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I. ŁOJCZYK-KRÓLIKIEUICZ

DIFFIRENTIAL-FUNCTIONAL INEQUALITIES OF PARABOLIC 

AND ELLIPTIC TYPE IN BOUNDED DOMAIN

Summary. In the first part of the paper the inequalities of 
parabolic type are considered, with the linear boundary conditions. 
It is assumed the Lipschitz condition in its nonlinear form and the 
additional inequality (5). This inequality is a generalization of well 
known condition for linear equation, in which it is assumed that the 
coefficient at the unknown function is bounded from above. This 
assumption allows us to omit the condition of quasi-monotonicity of the 
function. The theorem concerning the inequalities results in the 
uniqueness theorem on the solution to the system (11) with the boundary 
condition given in Def. 5. In the second part, analogous theorems for 
the elliptic systems of the form (16) are considered.

All the theorems of this paper one can considered in an unbounded 
domain without introducing a stifling divisor. It suffices to assume 
that at all infinite points of the domain we have
lim sup (u1-v1)(x) s 0 for i=l,...,m. Obviously, using the methods 
|x|-» oo
of proofs given in the papers [5] and [7], we can prove all the above 
given theorems for the solutions irregular on the boundary with solu­
tions nonlinear boundary conditions.

INTRODUCTION

The purpose of this note is to prove the Theorems 4 and 5, concerning 
differential-functional inequalities, given without proofs in the paper [3], 
Moreover an analogous problem for the elliptic system is considered.

The boundary problems for the systems

uj s f^tt.x.u.u^.u1, ,u(t,-))
t  X  X X ( 1 )

1 ^  „ 1 , ,  i  1 ,  . , ,V. a i (t, x, v, v ,v , v(t,•)) t X XX (2)

for i e {1,2.... m) = I, in an arbitrary set D, were investigated in
papers [2], [4], [5], In the first paper we have applied the method of
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M. Krzyzanski [1],based on the so-called quasi-extremum. This method requires 
assumption of a strong Lipschitz condition, and also a strong assumption on 
the parafcolicity of f (see [2]).

In papers [4], [5] the stifling divisors were introduced, what in the case
a of bounded set D is superfluous.

We want to stress that the Lipschitz condition (4) introduced here has a 
nonlinear form as in [5]. Besides, it is possible to investigate the 
irregular solutions in unbounded domains in the same way as in which [5] and
[7] (but without assuming the existence of stifling divisors) under the same 
weak assumptions, but demanding that the solutions satisfy certain inequality
at infinity. We follow the idea of [8] (see Remark 6).

The elliptic systems are examined in [6], [7], but under the assumption of
the existence of the stifling divisor.

2. NOTATIONS AND DEFINITIONS FOR PARABOLIC SYSTEMS

Let E c be an open, set such that the projection of E onto the
t-axis is the interval (0,T), T i ».

Notation 1. We call the parabolic interior E of the set E all the set of 
points (t,x, ) e E, which have, for p>0, the lower half-neighbourhood

n  - 2  - 2  2  - •j(t,x): Y. (x.-x.) +(t-t) < p , t< t
i=l

belonging to E. This parabolic interior we denote shortly by D. Obviously
E c D c E.

Next we denote: Sq = E n -j (t, x): t=0 J- and <r = [5E n (t, x): 0<t£T^] \ D.
We assume that Sq is bounded non -empty set.

Notation 2. The set £=Sou<r we call the parabolic boundary of the set D.
It is evident that Du£=D.
For every t , 0 < t s T, we denote by the projection of the set

Drvj (t, x): t=x J- onto the space IR . S is an open, bounded, non-empty set for 
every x.

Notation 3. We denote by Z(S^) the class of all functions z(t,*):S^— » Rm, 
where z(t, •)(x)=z(t,x) for every t>0.

For every set EclRn+* we denote

E. _ = E n •/ ((k-1 )T , kT ]• Rn}- for kelN. (3)kT 1 o o 1
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Notation 4. Let f=(f* fm) be a function defined on a set of arguments
2

(t, x, s, q, r, z), where (t,x)eD, selRm, qsRn, reRn , zeZ(St).

Definition 1. Let <r1£o', for iel, be a set on which two functions 
ĥ .-cr*— >!R+ and g*:o-*— >IR+ are defined. For certain iel, cr* can be empty. 
From every point (t,x)ecr* there emerges a half-line at the given direction 
v*(t,x), such that its open interval, beginning at the point (t,x) is
contained in D. We require that r* is orthogonal to the t-axis.

Remark 1. In all theorems, where the existence of stifling divisor is
assumed, it suffices to require that the angle between r1 and the positive 
direction of t-axis is not smaller than n/2 for every (t.xlecr* (see [4] 
and [5] ).

Definition 2. By C (D) we denote the class of functions u:D— >Rm, conti-
tr dui .

nuous on D, which for every iel have the derivatives — r on cr , as well
dr1

as the derivatives u* u*=(u* ), u = (u* ), j,k=l,...,n, continuous on D.t X X. XX X .X.J J k

Remark 2. In the theorems concerning parabolic systems, the solutions can 
be irregular on the boundary in the sense given in the Definition 2 of the 
paper (5]. It is sufficient to introduce a simple modification of the proofs, 
according to the idea of the proofs given in [5],

Definition 3. We say that the function weC^tD) satisfies the boundary 
inequalities if, for iel, we have

1° wi(t,x) s 0 on ZVr*

2° F*(w*)(t,x) = h*(t,x)w*(t,x)-g*(t,x) ——t" w (t,x) £ 0 on cr*
dr 1

for iel.

Remark 3. The boundary inequalities can be formulated in the nonlinear 
form according to the Assumption E in [4] or, in case of irregular 
solutions, according to Definition 6 in [5].



124 I. Lojczyk-Krolikiewicz

Definition 4- Let ueC (D). We say that the function f1 is parabolicO'
with respect to u in a certain D^cD, if for every pair of symmetric matrices 
r, r such that

n
r £ r «=*•. £ , (r. ,-r. ,}X.A. £ 0. 

i , j = l  i j  i j  l  j

we have
f * (t, x, u, u*, r, u( t, • )) - f1 (t, x, u, u1, r, u( t, • )) £ 0x x
for every (t,x) e (see [8]).

3. PARABOLIC SYSTEMS

We will prove two symmetric theorems concerning the system of parabolic 
inequalities and a uniqueness theorem as a conclusion from the first of them.

Assumption Â . Let u.veC^CD) and let

N1 = -j(t,x)eD: ui(t,x) > vi(t,x)y for iel.

We assume that

uf(t,x) £ f * {t, x, u( t, x), u1 (t, x), u* (t, x), u( t, • ) ) ,t X XX

vf(t,x) a: f1 (t, x, v(t, x), V1 (t, x), V1 (t, x) , v(t, • ) ) t X XX

for every (t.xJeN1,
This 2m-system we will write shortly in the form of (1) and (2).

Assumption B̂ . There exists M: -j t, x, s, q, s(t, •) }— >{Rm, where s(t,*)eC(S^)
for every t>0, such that for iel and every pair of arguments of f1 we have

sgn (s*- s 1) [f1 (t, x, s, q, r, s, (t, •))- f1 (t, x, s, q, r, s (t, •)) ] £
(4)

£ M*(t, x, s-s,q-q,s(t,• )-s(t,•)) 

on the set N1,
for arbitrarily fixed reRn . Next we assume that for arbitrary z:D— R̂m,
bounded from above, at every point of the set N1 in which max zP (t,x) =

i ^= z (t,x)>0 we have

M1(t,x,z(t,x),0,z(t,•)) £ K sup z^tt.x)
St

for a certain KeR.

(5)
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Remark 4. If f1 do not depend on the last argument and if M1 are linear, 
that means

M* (t, x, z( t, x), 0) = Z (t, x)z^(t, x),
j=l J

then from (5) it follows that c^(t,x) £ K, since we can put z^(t,x) = 0 for 
i*j. In the theorems concerning the uniqueness of the solution to the linear 
equation there appears the well known assumption c(t,x) ^ c , a natural gene­
ralization of which is our (5).

Theorem 1. Let u.veCMD) be functions for which Assumption A holds, 
and let f1 be parabolic with respect to u in the set N1, for iel.We assume 
that all the conditions of Assumption Bj hold for f. If u-v bounded from 
above in D satisfies the boundary inequalities according to the Definition 3, 
then u s v in D.

Proof. If K>0 (see (5)), then we put T €(0,— )̂, if KsO, then T >0 cano ZK o
be fixed arbitrarily. We suppose that in (see (3)) there are points

, o
belonging to N . Hence max [sup (u -v )(t,x)] = H > 0. There exists Jel, such

i Do
We create the auxiliary function

w (t,x)=u^(t,x)-v^(t,x)- t,
o

where A is arbitarily fixed so that

\  < A < H. (6)

For te[0,T ] we have o

H £ sup w(t,x)= w 2 sup [u^(t,x)-v^(t,x)-A] = H-A > 0.
D Do o

The function w does not reach the least upper bound u on (ZXcr̂ )̂ , (see
Definition 3 p. 1°). At all points of o"̂ we have

FJ(w)(t,x) = FJ(uJ-vJ)(t,x)-hJ(t,x) [p < 0, (7)
o

in virtue of Definition 3 p. 2°. Now we suppose that w attains u at
(tj, x^ )e (cr̂ ) , but then from (7) it follows that
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dwwhence  r (t,,x ) > 0, which contradicts our supposition.
di>J 1

Therefore there exists. (t,x) belonging to the parabolic interior of Dq 
such that w reaches maximum at this point, and so we have

wt(t,x) £ 0, (8)

w (t,x) = 0 for j=l,...,n (9)
Xj

and n
£ w (t,x)A.A. £ 0. for every A e Rn. (10)

i,j=l V j  1 J

Because (t,x)eN^, we have

w.(t,x) + = u^(t,x)-v^(t,x) £ H(t,x,u,u^,u^ , U (t, • ) ) -t T t t x xxo

- fJ (t, x, u, u~\ ,u(t,.)) + f ̂ (t, x, u, u^, v^ , u(t, • ) ) -X XX X XX

- f^(t,X,V,V^,V^ , V ( t, * ) 3 -X XX

The first difference on the right hand of the last inequality is
non-positive in virtue of the parabolicity of fJ with respect to the u, 
provided that (10) holds. To the second difference we apply successively: 
first inequality (4) from Assumption Bj, and then condition (5) ence
wt(t,x) s KH - ¡j— .

0 iWe have assumed (6), therefore w.(t,x) £ H(K- ==-) < 0 for T fixed at thet 2T o
beginning, which contradicts (8).
Our supposition that N* is a non-empty set for certain i, has brought us to
the contradiction, so u £ v in D .o

Repeating the above reasoning for te(kTo>(k+1)Tq], we obtain u £ v in the 
who1e D.

As a conclusion from Theorem 1 we obtain the uniqueness theorem for the 
system

u* = f1 (t, x, u, u1, u1 ,u(t.O) for i€l (11)t x xx

with the following boundary value conditions:
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Assumption C. Let ueC^tD) satisfy the conditions:

1° u^tt.x) = ^j(t,x) on EVrS

2° F*(u^)(t,x) = qp*(t,x) on cr1
. 2  . 

for given (IVr1) — > R and 0* itr1— > R.

Theorem 2. Let u.veC (D) be two bounded solutions to the system (11) inO'
D, with the same boundary value conditions, given in Assumption C. We assume
that for every iel, f* are parabolic with respect to the solutions, and that
f1 satisfy Assumption B̂ . Then u = v in D.

We omit standard proof (see [2] the proof of Theorem 2).
Now we will formulate symmetric theorem to Theorem 1.
Assumption A„. Let u,veC (D) and let 2 o

NJ = \ (t,x)eD:uJ(t,x) < vJ(t,x)J-, for jel.

We assume that

u^ 2 f^(t,x,u,u^,u^ , u(t, •)), t x xx

VJ < f J (t x, v, v̂ , v^ , v(t, •)), for every (t,x)€N^.t X XX J

Assumption B2 ‘̂ e keeP first part of Assumption B̂ , in particular,
inequality (4). Now we assume, that for every z: D— WRm bounded from below in D,
at every point of the set N^ in which min z^(t,x) = z^(t,x) < 0 we have

P
(t, x, z(t, x),0,z(t,x) s -K inf z^(t,x) (12)

stfor a certain fixed K e R.

Theorem 3. Let u, veC (D) be the functions for which the Assumption A_
, 1 holds and let fJ be parabolic with respect to the u in the set N , jel.

We assume that B2 holds. If v-u,bounded from above satisfies boundary
inequalities according to Definition 3, then vsu in D.

We omit the proof, which is quite symmetrical to the proof of Theorem 1.

Remark 4. In [3], inequalities (5) and (12) were introduced in a little 
stronger form, namely
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M1 (t, x, z( t, x), 0, z(t, •)) £ K max sup [ (-1 )k + 'zP(t, x) ]
P St

at all points of N* at which max [ (-1)k+1zP(t,x)] > 0, for k=l,2.
P PIt is not necessary to investigate the maximum of all functions z (t,x)

(or -zP(t,x)), it is sufficient to take into consideration only these points 
of N1, at which this maximum reaches exactly z1, which is assumed now in 

and B^. This form of Assumptions B̂ , k=l,2, is very convenient for
application in the theorems of [3], which we are going to show now.

In Assumption E of Theorem 1 in (3i, we have assumed inequality (8), 
which we now repeat below for k=l.

If (t,x)eD and iel, then

f * (t, x, <f>( t )w(x), <j>[ t )w^ (x), 0, 0( t )w( •)) - f * (t, x, 0, 0, 0) £
(13)

£ -#(t) L?'(t.x,w(x),wi(x),w(-)),1 x

where 1 < w <K^ and <p{t) £ 0 is bounded from above. Moreover the following 
inequality holds

l !' (t, x, w(x), w1 (x), w (•)) - Aw*(x) > 0, (14)1 x

where AsR+ is an arbitrary constant.

From (13) and (14) it follows that

f1(t,x,0(t)w(x),#{t)w*(x),0,0(t)w(•)) - f*(t,x,0,0,0,0) <
(15)

< -0( t JAw5-(x) £ 0.

We see that (15) is a particular case of 5 with K=0 is (15), which we have
assumed additionally in 13].

4. NOTATIONS AND DEFINITIONS FOR ELLIPTIC SYSTEMS

Notation 5. Let C(G) be the class of functions z:G— >Rm, continuous in G,
where GcRn is an open, bounded set.

Notation 6. Let f-(*  f  ) be function defined on a set of arguments
2

(x,s,q,r,z) where xeG, seR , qeR reR , zeC(G).
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Definition 5. Let s1, for iel, be a subset of the boundary SG, on which 
two functions g S s 1— >R+ and h ^ s 1—aR+ are defined. For certain index i, s1
can be empty. From every xes1, there emerges a half-line of the given direc­
tion l1(x) such that its open interval beginning at the point x is 
contained in G.

Notation 7. Let us denote S1 = SGNs1 for iel.

Definiton 7. By C (G) we denote the class of functions u:G— >Rm, continuouss
in G, which satisfy the following conditions: every u, for every iel, has

2
continous derivatives u eR , u eR (cf.definition 2) in the domain G, and at

i x xx d ievery point x of s there exists the directional derivative — :--- u (x).
dl1(x)

Definition 8. We say that the function weC^iG) satisfies boundary 
inequalities if

1° w*(x) S O  on s\

i, , i, I dw2° F^(w1)(w) = h1(x)w1(x) - gX(x) —~j[* ^  ~ 0 on s1.
dl

Definition 9. Let ueC (G). We say that f1 is elliptic in G cG with
-S i i i i - °respect to the u, if r s r => f (x,u^u , r,u(*)) s f (x^u.u , r,u(*)) for every

xeG (cf. Definition 4). o

5. ELLIPTIC SYSTEMS

Assumption Ĉ . Let u.vsC^G). Denote by N* = -j (x)eG: u^tx) > v̂ tx)}-. We 
assume that

f1 (x,u,u\u1 ,u(*)) a f^x.v.v^.v1 ,u(*)) (16)x xx x xx

on the set N1 for iel.
Assumption D̂ . There exists M: -j (x, s,q, s(•)}■-» R™, where seC(G), such

that for every pair of arguments of f1 we have

sgnis^-s* ) [f * (x, s,q, r,s(*))-f^(x,s,q,r,s(»))] s

s M1(x,s-s,q-q,s(•)-s(•))

on the set N for arbitrarily fixed reR
2

(17)
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Next we assume that for every z: G->IRm, bounded from above, at every point 
of the set N1 for which max z^(x) = z^x) > 0 we have

P

M1(x,z(x),0,z(•)) £ K sup zi(x) (18)
G

for a certain K^> 0.

Theorem 4. Let u.veC^CG) be functions for which Assumption . is held.
Let f be elliptic with respect to u in N1 and let it satisfy Assuption D̂ . 
If u-v satisfies the boundary inequalities according to Definition 8, then 
u£v in G.

Proof. Suppose that max sup (u1-v1)(x) = H >0. There exists such jel
i G

that sup(uJ-vJ)(x) = H . The function w(x) = uJ(x)-vJ(x) cannot reach this H.
G . 1

onthe boundary S'' since we have assumed part 1° of Definition 8. At every

point of s'-', in virtue of part 2° of the same definition, we have

F^(u'^-v') (x) £ 0. (19)

If w(x)=H at a certain xes'', then from (19) it results that at this point
dw — —— r (x)>0, which contradicts the definition of l.u.b. So the point x at
dlJ

which w attains its maximum is an interior point of G belonging to N''. Then

w (x) = 0, k=l n (20)
xk

and n
I w (x)A.A £ 0 for every AelRn. (21)

j,k=l xjxk J K

We investigate now the difference 

P = f(x, u(x),u''(x),u'' (x),u(•)) -f^(x,v(x).v (x),vJ (x), v( *)).X XX X XX

Applying successively the ellipticity of fJ', (21), (17), (18) and (20), we see 
that P £ M'' (x, u(x)-v(x), 0, u( • )-v( •)) £ < 0 which contradicts the assumed
inequality (16) and finishes the proof.

Now we can formulate the uniqueness theorem.
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Consider the system

f1(x,u,u1,u1 ,u(*)) = 0 for iel (22)X XX

in the set G with the boundary value conditions: ux(x) = i/î tx) on S1,
F^tu^Mx) = = 0^(x  ̂ on s1 for given ^2 ^  e

Theorem 5. Let u.veC (G) be two solutions to the system (22) in G with s
the same boundary value conditions given above. We assume that for every iel, 
f1 are elliptic with respect to the both u and v and that f3' satisfy the 
Assumption D. Then u=v^ in G.

The symmetric theorem to Theorem 1 is obvious.

Remark 5. For elliptic systems we can also consider solutions irregular on 
the boundry in the sense given in [7] together with the nonlinear form of 
boundary conditions, similarly to [6] and [7],

Remark 6. All the theorems of the present paper, both for parabolic and
elliptic systems, can be proved in unbounded domains without introducing
stifling divisors,but under the assumption that at all infinite points of the
domain lim sup (u'L-v'L)(x) s 0 for iel. 

x|-*»

6. EXAMPLE

Now we are going to give an example. As one can see immediately, the
equation as + s =.0, a>0, has two solutions in [0,7r/a] which have the

n XX
value zero for x^=0 and x^ = ir/ S , namely s = 0 and s = sin(x/Va). Notice
that for s£s the inequality (17) takes now the form f(x,s,q,r,s(•))
- f(x,s,q,r,s(•)) = s-s that means M(x,s-s, q-q, s(•)-s(•)) = s-s. But setting
z(x) > 0 we have M(x,z(x),0,z(•)) = z(x) and therefore and (18) does not
hold. r 'jrva
Considering another equation as + s - b J" s(x)dx = 0, where a>0, b>0 we

o
see that s(x)=0 is the solution with the same boundary value conditions. We 
check Assumption D̂ : for s,seC(G) = C([0,rtVa]) such that sas, we have

m/a
f(x,s, q,r,s(•)) - f(x,s,q,r,s(•)) = s(x) - b J (s(x)-s(x))dx s

o
s sup (s(x)-s(x))(l-bnVa) < 0 for a and b fixed above. Therefore the unique- 

(o, 7tVa]

ness of the above solution follows from Theorem 5.
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NIERÓWNOŚCI RÓŹNICZKOWO-FUNKCJONALNE TYPU PARABOLICZNEGO
I ELIPTYCZNEGO W OBSZARZE OGRANICZONYM

S t r e s z c z e n i e

W pierwszej części pracy rozważane są układy nierówności typu parabolicz­
nego przy liniowym warunku brzegowym. Zakłada się nieliniową postać warunku
Lipschitza i dodatkową nierówność (5). Nierówność ta stanowi uogólnienie
znanego warunku dla równań liniowych, w którym żąda się ograniczoności od
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góry współczynnika przy funkcji niewiadomej. Założenie powyższe pozwala 
pominąć założenie o quasi-monotoniczności funkcji f. Z twierdzeń o nie­
równościach wynika twierdzenie o jednoznaczności rozwiązania układu (11) przy 
odpowiednich warunkach brzegowych (Assumption C). W drugiej części pracy, 
analogiczne twierdzenia są rozważane dla układów eliptycznych postaci (16).

Wszystkie twierdzenia tej pracy można rozważać w obszarze nieograniczonym 
bez wprowadzania dzielnika tłumiącego, zakładając tylko, że we wszystkich 
punktach niewłaściwych obszaru jest spełniony warunek lim sup (u -v (x) s 0 
d l a  i = l  m. M -*0

W sposób oczywisty, stosując metody dowodów podane w pracach [5] i [7], 
można otrzymać wszystkie podane w pracy twierdzenia dla rozwiązań 
nieregularnych na brzegu przy nieliniowych warunkach brzegowych.

HM$$EPEHL(HAJlbHO-$yHKIiMOHAJlbHblE HEPABEHCTBA nAPAEOJlMHECKOrO M SJlJlHnTMHEC- 
KOrO TMT10B B OrPAHMHEHHOM 0EJ1ACTM

Pe3K>Me. B nepBofi wacTM 3xofi paBoxt* paccMaxpnBaioTcsi cucxeMbi HepaBeHCTB

napaBojinnecKoro Tnna c JiMHeMHOM rpaHHHHOM ycaoBHeM. ripenno.naraexcsi HeJiH- 
HeńHas! sopMa ycJioBMS Jlnnuiwua u no6oBowHoe HepaBeHCTBo (5). 3to HepaBeH- 
ctbo SBJiseTCH o6o6meHneM 3HaKOMoro ycaoBHS fljia jiMHefiHbix ypaBHeHMH, b ko- 
topom npennojiaraexca orpaHnneHHe cBepxy K03$$nuMeHxa npn Hen3BecxHofi 
ayHKUHn. BbmieyKa3aHHoe npeanojioxeHHe no3BOJiaex CHSixb ycaoBHe o KBa3HMo— 
hotohhocth ®yHKunn f .  M3 xeopeM o HepaBeHCTBax BwxeKaex xeopeMa o eaHH- 
CTBeHHOCXM HJ1H CHCTeMbi (11), npH COOXBeXCXBeHHbIX TpaHHHHblX yCJIOBHSIX 
(onpeneJieHHe 5). Bo Bxopofi nacra pa6oxbi, paccyxaaioxcs! aHaaorMHHbie xeope- 
Mbi nas 3JiJiMnxHwecKHX CHCxeM BHaa (16).

Bee xeopeMH 3xoh paboxbi moxho pacCMaxpHBaxb x ax x e  b HeorpaHHweHHofi 
o6aacxM  6e3 BBona 3arjiyuiaiomero aejinxejisi. flocxaxoMHo xojibKo npennoJioxHXb, 
mxo *feo Bcex Heco6cxBeHHbix xoMKax o 6 a ac x n  BbnojiHsexcsi ycaoBHe

lim , , , su p  ( u 1 - v 1 ) (x)=0 n a s  i = 1,. . , m|X| + CD
OneBHUHO, Mcnojib3ys Mexonbi H0Ka3axeabcXB H3 paBox [5] h [7], moxho «o- 

K a3axb Bee BumeH3aoxeHHbie xeopeMbi a a a  HeperyaspH bix peuieHMii Ha rpaH nue 
npM HejlMHeHHblX rpaHHHHWX ycaoBH sx.


