Zygfryd KOMINEK

ON A RESULT OF W.STADJE

Summary. W. Stadje has proved [7] the following theorem.
Theorem A. Let $A \subset(a, b)$ be a measurable set such that $\lambda((a, b) \backslash A)=0$, where λ denotes the Lebesgue measure on \mathbb{R}. Let $f:(a, b) \longrightarrow \mathbb{R}$ be a measurable midconvex function on A i.e.
$f\left(\frac{x+y}{2} ; \leq \frac{f(x)+f(y)}{2}\right.$
whenever $x, y, \frac{x+y}{2} \in A$. Then there exists a convex function $\bar{f}:(a, b) \longrightarrow \mathbb{R}$ such that $\bar{f}(x)=f(x)$ for every $x \in A$.

In this note we generalize this result to the case of X being an arbitrary real linear topological space and the set A belonging to some σ-ideal in X fulfilling some additional conditions. In particular, the assertion of Theorem A is valid if A is residual in an open and convex subset D of a real linear topological Baire space satisfying the second axiom of countability.

Dedicated to Professor Mieczyskaw Kucharzewski with best wishes on his 70 th birthday.

In his paper [7] W. Stadje has proved the following theorem.

Theorem A. Let $-\infty \leq a<b \leq \infty$ and let $A \subset(a, b)$ be a measurable set such that $\lambda((a, b) \backslash A)=0$, where λ denotes the Lebesgue measure on \mathbb{R}. Let $f:(a, b) \longrightarrow \mathbb{R}$ be a measurable and midconvex function on $A, i . e$.

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \tag{1}
\end{equation*}
$$

whenever $x, y, \frac{x+y}{2} \in A$. Then there exists a convex function $\bar{f}:(a, b) \longrightarrow \mathbb{R}$ such that $\bar{f}(x)=f(x)$ for every $x \in A$.

In this note we shall give a different proof of Theorem A based on a result of M. Kuczma [2] (cf. also Th. 2, p. 459 in [3]) concerning functions fulfilling Jensen's inequality (1) almost everywhere (in the sense of

Lebesgue measure) in (a,b) ${ }^{2}$. Moreover, using the same idea, we shall prove a more general result. The results of this kind may be obtained also for additive functions.

1. FIRST WE SHALL PROVE A THEOREM BEING A GENERALIZATION OF THEOREM A.

Theorem 1. Let $-\infty \leq a<b \leq \infty$, and let $A \subset(a, b)$ be a Lebesgue measurable set such that $\lambda((a, b) \backslash A)=0$. Let $f:(a, b) \longrightarrow R$ be a midconvex function on A. Then there exists a unique midconvex function $\overline{\mathbf{f}}:(\mathrm{a}, \mathrm{b}) \longrightarrow \mathbb{R}$ on (a, b) such that $\bar{f}(x)=f(x)$ for each $x \in A$. If, moreover, f is measurable then \bar{f} is convex.

Proof, Let $D=(a, b)$ and

$$
M=\left\{(x, y) \in D x D ; \quad x \notin A \text { or } y \notin A \text { or } \frac{x+y}{2} \notin A\right\}
$$

Since

$$
M \subset[(D \backslash A) x D] \cup[D x(D \backslash A)] \cup\left\{(x, y) \in D \times D ; \frac{x+y}{2} \notin A\right\}
$$

and the set on the right hand side has the Lebesgue measure zero, the Lebesgue measure of M is also zero. By the definition of M and from our assumptions on f we get

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \text { for all }(x, y) \in(D \times D) \backslash M
$$

i.e. f is almost midconvex on D (cf.[2]). On account of a theorem of Kuczma (Th. 5 in [2]) there exists a unique midconvex function $\bar{f}: D \rightarrow \mathbb{R}$ on D such that $\bar{f}(x)=f(x)$ almost everywhere in D.

We shall show that $\bar{f}(x)=f(x)$ for every $x \in A$. Let $B \subset A$ be a measurable set such that $\lambda(D \backslash B)=0$ and

$$
\begin{equation*}
\bar{f}(y)=f(y) \quad \text { for each } \quad y \in B . \tag{2}
\end{equation*}
$$

Fix an arbitrary $x \in A$. There exists a $h \in \mathbb{R}$ such that $x \mp \frac{1}{2^{n}} h \in B$ for any positive integer n. Then also
$x+\left(x+\frac{1}{2^{n}} h\right)$
$\frac{2^{n}}{2}=x+\frac{1}{2^{n+1}} h \in B$. Hence by the midconvexity of f on $A \supset B$, and by virtue of (2) the inequalities

$$
\begin{align*}
& f(x)=f\left(\frac{\left(x-\frac{1}{2^{n}} h\right)+\left(x+\frac{1}{2^{n}} h\right)}{2}\right) \leq \\
& \leq \frac{f\left(x-\frac{1}{2^{n}} h\right)+f\left(x+\frac{1}{2^{n}} h\right)}{2}= \\
& =\frac{\bar{f}\left(x-\frac{1}{2^{n}} h\right)+\bar{f}\left(x+\frac{1}{2^{n}} h\right)}{2}
\end{align*}
$$

and

$$
\begin{aligned}
& \bar{f}\left(x+\frac{1}{2^{n+1}} n\right)=f\left(x+\frac{1}{2^{n+1}} h\right)=f\left(\frac{x+x+\frac{1}{2^{n}} n}{2}\right) \leq \\
& \leq \frac{f(x)+f\left(x+\frac{1}{2^{n}} h\right)}{2}= \\
& =\frac{f(x)+\bar{f}\left(x+\frac{1}{2^{n}} h\right)}{2}
\end{aligned}
$$

hold for every positive integer n. If n tends to infinity then the sequences $\bar{f}\left(x \bar{\mp} \frac{1}{2^{n}} h\right)$ both converge to $\bar{f}(x)$ ([3], Th. 1, p. 136). Therefore $\bar{f}(x)=f(x)$ by virtue of (3) and (4). This finishes the first part of the proof. The second part is a consequence of a theorem of Sierpinski [6] (cf. also [3] Th. 2 p. 218).
2. LET X BE AN ARBITRARY SET. A NON-EMPTY FAMILY \mathcal{J} of SUBSETS OF X CALLED AN IDEAL IFF IT SATISFIES THE TWO CONDITIONS
(i) if $A \in Y$ and $B \in A$, then $B \in \mathcal{Y}$,
(ii) if $A, B \in \mathcal{Y}$, then $A \cup B \in \mathcal{Y}$.

If condition (ii) is replaced by the stronger one
(iii) if $A_{n} \in M$ for every positive integer n
then $\bigcup_{n=1}^{\infty} A_{n} \in J$.
then Y is called a σ-ideal. If an
ideal (σ-ideal) satisfies also the condition $X \notin \mathcal{O}$, it is called proper. If we are given a proper ideal Y of subsets of X, then we say that a condition is satisfied y-almost everywhere in X (written y-(a.e.)) iff there exists a set $U \in Y$ such that the condition in question is satisfied for every $x \in X \backslash U$.

Now we suppose that $(X,+)$ is a group. An ideal (σ-ideal) \mathcal{I} of subsets of X is linearly invariant iff, beside conditions (i), (ii), (iii)) it satisfies also (iv) for every $x \in X$ and $A \in \mathcal{Y}$ the set $x-A$ belongs to Y. A proper linearly invariant ideal (σ-ideal) will in the sequel be referred to as a p.l.i. ideal (σ-ideal).

It is easily seen that in a real linear topological Baire space, the family of all subsets of the first category forms a p.1.i. o-ideal, as well as, the family of all measurable in the Lebesgue sense subsets of \mathbb{R}^{N} with measure equal to zero is also a p.1.i. σ-ideal.

Let Y be a p.l.i. ideal (σ-ideal) in a group $(X,+)$ and let \mathcal{Y}_{2} be an ideal (σ-ideal) in $X \times X$. The ideals Y and y_{2} are conjugate iff for every $A \in 2$ we have

$$
A[x]=\{y \in X ; \quad(x, y) \in A\} \in J \quad J-(a . e .) \quad \text { in } X
$$

The family $\pi(Y)$ defined by the formula

$$
\pi(Y)=\{A \subset X \times X ; \quad A \subset(U \times X) \cup(X \times U), \quad U \in \mathcal{Y}\}
$$

is a p.l.i. ideal (σ-ideal) in $X \times X$. These and some others informations concerning idealsmay be found, for example, in [3] (pp. 437-443).

We have the following lemma.

Lemma 1. Let $(X,+)$ be a commutative group in which division by two is uniquely performable, let \mathcal{J} be an ideal in X such that if $S \in \mathscr{Y}$ then $2 S \in \mathcal{Y}$, and assume that $U \in \mathcal{Y}$. If $Y_{2} \supset \pi(\mathcal{Y})$ is an ideal in $X \times X$ and condition
(v) $Z \in Y_{2}$ implies $T_{1}(Z) \in Y_{2}$,
is fulfilled, where $T_{1}: X \times X \longrightarrow X \times X$ is defined by the formula

$$
\begin{equation*}
T_{1}(x, y)=\left(\frac{x+y}{2}, \frac{x-y}{2}\right), \quad x, y \in x \tag{5}
\end{equation*}
$$

then the set

$$
\begin{equation*}
S_{1}=\left\{(u, v) \in X \times X ; \quad \frac{u+v}{2} \in U\right\} \tag{6}
\end{equation*}
$$

belongs to the ideal Y_{2}.
Proof. Since $2 U \in Y$ and $\pi(Y) \subset Y_{2}$, the set $2 U \times X$ belongs to Y_{2} and hence $T_{1}(2 U \times X) \in Y_{2}$ by virtue of (v).
But

$$
\begin{aligned}
T_{1}(2 U \times X) & =\left\{(u, v) \in X \times X ; \quad u=\frac{x+y}{2}, \quad v=\frac{x-y}{2}, \quad x \in 2 U, y \in X\right\} \\
& =\left\{(u, v) \in X \times X ; \quad \frac{u+v}{2} \in U\right\}=S_{1} .
\end{aligned}
$$

Consequently $S_{1} \in \mathcal{I}_{2}$.
We will apply the following theorem of M. Kuczma ([3], Th. 2 p. 459).

Theorem B. Let D be an open, convex subset of a real linear topological space and suppose that the conjugate p.l.i. σ-ideals $Y_{\text {and }} Y_{2}$ (in X and in $X \times X$, respectively) are given. Assume that the ideals Y and Y_{2} satisfy the conditions
(a) if $A \in \mathcal{Y}$ and $\alpha \in \mathbb{R}$, then $\alpha A \in \mathcal{J}$,
(b) If $A \in \mathcal{Y}_{2}$, then $T_{1}(A) \in Y_{2}$,
where T_{1} is given by (5). If $f: D \longrightarrow \mathbb{R}$ is a Y_{2}-(a.e.) midconvex function, then there exists a unique midconvex function $\bar{f}: D \longrightarrow \mathbb{R}$ on D such that $\bar{f}(x)=f(x) \quad y-(a . e$.$) in D$.

In fact, this theorem was formulated in the case where the real linear topological space $X=\mathbb{R}^{N}$, but its proof in our situation is literally the same as presented in [3].

Lemma 2. Let $(X,+)$ be a commutative uniquely 2-divisible topological group having the property: for every neighbourhood G of zero $\bigcup_{n=0} 2^{n} G=X$. Let D be an open subset of X such that $(D-x) \subset 2^{n}(D-x)$ for every $x \in D$ and each positive integer n and assume that in X we have a p.l.i. $\sigma-i d e a l$ I fulfilling the condition

$$
\text { (vi) if } u \in Y \text {, then } \frac{1}{2^{n}} U \in Y \text { and } 2^{n} U \in Y
$$

for every positive integer n. If $V \in \mathcal{Y}$ and $x \in D$, then the set
$\bigcap_{n=1}^{\infty}\left[2^{n}(B-x) \cap 2^{n}(x-B)\right]$, where $B=D \backslash V$, is non-empty.

Proof. Let $V \in J, B=D \backslash V$ and fix an $x \in D$. The set $(D-x) \cap(x-D)$ is a non-empty neighbourhood of zero. Therefore

$$
\begin{equation*}
(D-x) \cap(x-D) \notin\} \tag{7}
\end{equation*}
$$

because Y is a proper σ ideal fulfilling (vi) (cf. also [3], Lemma 1 p. 452). Assume that

$$
\bigcap_{n=1}^{\infty}\left[2^{n}(B-x) \cap 2^{n}(x-B)\right]=\varnothing
$$

We have

$$
\begin{aligned}
(D-x) \cap(x-D) & =(D-x) \cap(x-D) \backslash n_{n=1}^{\infty}\left[2^{n}(B-x) \cap 2^{n}(x-B)\right]= \\
& =\bigcup_{n=1}^{\infty}\left[[(D-x) \cap(x-D)] \cap\left[2^{n}(B-x) \cap 2^{n}(x-B)\right] \cdot\right) c \\
& \subset \bigcup_{n=0}^{\infty}\left[2^{n}(D-x) \cap 2^{n}(x-D) \cap\left[2^{n}(B-x)^{\prime} \cup 2^{n}(x-B)^{\prime}\right]\right] c \\
& \subset \bigcup_{n=0}^{\infty} 2^{n}(v-x) \cup \bigcup_{n=0}^{\infty} 2^{n}(x-V)
\end{aligned}
$$

where C^{\prime} denotes the complement of the set C. Since $V \in \mathcal{Y}$ and I is a p.1.1. σ-ideal, $(D-x) \cap(x-D)$ belongs to Y, which contradicts (7). This completes the proof.

Theorem 2. Let D be an open and convex subset of a real linear topological space X, and suppose that in X we have a p.1.i. σ-ideal fulfilling condition (a) and in $X \times X$ we have a p.l.1. 6 -ideal $y_{2} \supset \pi(Y)$ fulfilling condition (b) such that Y and Y_{2} are conjugate. If $f: D \longrightarrow \mathbb{R}$ satisfies (1) whenever $x, y, \frac{x+y}{2} \in D \backslash U$, where $U \in Y$, then there exists a unique function $\bar{f}: D \longrightarrow \mathbb{R}$ midconvex on D such that $\bar{f}(x)=f(x)$ for every $x \in D \backslash U$.

Proof. Let us put

$$
M=(U \times D) \cup(D \times U) \cup S_{1},
$$

where S_{1} is defined by (6). It follows from inclusion $Y_{2} \geqslant \pi(Y)$ and Lemma 1 that $M \in Y_{2}$. If $x, y \in(D \times D) \backslash M$, then $x, y, \frac{x+y}{2} \in D \backslash U$ and hence f is y_{2}-almost everywhere midconvex function. On account of Theorem B there exists a unique midconvex function $\bar{f}: D \longrightarrow \mathbb{R}$ on D and a subset $V \in \mathcal{I}, V \supset U$, such that

$$
\bar{f}(y)=f(y) \text { for every } y \in D \backslash V=B
$$

Fix an arbitrary $x \in D \backslash U$. By Lemma 2 there exists $h \in X$ such that $x \mp \frac{1}{2^{n}} h \in B$ for every positive integer n. The rest of the proof runs as a suitable part of the proof of Theorem 1.

Corollary 1. Let X be a real N-space \mathbb{R}^{N}, and let Y be the ideal of all subsets which have Lebesgue measure zero. Assume that D is an open and convex subset of \mathbb{R}^{N} and that $\mathrm{f}: \mathrm{D} \longrightarrow \mathbb{R}$ fulfils condition (1) whenever $x, y, \frac{x+y}{2} \in D \backslash U$, where U is an element of y. Then there exists a unique midconvex function $\bar{f}: D \longrightarrow \mathbb{R}$ on D such that $\bar{f}(x)=f(x)$ for every $x \in D \backslash U$. If moreover, f is Lebesgue measurable then \bar{f} is continuous and convex.

Proof. It is well known that the ideal Y of all subsets of \mathbb{R}^{N} of measure zero satisfies condition (a) and the ideal y_{2} of all subsets of $\mathbb{R}^{N} \times \mathbb{R}^{N}$ of measure zero fulfils condition (b) and $Y_{2} \supset \pi(y)$. The first part
of our assertion follows from Theorem 2, and the second part is a consequence of the first part and a theorem of Sierpinski [6] (cf. also Th. 2 p. 218 in [3]).

Similarly we can obtain

Corollary 2. Let X be a real linear topological Baire space satisfying the second axiom of countability and let Y be the ideal of all first category subsets of X. Assume that $D \subset X$ is an open and convex set and $f: D \longrightarrow \mathbb{R}$ fulfils (1) whenever $x, y, \frac{x+y}{2} \in D \backslash U$, where U is a set from Y. Then there exists a unique midconvex function $\bar{f}: D \longrightarrow \mathbb{R}$ on D such that $\bar{f}(x)=f(x)$ for each $x \in D \backslash U$. If, moreover, f satisfies the condition of Baire (i.e. the inverse image $f^{-1}(G)$ is a Baire subset of X for each open subset G of \mathbb{R}), then \bar{f} is continuous and convex.

Proof. By a theorem of Oxtoby [5] the ideal y_{2} of all first category subsets of $X \times X$ contains the ideal $\pi(Y)$. The first part of our assertion follows from Theorem 2, and the second part is a consequence of a theorem of a theorem of Mehdi [4].

3. THE FOLLOWING LEMMA WILL BE USED IN THE PROOF OF A THEOREM ANALOGUE TO THEOREM 2 FOR ADDITIVE FUNCTION

Lemma 3. ([3], Lemma 4 p. 441). Let ($X,+$) be a group and let \tilde{y} be a p.1.1. ideal in X. If $U \in Y$ then

$$
\begin{equation*}
S_{2}=\{(x, y) \in X \times x ; \quad x+y \in U\} \in \Omega(y) \tag{8}
\end{equation*}
$$

where

$$
\Omega()=\{A \subset X \times X ; A[x] \in Y \quad Y-(\text { a.e. }) \text { in } X\}
$$

Remark. It is well known fact (Lemma 3 in [3], p. 441) that if y is a p.1.1. ideal in X then $\Omega(Y)$ is a p.l.i. Ideal in $X \times X$ and, moreover, y and $\Omega(\xi)$ are conjugate.

Theorem 3. Let $(X,+)$ and $(Y,+)$ be groups (not necessarily commutative) and suppose that there is a given p.l.i. ideal y in X. If $f: X \longrightarrow Y$ satisfies the following relation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{9}
\end{equation*}
$$

whenever $x, y, x+y \in X U$, where $U \in J$, then there exists exactly one additive function $\overline{\mathrm{f}}: X \rightarrow Y$ (i.e. such that $\bar{f}(x+y)=\bar{f}(x)+\bar{f}(y)$ for all $x, y \in X$) such that $\bar{f}(x)=f(x)$ for every $x \in X \backslash U$.

Proof. Let us put

$$
M=(U \times X) \cup(X \times U) \cup S_{2}
$$

where S_{2} is given by (8). It is easy to check that $M \in \Omega(\mathcal{Y})$. It (x, y) $\notin M$ then (9) is fulfilled. So f is $\Omega(T)$ - a.e. additive function. In view of a theorem of Ger [1], there exists exactly one additive function $\bar{f}: X \longrightarrow Y$ such that $\bar{f}(x)=f(x) y-($ a.e. $)$ in x.

Let $V \supset U$ be an element of Y such that

$$
\begin{equation*}
\bar{f}(y)=f(y) \quad \text { for every } \quad y \in X \backslash V \tag{10}
\end{equation*}
$$

Take an arbitrary $x \in X \backslash U$. It is easily seen that $(X \backslash V) \cap[-(X \backslash V)+x] \neq \varnothing$. If $h \in(X \backslash V) \cap[-(X \backslash V)+x]$ then also $x-h \in X \backslash V$ and hence

$$
f(x)=f(x-h+h)=f(x-h)+f(h)=\bar{f}(x-h)+\bar{f}(h)=\bar{f}(x)
$$

by virtue of (10) and the additivity of \bar{f}. This ends the proof.

REFERENCES

[1] Ger R.: Note on almost additive functions. Aequationes Math. 17 (1978) 73-76.
[2] Kuczma M.: Almost convex functions. Colloq. Math. 21 (1970) 279-284.
[3] Kuczma M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequallty. Polish Scientific Publishers and Silesian University Press, Warszawa-Kraków-Katowice, 1985.
[4] Mehdi M.R.: On convex functions, J. London Math. Soc. 39 (1964) 321-326.
[5] Oxtoby J.C.: Cartesian Products of Baire spaces. Fundamenta Math. 49 (1961) 157-166.
[6] Sierpiriski W.: Sur les fonctions convexes measurables. Fundamenta Math. 1 (1920) 125-128.
[7] Stadje W.: An extension theorem for convex functions and an application to Teicher's characterization of the normal distribution. Mathematika, 34 (1987) 155-159.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice

O PEWNYM WYNIKU W. STADJE

Streszczenie
W. Stadje udowodnił następujące twierdzenie.

Twierdzenie A. Niech $A \subset(a, b)$ beqzie takim mierzalnym zbiorem, że $\lambda((a, b) \backslash A)=0$, gdzie λ oznacza miarę Lebesgue'a na \mathbb{R}. Niech $f:(a, b) \longrightarrow \mathbb{R}$ będzie mierzalną J-wypukłą funkcją na A, tzn. f spełnia nierówność

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}
$$

dla wszelkich $x, y, \frac{x+y}{2} \in A$. Wtedy istnieje taka wypukra funkcja $\bar{f}:(a, b) \longrightarrow \mathbb{R}$, że $\bar{f}(x)=f(x)$ dla każdego $x \in A$.
W tej pracy uogólniamy ten wynik na przypadek gdy X jest rzeczywista przestrzenią liniowo-topologiczną, a zbior A należy do pewnego σ-ideału w X. W szczególnosici, teza Twierdzenia A jest spełniona, gdy A jest rezydualnym podzbiorem pewnego otwartego i wypukıego podzbioru D rzeczywistej przestrzeni liniowo-topologicznej Baire'a spelniającej II postulat przeliczalności.

O HEKOTOPOM PEЗУЛЬTATE B. HTAДE

Резюме. В. Штаде (W. Stadje) показал [1] следующую теорему.
Теорема А. Пусть А \subset (a, b) будеть измеримым множеством таким, что $\lambda((a, b) / A)=0$, где λ обозначает лебегобую меру в R. Пусть $f:(a, b) \notin R$ измеримая J-вынуклая пункция A, m.e.

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}
$$

Для всех $x, y, \frac{x+y}{2} \in A$. Тогда существует такая выпуклая қункция
$f:(a, b) \rightarrow R$, что $f(x)$ для всех $x \in A$. В настоящей статье обобцаем зтот результат на случай когда X является вещественным линейно-монологическим пространством, а множество A принадлежит некоторомуб σ - идеалу $B \quad X$ исполняющему некоторые дополнительные условия. В гастности тезис Теоремы А сохраняется если А - выметное множество в некотором открытом и выпуклом подмножестве D дещественного линейно-монологического пространства бера, исполняющего вторую аксиому перечисленности.

