(z ) = m. o m o
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i m — 1 )In order to show that zq is a repulsive fixed point when [1/g(zq)]' = 0
we introduce polynomials defined by

( l W (z)
E l / gC z ) ]  =  ?L  m = l , 2 , 3 , . . .  (24)

[g (z) ]

Differentiation of equation (24) gives the following recurrence relation for
the W (z): m

W, . = W'(z)g(z) - (m+l)W (z)g'(z) (25)lm+1 1 m m m

The Konig functions constructed from the polynomial g(z) may now be written 
as:

W (z)
K (z) = z + (m+1 )g(z) t--- 7— T T u i r \ \ (26)m & W (z)g(z) - (m+1)W (z)g (z)m m m

Since W (z ) = 0 and W (z ) = 0, it follows that W'(z ) = 0. Then there m o m+1 o m o
exists an integer number n>l and a polynomial V (z) such thatm

W (z) = (z-z )nV (z) (27)m o m

Substituting the derivative ^(z) given by

W'(z) = n(z-z )n *[V (z)+(z-z )V'(z)] (28)m o m o m

into (1 2 ) we obtain

K (z) = z + •m (29)
(z-z )nV (z)

+ (m-l)g(z) --------   Ï------ -------------------
(z-z )n {[nV (z)+(z-z )V'(z)]g(z)-(m-l)(z-z )V (z)g'(z) o m o m °  o m  m

An easy computation shows that z is a fixed point of Konig function K (z).O m
To show that this point is repulsive differentiate equation (26) to give
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K' (z) = 1 + (m-l)g'(z) rp- W(z)m 5 W'(z)g(z)-(m-l)W(z)g'(z)

(m-l)g(z) W' Ŵ' ̂ ^gtzJ-Cm-DWCzjg' (z)] _ p Qj
[W'(z)g(z)-(m-T)W(z)g'(z) ] 2

-(m-l)g(z) [W"(z)g(z)+W7 (z)g' (z)-(m-DW' (z)g' (z)-(m-l)W(z)g"(z)]W(z) 
[W'(z)g(z)-(ra-l)W(z)g' (z) ] 2

Using (30), (27) and (28) it is a routine matter to shaw that

K' (z ) = J + —  (31)m o  n

Since ¡1 + — -|>1 for all m,n>l we conclude that 1K7 (z )|>1.• n 1 ‘ m o 1

4. BASINS OF ATTRACTION OF ROOTS OF THE POLYNOMIAL g(z)=zn-l

2The Newton’s method applied to polynomial g(z)=z -1 was analyzed by 
Cayley [3], who found that in this case

A(+l) = t  = {z: Re(z)>0)

A (— 1) = e£ = {z: Re(z)<0}

and that

3A(+1) = 3A(-1) = ip, where <p denote the imaginary axis 

Let </>(z) be a Mobius transformation

0(z) = with 0  ̂(w) = (32)Z-1 W+1

then 0N0 ^(w)=wi", 0 (X) = {w:|wj<l}, 0(51) = {w:|w|>l} and 0 (if)= C , the 
unit circle. In the same way, using Mobius transformation, Vrscay and Gilbert
[19] found that the imaginary axis is the Julia set for all König functions
K^Cz) associated with the polynomial g(z)=z -1 .
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2Basins of attraction of roots of g(z)=z -1 associated with Schro'der and 
Doring methods were found experimentally. Also in the case of Ddring method 
imaginary axis appeared to be the Julia set " of iteration function. The 
Schroder functions have fixed points that don’t lie on the imaginary axis. 
For example S„(z) has two repulsive fixed point at z = ± — and S (z)

(2±/7) 1/2has four repulsive fixed points at z = ± — ----—  . Since repulsive fixed
VTT

points must lie on the Julia set JtS^), the imaginary axis mustn’t be Julia
set of S (z). The basin of attraction A(l) and A(—1) associated with Schroder m
functions are seen on fig. 1 and 2 .

Fig. 2b. Basins of attraction of
2roots of polynomial g(z}= z - 1 

for the iteration function S^(z)

Fig. 2a.Basins of attraction of
2roots the polynomial g(z)=z - 1  

for iteration function S^tz)

3Let us now consider the polynomial ^3 (2 ) = z “1- this case there are
at least 3 basins of attraction A(z.), where z =1, z, „ = -l/2±'/3/2l o 1 , 2
In accordance with property (9) of Julia sets we have

J = 3A(z ) = 3A(z ) = SA(z_) o 1 2

From this property, it follows that Julia set for all iteration functions
associated with polynomial of degree greater than two must have very
complicated and strange shapes. Fig. 2,3 allow to compare basins of
attraction for Newton, Schroder, Konig nad Doring functions applied to g(z)= 

3 . , , 4
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If the Doring method is applied to polynomial fCz) = zn-l then equation:
ff"-2(f')?*P

has n+1 solutions: z =nVrTn-T77Tn+T7 exp (2kni/n), where k = 0 , 1 .... n- 1

and 2^=0. Point zq is always repulsive fixed point of D(z). If n>2, then
f’(z^l^O and f"'(z^)* 0 for k=0,...,n-l. So the assumptions of the
theorem 1 are hold for all z, (k=0 n-1) and the function D(z) associa-k
ted with g(z) = z -1 has exactly n extraneous indifferent fixed points. On 
fig. 2 and 3 basins of attraction of all those points are white.

3Fig. 3. Basins of attraction of roots of plynomial g(z) = z -1 for the
method (a), for the K4 method (b) and for the Dbring method (c)
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3Fig. 3. Basins of attraction of roots of plynomial g(z) = z -1 for the
method (d), for the method (e) and for Newton’s method (f)
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4Fig. 4. Basins of attraction of roots of polynomial g(z)=z -1 for Newton
method (a) and D'oring method (b)
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Fig. 4. Basins of attraction of roots of polynomial g(z)=z -1 for the
method (c) and the method (d)
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Fig. 4. Basins of attraction of roots of polynomial g(z)=z4-l for the K
method (e) and the K4 method (f)
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5. ATTRACTIVE EXTRANEOUS FIXED POINTS AND CYCLES OF CUBIC POLYNOMIALS

Here we’11 study a one-parameter family of cubic polynomials

gA(z) = z3 + (A-l)z - A

In our consideration critical points of iteration functions will play an 
important role:

Critical points z=c^ of iteration function R(z) are those points 
for which the equation R(z)=v admits multiple roots.

There are simply those points where the derivative R’(c.) vanishes.
Using the following theorem due to Fatou:

If R(z), a rational function, has an attractie periodic cycle, then 
the orbit of at least one critical point will converge to it.

We’ll determine the set of the parameters A (AeC), such that iteration 
function applied to solving the ^aS attractive or indifferent
extraneous point or cycle.

Newton’s iteration function Ng^tz) has four cirtical points. Three of 
them are roots of g^tz), so the fourth cirtical point located at z=0 is 
the only one available to converge to an atractive periodic cycle, if such a 
cycle exists. Black areas on fig. 5a represent A-values for which attractive 
cycles are observed. The black set in fig.5b, which is a magnification of the 
region [0.22;0.39]x[l.58;1.69] of fig. 5a looks remarkably like Mandelbrot 
set. As in the case of quadratic maps, these sets represents zones of stable 
cycles which undergo period-doubling bifurcations. For example, the major 
cordioid in fig. 5b represents A-values for which there exists attractive two 
cycles (No extraneous fixed points can occur for Newton’s method). The 
adjacent circular region corresponds to attractive 4-cycles, etc. Fig. 1 and 
fig. 6 allow to compare basins of attraction of attractive points or cycles 
the quadratic polynomials Pc(z) and basins of attraction of attractive 
points or cycles of Newton’s iteration function, when positions of the 
parameters A in the black, set on fig. 6 correspond to positions of the 
parameters c in Mandelbrot set.
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Fig. 5a. Convergence of the critical 
point z=0 of the iteration function 

NgA (z)
Fig. 5b. A magnification of the 
Mandelbrot-like set in fig 5a

Fig. 5. The Mandelbrot-like set for Newton’s method and basins of attraction
of extraneous cycles
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Schroder iteration function of order theree S^g^z) has two critical 
points besides roots of the polynomial g^Cz). Black area on fig. 7 is a set 
of those A-values for which an orbit of a critical point of the S^g^z) 
z = v'CA-l)/15 converges to an extraneous fixed point or cycle. Also in the 
case of this function the basins of attraction of the extraneous fixed paints 
or the cycles are alike to corresponding basins of attraction of the 
polynomials P^Cz).

l . a o  1 - 9 5

Rys. 7. Convergence of the cirtical point z = V (A-l)/15 of the iteration
function S^(z)

Fig. 8. The Mandelbrot-like set for the method and basins of attraction
of extraneous fixed points or cycles
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HEnOKBMXHblE TOHKM, OBJIACTM CXOflMMOCTM, MHOXECTBA TOJ1M5J M TJlOBAJlbHAH 

CXORMMOCTb HTEPAKMOHHblX METOflOB PE1UEHMS! HEJIMHEMHbIX yPABHEHMÜ

Pe3iOMe. B paßoTe npencTaBJieH anajiH3 rjioßajibHoü cxoammoctm mctoaob
pemeHHS MHorosjieHOB. Mbi npocnennjiM cxoAMMOCTb MeTOfloB HbioTOHa, liipenepa, 
KeHHra h HepwHra. Ecam npuMeHHTb oamh H3 3tmx MeTonoB aas peweHMs mho- 
roHJieua noJiywaeTCs M3MepnMaa lyHKunsi. IlpoÖAeMaM MTepauwPi M3MepMMwx 
äyHKnuu nocBeiyeHa KAaccMHecKas Teopwa XiojiHS-fexy. MuoxecTBa /Kioahs mcc- 
JieAOBaHHbix MeTonoB m objracTH npuTsxeHHS mw nojiyMHJiH c noMomb» KOMnbioTe- 
pa. Oahom M3 HanBoAee BaxHwx ripo6jieM cBS3aHHwx c rAo6aAbHOM cxoAMMocTbio 
MTepaUHOHHWX MeTOAOB SBAHeTCA CylUeCTBOBaHMe yCTOÛMMBWX UMKAOB H HenoA- 
bmhchwx ToueK. Mw AOKasaAM ABe reopeMw o HenoABMXHwx TowKax: Bee HenoA- 
BHSCHW TOHKM ïyHKUHM KeHMra, KpOMe KOpHCM MHOl'OHJieHa, SIBASIOTCS HeyCTOM- 
hmbwmm; syHKUMa flepMHra aas pemeHna MHoroHAeHOB nopsAKa Bwme neM ABa 
BcerAa oÖAaAaeT KpMTMHecKO—ycTOüHMBOM HenoABMXHOM TOHKy. SxcnepMMeH- 
TaAbHo obHapyxeHO, hto MTepauMOHHbie ïyhkumm lilpenepa MMeioT OAHHaKOBO 
yCTOMHMBbie, KpHTMHeCKO—yCTOMHMBNe M HeyCTOMHMBbie HenOABMXHble TOHKM.
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PUNKTY STAŁE, BASENY ZBIEŻNOŚCI ORAZ ZBIORY JULII A ZBIEŻNOŚĆ GLOBALNA 
METOD ITERACYJNYCH ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

S t r e s z c z e n i e

W pracy rozważane są metody Newtona, Koniga, Schrodera i DSringa 
zastosowane do znajdowania zer wielomianów. Z metodami tymi związane jest 
zagadnienie iteracji funkcji wymiernych w przestrzeni Riemanna, któremu 
poświęcona jest teoria Julii i Fatou. W pracy jest badane istnienie 
przyciągających i obojętnych dodatkowych punktów stałych lub cykli. Zostało 
pokazane, że punkty takie zawsze posiada funkcja iteracyjna Doringa 
zastosowana do rozwiązywania wielomianów stopnia wyższego od dwóch. Istnienie 
takich punktów stwierdzono również dla funkcji iteracyjnych Schrodera. Z 
kolei dodatkowe punkty stałe metod iteracyjnych Koniga są zawsze odpychające. 
Rozważania teoretyczne są uzupełnione rysunkami zbiorów Julii i basenów 
zbieżności uzyskanymi za pomocą komputera. Istnienie cykli lub dodatkowych 
punktów stałych przyciągających bądź obojętnych dla funkcji iteracyjnych 
zastosowanych do wyznaczania pierwiastków wielomianów stopnia trzeciego jest 
również badane eksperymentalnie poprzez śledzenie orbit punktów krytycznych 
funkcji iteracyjnej, nie będących jednocześnie pierwiastkami rozwiązywanego 
wielomianu.


