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ON A RESULT OF W.STADJE

Summary. W. Stadje has proved [71 the following theorem.
Theorem A. Let A c (a,b) bea measurable set such that A((a,b)\A) = 0,
where A denotes the Lebesgue measure on R Let f : (a,b) >R be
a measurable midconvex function on A i.e.

. xty, < FC) + F(y)
12 7~ 2

whenever x.,y, 6 a. Then there exists a convex function f: (@,5)— > R

such that fix) = f(x) for every x e Al

In this note we generalize this result to the case of X being an
arbitrary real linear topological space and the set A belonging to
some o-ideal in X fulfilling some additional conditions. In
particular, the assertion of Theorem A is valid if A isresidual in
an open and convex subset D of a real linear topological Baire space
satisfying the second axiom of countability.

Dedicated to Professor Mieczystaw Kucharzewski with best
wishes on his 70th birthday.
In his paper [7] W. Stadje has proved the following theorem.

Theorem A. Let-ooSa<bSm and let A c (a,b) be a measurable set

such that A((a,b)\A) = 0, where Adenotes the Lebesgue measure on R Let

f: (a,b) —> R be a measurable and midconvex function on A, i.e.
f(x+y} » FiX)+f(y) @D
whenever x,y, 6a. Then there exists aconvex function f:(a,b) - » R

such that f(Xx) = f(x) for every x e A
In this note we shall give a different proof of Theorem A based on a
result of M. Kuczma [2] (cf. also Th. 2, p.459 in [3]) concerning functions

fulfilling Jensen’s inequality (@) almost everywhere (in the sense of
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2
Lebesgue measure) in (a,b) . Moreover, using the same idea, we shall prove a
more general result. The results of this kind may be obtained also for

additive functions.

1. FIRST WE SHALL PROVE A THEOREM BEING A GENERALIZATION OF THEOREM A.

Theorem 1. Let -oosakbsm, and let A c (a,b) be a Lebesgue
measurable set such that A((a,b)\A) = 0. Let f: (a,b) ——»R be a midconvex
function on A. Then there exists a unique midconvex function f: (a,b) » R
on (a,b) such thatf(x) = Ff(x) for each xs A If, moreover, f is measu-
rable then f 1is convex.

Proof. Let D = (a,b) and

M={(,y) e DxD; xiA o ye Aor * A}
Since

M c [(OD\A) x D] u [Dx(O\A)I u {(x,y) e D x D; 2 A,
and the set on the right hand side has the Lebesgue measure zero, the
Lebesgue measure ofM is also zero. By the definition of M and from our

assumptions on f we get

f(x+y} a f(x) 4 f(y) forall x,y) e (Ox D)W,

i.e. f is almost midconvex on D (cf.[2]). Onaccount of a theorem of Kuczma
(Th. 5 in [2]) there exists a unique midconvex function f:D — > R onD such
that f(x) = f(x) almost everywhere in D.

We shall show that f(x)= f(x) for every x e A. Let B c Abe a measu-
rable set such that A(D\B)= 0 and

f(y) = f(y)for each y e B. @

Fix an arbitrary X e AThere exists a h e R such that x + — h e B
?
for any positive integer n. Then also n
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X+ X+ —= h)

2 - Vv + - heB Hence by the midconvexity of ¥ on A 3 B,
2 _n+l

and by virtue of (2) the inequalities

x-4 h + &+ W1

f&x) = f
f(x h)y + f(x + 4 h)
(©)
f(x - - h) + f(x + — h)
2n 2
and
X + X +— h
2n
f(x + i h) =FfXx+-L-h) =F
fO)+ f(x + — h)
(©)
fO)+ f(x + — h)
hold for every positive integer n. If n tends to infinity then the

sequences f(x + — h) both converge to T(x) ([3], Th.1, p. 136). Therefore

f(xX) = fx) by virtue of (3 and (4). This finishes the first part of the
proof. The second part is a consequence of a theorem of Sierpinski [6] (cf.

also [3] Th. 2 p. 218).
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2. LET X BE AN ARBITRARY SET. A NON-EMPTY FAMILY & OF SUBSETS

OF X CALLED AN IDEAL IFFIT SATISFIES THE TWO CONDITIONS

) if Ae 3 and Bc A, then B61,
(i) if A,Bed , then A uBe]

If condition (ii) is replaced by the stronger one
(iii) if A" e3 for every positive integer n

@®
then Uu A e2d .
n=F N
then A is called a <r-ideal. If an

ideal (cr-ideal) satisfies also the condition X 10 . it is called proper.
If we are given a proper ideal 4 of subsets of X. then we say that a
iff

condition is satisfied 2 -almost everywhere in X (written 3-(a.e. ))

there exists a set U e 3 suchthat the condition in question issatisfied

for every x e X\U.

Now we suppose that (X,+) is a group. An
iff. beside conditions (i). (ii), (iii)) it satisfies

and A e 0O the set x-A belongs to3

ideal (cr-ideal) 3 of subsets of

X is linearly invariant

also (iv) for every x e X

A proper linearly invariant ideal (cr-ideal) willin the sequel be referred to

as a p- 1. i. ideal (cr-ideal).
linear topological Baire space, the

It is easily seen that in a real
cr-ideal, as well

subsets of the first category forms a p. L.i.

family of all
sense subsets of ®

the family of allmeasurable in the Lebesgue
is also a p. l.i. cr-ideal.

as,
with measure equal to zero

be a p. 1. i. ideal (cr-ideal) in a group(X,+) and let 0 be an

Let 3
ideal (cr-ideal) in X x X. The ideals 3 and V ~ areconjugate iff for
every A e we have
AX] = (y e X; (X,y)e A}e 3 "J-fa.e. ) in X

The family n(J) defined by the formula

) = (Ac XX X; Ac UX X)) u XX WVW,Uue3 }
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is a p.l.i. ideal (o-ideal) in X x X. These and some others informations
concerning idealsmay be found, for example, in [3] (pp- 437 443).

We have the following lemma.

Lemma 1. Let (X,+) be acommutative groupin which division by two is
uniquely performable, let 3 be an ideal in Xsuch that if S € Othen
2S e 3 , and assume that Ue3. If? 2="03) is an ideal in X x X and
condition
v) Z € 32 implies T~Z) e
is fulfilled, where X x X— >X x X is defined by the formula

Vx.y) = (£~ *?)- *.y6 % ©®
then the set
S.1 = <(u,v) e X X X; N e U> ®)

belongs to the ideal 3 2-

Proof. Since 2U 6 J and *0) c the set 2U x X belongs to ~
and hence Tj(2U x X) e 32 by virtue of (V).
But
U x X)) = {@W,v)e X x X; u-= v = x e 2, yex>
= {(u,v) e X X X; 6 U> =
Consequently e 3 2-

We will apply the following theorem of M_Kuczma ([3], Th. 2 p.459).

Theorem B. Let D be an open, convex subset of a real linear topological
space and suppose that the conjugate p.l.i. o-ideals V and V2 (in X and
in X x X, vrespectively) are given. Assume that the ideals V and satisfy

the conditions

@ if Ae3 and aeR then aA e J

® if Ae ™3~ , then Tj(A) € 3 2>
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where is given by (). If f:D -——>R 1is a " 2~(a.e. ) midconvex
function, then there exists a unique midconvex function f:D —— >R on D such
that f(x) = f(X) y -(a.e.) in D.

In fact, this theorem was®" formulated in the case where the real linear
topological space X = RN , but Its proof in oursituation is literally the

same as presented in [3].

Lemma 2. Let (X,+¥) be a commutative uniquely 2-divisible 00topological

group having the property: for every neighbourhood G of zero U 2nG = X.
n=0

Let D be an open subset of X such that (D-x) c¢ 2n (D-x) for every x e D
and each positive integer n and assume that in X we have a p-1.i. a-ideal

3 fulfilling the condition

i) if Uey , then — Ue3 and 2n U 6 J
2n

for every positive integer n. If V €V and x e D, then the set

co
Q [2 (B-Xx) n 2n(x-B)], where B = D\, is non-empty.
n=I

Proof. Let V e 3 , B = D\V and fix an xe D. The set (D-x) n (x-D)

is a non-empty neighbourhood of zero. Therefore

(O-x) n (x-D) e 3 @)

because O is a proper o-ideal fulfilling i) (cf. also [3], Lemma 1
p.452). Assume that

n [2n(B-xX) n 2n(x-B)] = 0.
n=1

We have
O-x) n x-D) = O-xX) n x-D\ p [2n(B-xX) n 2n(x-B)] =
n=1

=Uu '[(D—x) n x-D1 n @2n(B-x) n 2n(x-B)]’] ¢

00
cU [2n(O-X) n 2n(x-D) n [2n(B-x)” u 2n (x-B)*]JI c
n=0
00 co
cU 2n(V-x) u U 2n(xV),
n=0 n=0
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where C* denotes the complement of the set C. Since Ve 3 and 3 s a
p- L.i. o-ideal, (O-x) A\ (x-D) belongs to 3 , which contradicts (7). This

completes the proof.

Theorem 2. Let D be an open and convex subset of a real linear topolo-
gical space X, and supposethat in Xwe have a p.l.i. o- ideal fulfilling
condition (@ and in X x X wehave a p. 1l i. ¢5*ideal 3 23 fulfilling
condition (b) such that 3 and ~ are conjugate. If f:D >R satisfies (O
whenever x,y, 6 DXU> where u 67, then there exists a unique function

f:D — >R midconvex on D such that fix) = f(x) for every x € D\U.
Proof. Let us put
M= @UxD)uCxU us,
where Sj isdefined by (6). It follows from inclusion b nCJ) and Lemma 1
that M € 3 2- If Xx,y e (O x D)\M, then x,y, » e D\U and hence f is

C~r-almost everywhere midconvex function. Onaccount of Theorem B thereexists

a unique midconvex function f:D >R on D and a subset V €J, V n U, such

that
f(y) = f(y) for every y e D\V = B.
Fix an arbitrary x € D\U. By Lemma 2 there exists h 6 X such that
X + — h e B for every positive integer n. The rest of the proof runs as a
2n

suitable part of the proof of Theorem 1

Corollary 1. Let X be a real N-space RN, and let 3 bethe idealofall
subsets which have Lebesgue measure zero. Assume that D isan open and
convex subset of and that f:D — >R fulfils condition CI) whenever

Xiy, ilX 6 d\U, where U 1is an element of 3 .Then thereexists a unique
midconvex function f:D — >R on D such that f(x) = f(x) for every x e D\U.

If moreover, f is Lebesgue measurable then f 1is continuous and convex.

Proof. It is well known that the ideal ~ of all subsets of RN of
measure zero satisfies condition (@) and the ideal 3~ of all subsets of

RN x R™ of measure zero fulfils condition (b) and 3 o0 rc(3). The First part
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of our assertion follows from Theorem 2, and the second part is a consequence
of the first part and a theorem of Sierpinski [6] (cf. also Th. 2 p.218 in
3D-

Similarly we can obtain

Corollary 2. Let X be a real linear topological Baire space satisfying the
second axiom of countability and let 3 be the ideal of all first category
subsets of XAssume that D c X 1is an open and convex set and faD——>R
fulfils (1) whenever x,y,~ ~ D\U,where U isa setfrom 3 . Then there
exists a unique midconvex function f:D —> R on D such that f(Xx) = f(x)
for each x e D\U. If, moreover, f satisfies the condition of Baire (i.e.
the inverse image f (G) is a Baire subset of X for each open subset G of

IR, then F 1is continuous and convex.

Proof. By a theorem of Oxtoby [5] the ideal 32 of all first category
subsets of X x X contains the ideal #@®). The first part of our assertion
follows from Theorem 2, and the second part is a consequence of a theorem of

a theorem of Mehdi [4].

3. THE FOLLOWING LEMMA WILL BE USED IN THE PROOF
OF A THEOREM ANALOGUE TO THEOREM 2 FOR ADDITIVE FUNCTION

Lemma 3. ([3], Lemma 4 p. 441). Let (X,+) be a groupand let "0 be a
p- L.i. ideal in X If Ue O then

s2 = <(X.y) 6 X x X; x+y 6 U> e n(t)), ®)

where

)={Ac X xX; A[x] e3 ) in X}

Remark. It is well known fact (Lemma 3 in [3], p- 441) that if j) is a
p-1.1. 1ideal in X then nft) 1is ap.-1li. ideal in X x X and, moreover, 3

and fi(3) are conjugate.

Theorem 3. Let X,+) and (Y,+) be groups (not necessarily commutative)

and suppose that there is a given p. Lii. ideal J in X If f:X >Y

satisfies the following relation
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f(x+y) = fix) +f(y)

whenever X,y, x+y e X\U, where U € 3 , then there exists exactly one
additive function f:X >Y (i.e. such that f&x+y) - f(x) + f(y) for all
X,y € X) such that T(X)= f(x) for every x e X\U.

Proof. Let us put
M= WUxX)yuxU us2

where S2 is given by (8). It is easy to check that Me 0(3). It (X,y) <« M
then (9) is fulfilled. So f is £1(3) - a.e. additive function”™ In view of a
theorem ofGer [1], there exists exactly one additive function f:X >Y such
that T(X) =f(x) 3 - (@a.e.) in X

Let V n U be an element of O such that

fQy) = f(y) for every y e X\V. 10)

Take an arbitrary x e X\U. It is easily seen that (X\V) n (-(X\V)+ x] * O.
Ifhe X\V) n [X\V) + xX] then also x - h € X\V and hence

f(x) =f(x-h+h) = F(x-h) + Ff(h)= F(x-h) + F(h) = F)

by virtue of (10) and the additivity of f. This ends the proof.
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O PEWNYM WYNIKU W. STADJE
Streszczenie
W. Stadje udowodnit nastepujace twierdzenie.

Twierdzenie A. Niech A c (a,b) bedzie takim mierzalnym zbiorem, ze
A((a,b)\A) = 0, gdzie A oznacza miare Lebesgue’a na R. Niech *f: (a,b) >R

bedzie mierzalng J-wypukda funkcjg na A, t@zn. F spednia nieréwnosé

rfX+y, _ fxX) + f(y)
12 2

dla wszelkich x,y, ey e A. Wtedy istnieje taka wypukta funkcja ?:(a,b)——>R
ze fT(X) = f(x) dla kazdego x e A

W tej pracy uogélniamy ten wynik na przypadek gdy X jest rzeczywistag
przestrzenig liniowo-topologiczng, a zbiér A nalezy do pewnego cr-ideatu w X.
W szczeg6lnosci, teza Twierdzenia A jest spedniona, gdy A jest rezydualnym
podzbiorem pewnego otwartego i wypukdego podzbioru D rzeczywistej
przestrzeni liniowo-topologicznej Baire’a speiniajacej Il postulat przeli-

czalnosci.
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0 HEKOTOPOM PE3YIIDLTATE B. UITAFIE

Pe3iOMe. B. UlTane (W. Stadje) noxa3a.n [1] cjienyionyio TeopeMy.

TeopeMa A. llycTb A c (a,b) 6yneTb M3MepnVbiM MHoxecTBOM tskhm, mto
A ((a,b)/A) = 0, rne A o6o3HauaeT Jie6ero6yio Mepy b R.llycTbh f: (a,b) #R
M3MepnMaa J-Btmyxjiasi syHXUHS A, m e.

xty. o FOO + F(Y)
12 2

fljia Bcex x,y, _4y e A Torna cymecTByeT Taxas Bbinyxjias TyHXqHH

f: (a,b) m R, uto F(X) nna Bcex X eA. B HacToamefi CTaTbe o6o6maeM 3tot
pe3yjibTaT Ha Cliyuafi Korna X SBJiseTca BemecTBeHHbiM jiMHefiHO-MOHoj iorHHecKHM
npocTpaHCTBOM, a MHoxecTBo A npHHannexHT HexoTopoMyS a— Hneajiy b X
Hcnoj iHaiomeMy HexoTopbie nonojiHHTenbHbie ycjioBMS. B raCTHOcTH Te3HC TeopeMH
A coxpaHseTcs eclJiH A - BbiMeTHoe MHOxecTBO b HexoTopoM oTxpuTOM h Bbiny-
XjioM noHMHOKCTBe D nemecTBeHHoro jiHHefiHO-MOHOJiorMHecxoro npocTpaHCTBa
Bepa, HcnoJiHaiomero BTopyio axcHOMy nepeuHCJieHHOCTH.



