Ryszard DESZCZ

ON PSEUDO-SYMMETRIC TOTALLY UMBILICAL SUBMANIFOLDS
OF RIEMANNIAN MANIFOLDS ADMITTING SOME TYPES
OF GENERALIZED CURVATURE TENSORS

DEDICATED TO PROF. DR MIECZYSZAW KUCHARZEWSKI
ON HIS 7OTH BIRTHDAY

Abstract

Sumnary. Let M be a totally umbilical submanifold, with parallel mean curvature vector field H, of a manifold N admitting ($0, k$) -pseudo-symetric tensor \tilde{T}, where $3 \leq \operatorname{dim} M<\operatorname{dim} N$ and $k \in \mathbb{N}$. Then the tensor T, the orthogonal projection of \tilde{T} on M, is also pseudo--symetric. Moreover, if T is a generalized curvature tensor on N, $\operatorname{dim} M \neq 4$ and the curvature tensor R of M is pseudo-symmetric, then the associated functions $L_{\tilde{T}}, L_{T}$ and L_{R} of the tensors T, T and R satisfy on the set $V \subset M$ consisting of all points of M at which the tensors T and R are both non-trivial the following equality $$
L_{T}=L_{\tilde{T} \mid M}+\tilde{g}(H, H)=L_{R}
$$

1. INTRODUCTION

The purpose of this paper is to generalize the following result from the paper [1] (Theorem 1 (i)):

Let $N(n=d i m N$) be a Riemannian manifold, with the metric tensor \tilde{g}, admitting a semi-symmetric generalized curvature tensor \tilde{T}. Let M ($m=\operatorname{dim} M$) be a semi-symmetric totally umbilical submanifold of N with parallel mean curvature vector field H. If the constant $\tilde{g}(H, H)$ is non-zero and $3 \leq m<n$, $m \neq 4$, then at any point of M at least one of the tensors R and T is trivial, where R is the curvaturre tensor of M and T is the orthogonal projection of the tensor \tilde{T} on M.

In the present paper we prove the following theorem:
Let $M, 3 \leq m<n, m \neq 4$, be a pseudo-symmetric totally umbilical submanifold, with parallel mean curvature vector field H, of a manifold N admitting a pseudo-symmetric generalized curvature tensor \tilde{T}. Let V be the
subset of M consisting of all points of M at which the tensors R and T are both non-trivial. Then the tensor field T is pseudo-symmetric and the following equality

$$
L_{T}=L_{\tilde{T} \mid M}+\tilde{g}(H, H)=L_{R}
$$

holds on V, where $L_{\tilde{T}}, L_{R}$ and L_{T} are the associated functions of \tilde{T}, R and T, respectively.

The special case of the above theorem, when the ambient space is pseudo--symmetric, was considered in [4] (Corollary 1 (1); see also Theorem). Namely, we have proved:

Let M be a totally umbilical submanifold, with parallel mean curvature vector field H, of a pseudo-symmetric manifold N. Then M is also pseudo--symmetric and the equality

$$
L_{R}=L_{\tilde{R} \mid M}+\tilde{g}(H, H)
$$

holds on the subset U_{R} consisting of all points of M at which R is non--trivial, where $L_{\tilde{R}}$ is the associate function of \tilde{R}.

Examples of manifolds realizing the assumptions of the last result are given in [6] and [8].

Throughout this paper all manifolds are assumed to be connected paracompact manifolds of class C^{∞}.

2. PSEUDO-SYMMETRIC TENSORS

Let N be an n-dimensional ($n \geq 3$) Riemannian manifold with not necessarily definite metric \tilde{g}. We denote by $\tilde{\nabla}, \tilde{R}, \tilde{S}, \tilde{C}$ and \tilde{K} the Levi--Civita connection, the Riemann-Christoffel curvature tensor, the Ricci tensor, the Weyl conformal curvature tensor and the scalar curvature of N, respectively.

For an ($0, k$)-tensor field \tilde{T} on $N, k \geq 1$, we define the tensor fields $\tilde{R} \cdot \tilde{T}$ and $Q(\tilde{g}, \tilde{T})$ by the formulas

$$
\begin{aligned}
& (\tilde{R} \cdot \tilde{T})\left(X_{1}, \ldots, X_{k} ; X, Y\right)=(\tilde{R}(X, Y) \cdot \tilde{T})\left(X_{1}, \ldots, X_{k}\right)= \\
& -\tilde{T}\left(\tilde{R}(X, Y) X_{1}, X_{2}, \ldots, X_{2}\right)-\ldots-\tilde{T}\left(X_{1}, \ldots, X_{r}, \ldots \tilde{R}(X, Y) X_{r}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q(\tilde{g} ; \tilde{T})\left(X_{1}, \ldots, X_{k} ; X, Y\right)=-((X \wedge Y), \tilde{T})\left(X_{1}, \ldots, X_{k}\right)= \\
& =\tilde{T}\left((X \wedge Y) X_{1}, X_{2}, \ldots, X_{k}\right)+\ldots+\tilde{T}\left(X_{1}, \ldots, X_{k-1},(X \wedge Y) X_{k}\right)
\end{aligned}
$$

respectively, where $\tilde{R}(X, Y)$ and $X \wedge Y$ are derivations of the algebra of the tensor fields on N and $X_{1}, \ldots, X_{K}, X, Y, Z \in X(M), \mathscr{X}(M)$ being the Lie algebra of vector fields on N. These derivations are the extensions of the endomorphisms $\tilde{R}(X, Y)$ and $X \wedge Y$ of $\nVdash(M)$ defined by

$$
\tilde{R}(X, Y) Z=\tilde{\nabla}_{X} \tilde{\nabla}_{Y} Z-\tilde{\nabla}_{Y} \tilde{\nabla}_{X} Z-\tilde{\nabla}_{[X, Y]} Z
$$

and

$$
(X \wedge Y) Z=\tilde{g}(Z, Y) X-\tilde{g}(Z, X) Y,
$$

respectively.
An ($0, k$)-tensor field \tilde{T} is parallel (resp., semi-symmetric) if the equality $\tilde{\nabla} \tilde{T}=0$ (resp., $\tilde{R} \cdot \tilde{T}=0$) holds on N. Of course, any parallel tensor field is semi-symmetric. An ($0, k$)-tensor field \tilde{T} is called recurrent (resp., birecurrent) if the equation

$$
\tilde{\nabla} \tilde{\mathrm{T}}=\varphi \otimes \tilde{\mathrm{T}}\left(\text { resp. }, \tilde{\nabla}^{2} \tilde{\mathrm{~T}}=\psi \otimes \tilde{\mathrm{T}}\right)
$$

holds on the set $U \subset N$ consisting of all points of N at which $\tilde{T} \neq 0$, where φ is a covector field on U (resp., ψ is a tensor field of type $(0,2)$ on U). It is easy to see that any recurrent tensor field \tilde{T} is semi-symmetric if and only if the covector field φ is locally a gradient. Moreover, if the metric form of N is positive definite then any recurrent tensor field $\tilde{\mathrm{T}}$ is semi--symmetric and the covector field φ is given by

$$
\varphi=\frac{1}{2} \mathrm{~d}(\log \mathrm{~g}(\tilde{\mathrm{~T}}, \tilde{\mathrm{~T}}))
$$

A birecurrent tensor field \tilde{T} is semi-symmetric if and only if the tensor field ψ is symmetric. An ($0, k$)-tensor field \tilde{T} is said to be pseudo-symmetric if it satisfies the condition
(*) at every point of N the tensors $\tilde{R} \cdot \tilde{T}$ and $Q(\tilde{g}, \tilde{T})$ are linearly dependent. Obviously, any semi-symmetric tensor field is pseudo-symmetric.
The converse fails in general.

An (0,4)-tensor field \tilde{T} on N is said to be a generalized curvature tensor [12] if it satisfies the conditions

$$
\begin{aligned}
& \tilde{T}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+\tilde{T}\left(X_{1}, X_{3}, X_{4}, X_{2}\right)+\tilde{T}\left(X_{1}, X_{4}, X_{2}, X_{3}\right)=0 . \\
& \tilde{T}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=-\tilde{T}\left(X_{2}, X_{1}, X_{3}, X_{4}\right), \quad \tilde{T}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\tilde{T}\left(X_{3}, X_{4}, X_{1}, X_{2}\right) .
\end{aligned}
$$

For a generalized curvature tensor field \tilde{T} we define the concircular curvature tensor $Z(\tilde{T})$ by the formula

$$
z(\tilde{T})\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\tilde{T}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)-\frac{x(\tilde{T})}{m(m-1)} \tilde{g}\left(\left(x_{1} \wedge x_{2}\right) x_{3}, x_{4}\right)
$$

where $S(\tilde{T})$ is the Ricci tensor of \tilde{T} and $K(\tilde{T})$ is the scalar curvature of \tilde{T}. A generalized curvature tensor \tilde{T} is called trivial at a point $x \in N$ if its concircular tensor $Z(\tilde{T})$ vanishes at x.

Remark ([2], Lemma 1.1(iii)). For a point $x \in N$, the equality $Z(\tilde{T})(x)=0$ is equivalent to the relation $Q(\tilde{g}, \tilde{T})(x)=0$.

Define now the set $U_{\tilde{T}}$ by

$$
U_{\tilde{T}}=\{x \in N: Z(\tilde{T})(x) \neq 0\}
$$

If a generalized curvature tensor \tilde{T} is pseudo-symmetric, then on the set $U_{\tilde{T}}$ we have

$$
\tilde{R} \cdot \tilde{T}=L_{\tilde{T}} Q(\tilde{g}, \tilde{T}),
$$

where $L_{\tilde{T}}$ is a function defined on $U_{\tilde{T}}$. Similarly, if \tilde{A} is a symmetric pseudo-symmetric $(0,2)$-tensor then on the set

$$
U_{\tilde{A}}=\left\{x \in N: \tilde{A}-\frac{1}{n} \operatorname{tr}(\tilde{A}) \tilde{g}\right\} \neq 0
$$

we have

$$
\tilde{R} \cdot \tilde{A}=L_{\tilde{A}} Q(\tilde{g}, \tilde{A})
$$

where $L_{\tilde{A}}$ is a function on $U_{\tilde{A}}$. The functions $L_{\tilde{T}}$ and $L_{\tilde{A}}$ are uniquely defned and called the associated functions of the tensor \tilde{T} and \tilde{A}, respectively.

The following lemmas will be used in the what follows:

Lemma 1. If \tilde{T} is a pseudo-symmetric generalized curvature tensor on a manifold N, then its Ricci tensor $S(\tilde{T})$ is also pseudo-symmetric. Moreover, the equality $\tilde{R} \cdot \tilde{T}=L_{\tilde{T}} Q(g, T)$ implies $\tilde{R} \cdot S(\tilde{T})=L_{T} Q(\tilde{g}, S(\tilde{T}))$.

Proof. Trivial.

Lemma 2. ([11], Lemma 2.1). Let \tilde{T} be the tnesor field on a manifold N defined by

$$
\begin{aligned}
& \tilde{T}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\frac{-\operatorname{tr}(\tilde{A})}{n-1)(n-2)} \tilde{g}\left(\left(X_{1} \wedge X_{2}\right) X_{3}, X_{4}\right)+ \\
& +\frac{1}{n-2}\left(\tilde{g}\left(X_{1}, X_{4}\right) \tilde{A}\left(X_{2}, X_{3}\right)-\tilde{g}\left(X_{1}, X_{3}\right) \tilde{A}\left(X_{2}, X_{4}\right)+\tilde{g}\left(X_{2}, X_{3}\right) \tilde{A}\left(X_{1}, X_{4}\right)-\right. \\
& \left.-\tilde{g}\left(X_{2}, X_{4}\right) \tilde{A}\left(X_{2}, X_{3}\right)\right)
\end{aligned}
$$

where \tilde{A} is a symmetric $(0,2)$-tensor field on N. Then we have:
(i) The condition $\tilde{R} \cdot \tilde{A}=L_{\tilde{A}} Q(\tilde{g}, \tilde{A})$ implies $\tilde{R} \cdot \tilde{T}=L_{\tilde{A}} Q(\tilde{g}, \tilde{T})$.
(11) If the equality $Z(\tilde{T})=0$ holds at a point $x \in N$, then at x the relation $\tilde{A}=\frac{1}{n} \operatorname{tr}(\tilde{A}) \tilde{g}$ is fulfilled.

Lemma 3. ([10], Lemma 2). Let \tilde{A} and \tilde{D} be symmetric (0,2)-tensors and \tilde{T} a generalized curvature tensor at a point x of a Riemannian manifold N satisfying the relations $\tilde{R} \cdot \tilde{A}=Q(\tilde{g}, \tilde{D})$ and $\tilde{R} \cdot \tilde{T}=\alpha Q(\tilde{g}, \tilde{T}), \alpha \in \mathbb{R}$. Then the equality

$$
\left((\tilde{D}-\alpha \tilde{A})-\frac{1}{n} \operatorname{tr}(\tilde{D}-\alpha \tilde{A}) \tilde{g}\right) Z(\tilde{T})=0
$$

holds at x .
A Riemannian manifold N is said to be pseudo-symmetric if its curvature tensor \tilde{R} is pseudo-symmetric [8]. If N is pseudo-symmetric, then the equallty

$$
\tilde{R} \cdot \tilde{R}=L_{\tilde{R}} Q(\tilde{g}, \tilde{R})
$$

holds on the set $U_{\tilde{R}}$. Any semi-symmetric manifold $(\tilde{R} \cdot \tilde{R}=0,[14])$ is pseudo-symmetric. Examples of non semi-symmetric pseuido-symmetric manifolds are given in [2], [6] and [8]. Recently, pseudo-symmetric manifolds were studied by various authors. For the references see [4].

A Riemannian manifold N is said to be Ricci-pseudo-symmetric if its Ricci tensor \tilde{S} is pseudo-symmetric [11], [5]. If N is Ricci-pseudo-symmetric, then the equality

$$
\tilde{R} \cdot \tilde{S}=L_{\tilde{S}} Q(\tilde{g}, \tilde{S})
$$

holds on the set $U_{\tilde{S}}$. In view of Lemma 1 , any pseudo-symmetric manifold is Ricci-pseudo-symmetric. The converse statement fails in general (see [11], [5]).

A Riemannian manifold N is said to be Weyl-pseudo-symmetric if its Weyl conformal curvature tensor $\dot{\tilde{C}}$ is pseudo-symmetric. If N is Weyl-pseudosymmetric, then the condition

$$
\tilde{\mathrm{R}} \cdot \tilde{\mathrm{C}}=\mathrm{L}_{\tilde{\mathrm{C}}} \mathrm{Q}(\tilde{\mathrm{~g}}, \tilde{\mathrm{C}})
$$

holds on the set $U_{\tilde{C}}$. Any pseudo-symmetric manifold N is Weyl-pseudo-symmetric. The converse statement fails in general (see [9]). Note that $\mathrm{U}_{\tilde{C}}=\{x \in \mathrm{~N}: \tilde{\mathrm{C}}(\mathrm{x}) \neq 0\}$.

Let M be a submanifold of a Riemannian manifold N with a metric \tilde{g}. We always assume that $3 \leq m<n$. In the case when \tilde{g} is not a definite metric we shall assume that the induced from \tilde{g} tensor g is a metric tensor of M. Let ∇^{\perp} denotes the normal connection in the normal bundle of M. We shall say that the mean curvature vector field H of M is parallel if $\nabla^{\perp} H=0$.

Non semi-symmetric pseudo-symmetric generalized curvature tensors arose during the study of semi-symmetric totally umbilical submanifolds, with parallel mean curvature vector field, of Riemannian manifolds admitting semi-symmetric generalized curvature tensors (see [1], Lemma 1). The following theorem is related to those results:

Theorem 1. Let M be a totally umbilical submanifold, with parallel mean curvatur vector field H, of a Riemannian manifold N admitting an ($0, k$)-pseudo-symmetric tensor field \tilde{T}. Then the tensor T, the orthogonal projection of \tilde{T} on M, is also pseudo-symmetric.

Proof. In the proof we use definitions and notations given in [13],[1] or [7]. Let the system of equations $x^{r}=x^{r}\left(y^{a}\right)$ be the local parametric representation of M in N, where y^{a} and x^{r} are local coordinates of M and N, respecitvely, $r, s, t, u \in\{1,2, \ldots, n\}$ and $a, b, c, d \in\{1,2, \ldots, m\}$. Let $N_{z}{ }^{r}$, $z=m+1, m+2, \ldots, n$ be the local components of the pairwise orthogonal unit normals to M and let

$$
B_{a_{1}}^{r_{1}} \cdots \cdot{ }_{a_{1}}^{r_{1}}=B_{a_{1}}^{r_{1}} \ldots B_{a_{1}}^{r_{1}}, \quad B_{a}^{r}=\partial_{a} x^{r}, \quad \partial_{a} / \partial y^{a}, \quad l \in N .
$$

Then at any point of M we have

$$
\begin{aligned}
& \left.-\tilde{g}^{r s} \tilde{\mathrm{~T}}_{r s_{2}} \ldots s_{k} \tilde{R}_{s s_{1} t u}+\ldots+\tilde{T}_{s_{1}} \ldots s_{k-1} r^{\tilde{R}_{s s_{k} t u}}\right)= \\
& =\alpha\left(\tilde{g}_{s_{1} u} \tilde{T}_{t s_{2}} \ldots s_{k}+\ldots+\tilde{g}_{s_{k}} \tilde{T}_{s_{1}} \ldots s_{k-1} t{ }^{-}\right. \\
& \left.-\tilde{g}_{s_{1} t} \tilde{T}_{u s_{2}} \ldots s_{k}-\ldots-\tilde{g}_{s_{k}} t^{\tilde{T}_{s_{1}} \ldots s_{k-1} u}\right), \quad \alpha \in \mathbb{R} .
\end{aligned}
$$

$$
\tilde{g}^{r s}=g{ }^{a b} B_{a b}^{r s}+\sum_{z} e_{z} N_{z}^{r} N_{z}^{s}, \quad e_{z}= \pm 1
$$

the Gauss equation and the equality $R_{r s t u} B_{a b c}^{r s t} N_{z}^{u}=0$, which is satisffied when H is parallel (cf.[13], eq. (20)), we get $R \cdot T=(\alpha+\tilde{g}(H, H)) Q(g, T)$, completing the proof.

In the case when $\tilde{T}=\tilde{C}$, the assumption that H is parallel can be omitted in Theorem 1. Namely, we have:

Theorem 2. (cf. [7], Lemma 2). Any totally umbilical submanifold of a Weyl-pseudo-symmetric manifold N is also Weyl-pseudo-symmetric.

3. PSEUDO-SYMMETRIC TOTALLY UMBILICAL SUBMANIFOLDS OF MANIFOLDS admitting pseudo--sympetric generalized curvature tensors.

Let M be a submanifold of Riemannian manifold N covered by a system uf coordinate neighbourhoods $\left\{V ; y^{a}\right\}$. We denote by $g_{a b}, R_{a b c d}, T{ }_{a b c d},(R \cdot R)$ abcdef,

$$
\begin{align*}
& Q(g, R)_{a b c d e f}=g_{a f} R_{e b c d}+g_{b f} R_{a e c d}+g_{c f} R_{a b e d}+g_{d f} R_{a b c e}- \tag{1}\\
& -g_{a e} R_{f b c d}-g_{b e}{ }^{R} a f c d-g_{c e} R_{a b f d}-g_{d e} R_{a b c f}{ }^{\prime} \\
& Q(\mathrm{~g}, \mathrm{~T})_{\text {abcdef }}=\mathrm{g}_{\mathrm{af}} \mathrm{~T}_{\text {ebcd }}+\mathrm{g}_{\mathrm{bf}} \mathrm{~T}_{\text {aecd }}+\mathrm{g}_{\mathrm{cf}} \mathrm{~T}_{\text {abed }}+\mathrm{g}_{\mathrm{df}} \mathrm{~T}_{\text {abce }}{ }^{-} \tag{2}\\
& -g_{a e} T_{f b c d}-g_{b e} T_{a f c d}-g_{c e} T_{a b f d}-g_{d e} T_{a b c f}{ }^{\prime} \\
& (R \cdot T)_{\text {abcdef }}=-T_{\text {bcd }}{ }^{R_{\text {haef }}}+T_{\text {acd }}{ }^{R_{\text {hbef }}}-T^{h}{ }_{\text {dab }} R_{\text {hcef }}+T_{\text {cab }}{ }^{R_{\text {hdef }}} \text {, } \tag{3}
\end{align*}
$$

the local components of the tensors $g, R, T(=$ the orthogonal projection of a generalized curvature tensor \tilde{T} from N on $M), R \cdot R, Q(g, R), Q(g, T)$ and R-T, respectively.

As an immediate consequence of Theorem 1 we have

Corollary 1. ([4], Proposition 1). Let M be a totally umbilical submanifold, with parallel mean curvature vector field H, of a manifold N admitting a pseudo-symmetric generalized curvature tensor field \widetilde{T}. Then the relation

$$
\begin{equation*}
R \cdot T=\rho Q(g, T), \quad \rho=L_{\tilde{T}} \mid M+\tilde{g}(H, H) . \tag{4}
\end{equation*}
$$

holds on the set $U_{\tilde{T}} \cap M$.
Using the algebraic properties of generalized curvature tensors and (2) we can easily prove the following

Lemma 4. Let T be a generalized curvature tensor at a point of a Reimannian manifold M. Then the relations

$$
\begin{align*}
& Q(\mathrm{~g}, \mathrm{~T})_{\text {abcdef }}=-Q(\mathrm{~g}, \mathrm{~T})_{\text {bacdef }}=Q(\mathrm{~g}, \mathrm{~T})_{\text {cdabef }}=-Q(\mathrm{~g}, \mathrm{~T})_{\text {abcdfe }}{ }^{\prime} \tag{5}\\
& T_{\text {hcak }} R_{\text {hk }}^{\text {hk }}+T_{\text {hkac }} R^{h}{ }_{\text {ef }}^{k}=0, \tag{6}\\
& \left(T_{\text {hkca }}-2 T_{\text {hack }}\right) R_{\text {ef }}^{h k}=0, \tag{7}\\
& \left(T_{\text {hkla }}-2 T_{\text {hlka }}\right) R_{f}^{h k l}+0, \tag{8}
\end{align*}
$$

hold at this point. Moreover, if at this point we have

$$
S(T)=\frac{1}{n} K(T) g
$$

then the equality

$$
\begin{equation*}
Q(\mathrm{~g}, \mathrm{~T})_{\text {bcdek }}^{k}=(\mathrm{m}-1) Z(T)_{\text {ebcd }} \tag{9}
\end{equation*}
$$

is satisfled.
As an immediate consequence of Lemma 3 and Corollary 1 we obtain

Lemma 5. Let M be a pseudo-symmetric totally umbilical submanifold, with parallel mean curvature vector field H , of a Riemannian manifold N admitting a pseudo-symmetric generalized curvature tensor \tilde{T}. Then the relations

$$
\begin{align*}
& \mu\left(S-\frac{1}{m} K g\right)=0, \tag{10}\\
& \mu\left(S(T)-\frac{1}{m} K(T) g\right)=0, \tag{11}
\end{align*}
$$

hold on the set $U_{R} \cap U_{T}$, where

$$
\begin{equation*}
\mu=L_{R}-\rho \tag{12}
\end{equation*}
$$

and ρ is defined by (4).

Lemma 6. Let M be a pseudo-symmetric totally umbilical submanifold, with parallel mean curvature vector field H , of a Riemannian manifold N admitting a pseudo-symmetric generalized curvature tensor \tilde{T}. If at a point $x \in U_{R} \cap U_{T}$ the function μ is non-zero then the relations

$$
\begin{align*}
& Z(T)_{\text {hcak }^{2}}{ }^{\text {hk }}{ }_{\text {ef }}=\rho Z(T){ }_{\text {caef }} . \tag{13}\\
& \rho=\frac{K}{m(m-1)} \tag{14}
\end{align*}
$$

hold on some open set $V \subset U_{R} \cap U_{I}, \quad x \in V$.

Proof. Let $V \subset U_{R} \cap U_{T}$ be a neighbourhood of the point x such that the function μ is non-zero at every point of V. Now, in view of Lemma 5, we obtain on V the equalities

$$
\begin{align*}
& S=\frac{1}{m} K g \tag{15}\\
& S(T)=\frac{1}{m} X(T) g . \tag{16}
\end{align*}
$$

The relation (4), In virtue of (3), can be written in the form

$$
\begin{equation*}
-T_{\text {hbcd }} R_{\text {aef }}^{h}+T_{\text {hacd }} R_{\text {bef }}^{h}-T_{\text {hdab }} R_{\text {cef }}^{h}+T_{\text {hcab }} R_{\text {def }}^{h}=\rho Q(g, T) \text { abcdef } . \tag{17}
\end{equation*}
$$

From this we obtain

$$
\begin{align*}
& -(R \cdot T)_{\text {hbcdij }} R_{\text {aef }}^{h}+(R \cdot T)_{\text {hacdij }} R_{\text {bef }}^{h} \\
& -(R \cdot T)_{\text {hdabij }} R_{\text {cef }}^{h}+(R \cdot T)_{\text {hcabij }} R_{\text {def }}^{h} \tag{18}\\
& -T_{\text {bcd }}^{h}(R \cdot R)_{\text {haefij }}+T_{\text {acd }}^{h}(R \cdot R)_{\text {hbefij }} \\
& -T_{\text {dab }}^{h}(R \cdot R)_{\text {hcefij }}+T_{\text {cab }}^{h}(R \cdot R)_{\text {hdefij }}=\rho(R \cdot Q(g, T))_{\text {abcdefij }}
\end{align*}
$$

Applying the relations (4), (2) and

$$
\begin{equation*}
R \cdot R=\tau Q(g, R), \quad \tau=L_{R} \tag{19}
\end{equation*}
$$

to the above equality we get

$$
\begin{aligned}
& \rho\left(-\mathrm{Q}(\mathrm{~g}, \mathrm{~T})_{\text {hbcdij }} \mathrm{R}_{\text {hef }}^{\mathrm{h}}+\mathrm{Q}(\mathrm{~g}, \mathrm{~T})_{\text {hacdij }} \mathrm{R}_{\text {bef }}^{\mathrm{h}}-\right. \\
& \left.-Q(g, T)_{\text {hdabij }} R_{\text {cef }}^{h}+Q(g, T)_{\text {hcabij }} R^{h}{ }_{\text {def }}\right)+
\end{aligned}
$$

$$
\begin{align*}
& -T_{\text {dab }}^{\text {h }}{ }^{\left.Q(g, R)_{h c e f i j}+T^{h} \operatorname{cab}^{Q}(g, R)_{\text {hdefij }}\right)=} \tag{120}\\
& \rho^{2}\left(g_{a f} Q(g, T)_{e b c d i j}-g_{a e^{Q(g, t)}}^{f b c d i j}{ }^{Q} g_{b f} Q(g, T)\right. \text { eacdij} \\
& +g_{b e} Q(g, T)_{f a c d i j}+g_{c f} Q(g, T)_{\text {edabij }}-g_{c e^{Q(g, T)}}^{f d a b i j}{ }^{-} \\
& \left.-g_{d f} Q(g, T) \text { ecabij}-g_{d e} Q(g, T) \text { fcabij}\right) .
\end{align*}
$$

Contracting this with $g^{j d}$ and $g^{i b}$ and applying (1), (2), (5), (6), (9), (15), (16) we find
$-2(m-1) \mu Z(T)_{h c a k} R^{R^{h k}}{ }_{\text {ef }}-2(m-1) \rho^{2} Z(T)_{\text {caef }}=$
$=\tau\left(2 T_{\text {heak }} R^{\text {hk }} e_{\text {í }}-\frac{2}{m} K T_{\text {caef }}-\right.$

On the other hand, the contraction of (17) with $g^{\text {af }}$, in virtue of (15) and (9), yields

$$
R_{e c}^{k} h_{T_{k b d h}}-R_{e d}^{k} h_{k b c h}=(m-1) \rho Z(T) \text { ebcd }-\frac{k}{m} T_{e b c d}-T_{h k c d} R_{b e}^{h} .
$$

Hence we obtain

$$
R_{f a}^{h} k_{\text {heck }}-R_{f c}^{h} T_{\text {heak }}=-(m-1) p Z(T) \text { ebcd }-\frac{K}{m} T_{\text {acef }}-T_{\text {hkac }} R_{\text {ef }}^{h}{ }^{k}
$$

This, by the alternation in (e,f), gives

$$
\begin{align*}
& R_{f a}^{h}{ }_{T_{\text {heck }}}-R_{\text {ea }}^{h}{ }_{T_{\text {hfck }}}-R_{f c}^{h}{ }^{k_{T_{\text {heak }}}+R_{\text {ec }}^{h} k_{\text {hfak }}=} \\
& =-2(m-1) p Z(T)_{\text {acef }}+\frac{2 K}{m} T_{\text {acef }}-2 T_{\text {hkac }} R^{h}{ }_{\text {ef }}^{k} . \tag{22}
\end{align*}
$$

Substituting this into (21) we obtain

$$
-(m-1) \mu Z(T)_{\text {hcak }} R^{R_{k} k}+(m-1) p Z(T)_{\text {caef }}=\tau\left(T_{\text {hcak }} R_{\text {ef }}^{h k}+T_{\text {hkac }} R_{\text {ef }}^{h}{ }^{k}\right)
$$

which, by (6), turns into (13). We prove now that the condition (14) holds on 4 . Contracting (20) with $g^{\text {ae }}$ and $g^{b f}$ and making use of (2), (5) and (9) we can get

$$
\begin{align*}
& 2\left(-R^{k}{ }_{i c}{ }^{1} T{ }_{k j d l}+R^{h}{ }_{j c}{ }^{1} T_{k i d l}-R^{k}{ }_{j d} T^{1} T_{k i c l}+R^{k}{ }_{i d}{ }^{l} T_{k j c l}\right)- \\
& \text {. }-R^{k l}{ }_{i c} T_{k l j d}+R^{k l}{ }_{j c}^{T}{ }_{k l i d}-R^{k l}{ }_{j d} T_{k l i c}+R^{k l}{ }_{i d} T_{k l j c}+ \tag{23}\\
& +g_{d j} R^{l k h} c^{T} 1 k h i{ }^{-} g_{d i} R^{l k h} c^{T} 1 k h j+g_{c i} R^{1 k h} d^{T} 1 k h j-g_{c j} R^{l k h} d^{T} 1 k h i=0 .
\end{align*}
$$

From (13), by contraction with $g^{e c}$ and making use of (15) and (16), it follows

$$
R^{h k l} f_{h l k a}=\frac{K(T) K}{m^{2}(m-1)} g_{a f} .
$$

Further, applying this, (7) and (8) in (23) we obtain

$$
\begin{aligned}
& R_{f c}^{h} k_{\text {heak }}-R_{f a}^{h} k_{\text {heck }}+R_{a e}^{h} T_{\text {hcfk }}-R_{c e}^{h} T_{\text {hafk }}= \\
& =R^{h k} e T_{\text {hafk }}-R_{f c^{h k}}^{T_{\text {haek }}}+R^{h k}{ }_{f a} T_{\text {heck }}-R^{h k} e_{\text {h }} T_{h c f k}+ \\
& +\frac{2 K(T) K}{m^{2}(m-1)}\left(g_{e a} g_{c f}-g_{f a} g_{c e}\right) .
\end{aligned}
$$

But the last relation, in view of (22), (6) and (13), turns into

$$
\left(\frac{K}{m(m-1)}-\rho\right) Z(T)=0
$$

which completes the proof.

Lemma 7. Let M be a pseudo-symmetric totally umbilical submanifold, with parallel mean curvature vector field H, of a Riemannian manifold N admitting a pseudo-symmetric generalized curvature tensor \tilde{T}. If at a point $x \in U_{\bar{n}} \cap U_{T}$ the function μ is non-zero then the relation

$$
\begin{align*}
& (m-4)\left(R_{\text {hicd }} T_{\text {eab }}^{h}-\frac{K(T)}{m(m-1)}\left(g_{e a} R_{\text {bicd }}-g_{e b} R_{\text {aicd }}\right)-\right. \tag{24}\\
& \left.-\rho\left(g_{d i} Z(T)_{a b e c}-g_{c i} Z(T)_{\text {abed }}\right)\right)=0
\end{align*}
$$

holds at x .

Proof. The equality (13), by (4) and (19), leads to

$$
\rho \mathrm{R}^{\mathrm{hk}}{ }_{e f} \mathrm{Q}(\mathrm{~g}, \mathrm{~T})_{\text {hcakij }}+\tau \mathrm{T}_{c a}^{\mathrm{h}}{ }^{\mathrm{k}} \mathrm{Q}(\mathrm{~g}, \mathrm{R})_{\text {hkefij }}=Q\left(\mathrm{~g}, \frac{\mathrm{~K}(\mathrm{~T})}{\mathrm{m}(\mathrm{~m}-1)} \mathrm{R}+\rho^{2} \mathrm{~T}\right)_{\text {caef } \mathrm{ij}} .
$$

This, in view of (2), (13) and (12), yields

$$
-R_{i e f}^{h} T_{h j a c}+R_{j e f}^{h} T_{h i a c}=
$$

$$
\begin{aligned}
& =\frac{K(T)}{m(m-1)}\left(g_{c j} R_{a i e f}-g_{c i} R_{a j e f}+g_{a i} R_{c j e f}-g_{a j} R_{c i e f}\right)+ \\
& +\rho\left(-g_{e j} Z(T)_{a c i f}+g_{e i} Z(T)_{a c j f}-g_{f i} Z(T)_{a c j e}+g_{f j} Z(T)_{a c i e}\right) .
\end{aligned}
$$

The last equality can be rewritten in the form

$$
\begin{align*}
& R_{j c d}^{h_{h i a b}}-R_{i c d}^{T_{h j a b}}= \\
& =\frac{K(T)}{m(m-1)}\left(g_{b j} R_{a i c d}-g_{b i} R_{a j c d}+g_{a i} R_{b j c d}-g_{a j} R_{b i c d}\right)+ \tag{25}\\
& +\rho\left(-g_{c j} Z(T)_{a b i d}+g_{c i} Z(T)_{a b j c}-g_{d i} Z(T)_{a b j c}+g_{d j} Z(T)_{a b i c}\right)
\end{align*}
$$

Now, in the same way as above, from (25) we obtain the following relation

$$
\begin{align*}
& \tau\left(Q(g, R)_{h j c d e f} T_{i a b}^{h}-Q(g, R)_{h i c d e f} T_{j a b}^{h}\right) \\
& +\rho\left(Q(g, T)_{h i a b e f} R_{j c d}^{h}-Q(g, T)_{h j a b e f} R_{i c d}^{h}\right) \\
& =\frac{\tau K(T)}{m(m-1)}\left(g_{b j} Q(g, R)_{a i c d e f}-g_{b i} Q(g, R)_{a j c d e f}\right. \tag{26}\\
& +g_{a i} Q(g, R)_{b j c d e f}{ }^{\left.-g_{a j} Q(g, R)_{b i c d e f}\right)} \\
& +\rho^{2}\left(-g_{c j} Q(g, T)_{a b i d e f}+g_{c i} Q(g, T)_{a b j d e f} g_{d i}^{\left.Q(g, T)_{a b j c e f}+g_{d j} Q(g, T)_{a b i c e f}\right)}\right.
\end{align*}
$$

From the last equality, by making use of (1), (2) and (12), we find

$$
\begin{aligned}
& \mu\left(T_{f i a b} R_{e j c d}-T_{e i a b} R_{f j c d}+T_{e j a b} R_{f i c d}-T_{f j a b} R_{e i c d}\right) \\
& +\tau\left(g_{c f}\left(R_{\text {jed }}^{h} T_{h i a b}-R_{i e d}^{h} T_{h j a b}\right)-g_{c e}\left(R_{j f d}^{h} T_{h i a b}-R_{i f d} T_{h j a b}\right)\right. \\
& +g_{d f}\left(R_{j c e}^{h} T_{h i a b}-R_{\left.\left.i c e^{h} T_{j a b}\right)-g_{d e}\left(R_{j c f}^{h} T_{h i a b}-R_{i c f}^{h} T_{h j a b}\right)\right)}\right. \\
& +\rho\left(g_{a f}\left(R_{j c d}^{h} T_{\text {hieb }}-R_{i c d}^{h} T_{h j e b}\right)-g_{a e}\left(R_{j c d}^{h} T_{h i f b}-R_{i c d}^{h} T_{h j f b}\right)\right. \\
& \left.g_{b f}\left(R_{j c d}^{h} T_{\text {hiae }}-R_{i c d} T_{h j a e}\right)-g_{b e}\left(R_{j c d^{h}}^{T_{h i a f}}-R_{i c d}^{h} T_{h j a f}\right)\right) \\
& +\tau\left(g_{j f} R^{h} e c d^{T} T_{h i a b}-g_{j e} R_{f c d}^{h} T_{h i a b}+g_{i e^{R}}{ }_{f c d} T_{h j a b}-g_{i f} R^{h} \text { ecd } T_{h j a b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\rho\left(\delta_{j f} R^{h}{ }_{i c d} T_{h e a b}-g_{j e} R^{R^{h}}{ }_{i c d^{T}}{ }_{h f a b}+g_{i e} R^{R^{h}}{ }_{j c d} T_{h f a b}-g_{i f} R^{h}{ }_{j c d} T_{h e a b}\right) \\
& =\frac{\tau K(T)}{m(m-1)}\left(g_{b j} Q(g, R)_{a i c d e f}-g_{b i} Q(g, R)_{a j c d e f}+g_{a i} Q(g, R)_{b j c d e f}\right. \\
& -g_{a j} Q(g, R)_{b i c d e f}-\rho^{2} i_{g_{c j}} Q(g, T)_{a b i d e f} \\
& \left.-g_{c i} Q(g, R){ }_{a b j d e f}+g_{d i} O(g, R)_{a b j c e f}-g_{d j} Q(g, R)_{a b i c e f}\right) .
\end{aligned}
$$

Applying in this (25) and contracting the resulting relation with $g^{\text {jf }}$ we get

$$
\begin{aligned}
& (m-4) \mu\left(R_{h i c d} T^{h} e_{e a b}-\frac{K(T)}{m(m-1)}\left(g_{e a} R_{b i c d}-g_{e b} R_{a i c d}\right)\right. \\
& \left.-\rho\left(g_{d i} Z(T){ }_{a b e c}-g_{c i} Z(T){ }_{a b e d}\right)\right) \\
& +\mu g_{e i}\left(R^{h k}{ }_{c d}{ }^{T}{ }_{h k a b}+\frac{2 K(T)}{m(m-1)} R_{a b c d}+2 \rho T_{a b c d}\right. \\
& \left.-\frac{2 \rho K(T)}{m(m-1)}\left(g_{a d} g_{b c}-g_{a c} g_{b d}\right)\right)=0 .
\end{aligned}
$$

But the last equality. together with (7) and (13), leads to (24), which completes the proof.

Theorem 3. Let M, $\operatorname{dim} M \neq 4$, be a pseudo-symnetric totally umbilical submanifold, with parallel mean curvature vector field H, of a Reimannian manifold N admitting a pseudo-symmetric generalized curvature tensor \widetilde{T}. Then the equality

$$
L_{R}=L_{\tilde{T} \mid M}+\tilde{g}(H, H)
$$

holds on the set $U_{R} \cap U_{T}$.

Proof. Suppose that $\mu \neq 0$ at a point $x \in U_{R} \cap U_{T}$. In view of Lemma 7 we have

$$
\begin{aligned}
& R_{h j c d} T^{T^{h}}{ }_{i a b}=\frac{K(T)}{m(m-1)}\left(g_{b i} R_{j a c d}-g_{a i} R_{j b c d}\right) \\
& +\rho\left(g_{d j} Z(T){ }_{a b i c}-g_{c j} Z(T)_{a b i d}\right),
\end{aligned}
$$

whence

$$
\begin{aligned}
& \tau\left(Q(g, R)_{h j c d e f} T_{i a b}^{h}-\rho Q(g, T)_{\text {hiabef }} F^{h}{ }_{j c d}\right) \\
& =\frac{\tau K(T)}{m(m-1)}\left(g_{b i} Q(g, R)_{j a c d e f}-g_{a i} Q(g, R)_{j b c d e f}\right) \\
& +\rho^{2}\left(f_{d j} Q(g, T)_{a b i c e f}-g_{c j} Q(g, T){ }_{a b i d e f}\right) \text { and } \\
& U_{\text {ef } j c d i a b}=U_{\text {fejcdiab }},
\end{aligned}
$$

where $U_{\text {efjcdiab }}=Z(R)$ ejcd $Z^{Z(T)}$ fiab Now (27), together with the relation $U_{\text {ef jcdiab }}=-U_{\text {jfecdiab' }}$ yields ([3], Lemma 1) $U_{\text {jfjcdiab }}=0$, i.e. $Z(R)=0$ or $Z(T)=0$, a contradition.

Combining Theorem 3 with Lemma 2 we obtain

Theorem 4. Let M, $\operatorname{dim} M \neq 4$, be a pseudo-symmetric totally umbilical submanifold, with parallel mean curvature vector field H, of a Riemannian manifold N admitting a Rici-pseudo-symmetric tensor field \tilde{A}. Then the equality

$$
L_{R}=L_{\tilde{A} \mid M}+\tilde{g}(H, H)
$$

holds on the set $U_{R} \cap U_{A}$, where A is the orthogonal projection of \tilde{A} on M.

REFERENCES

[1] Adamów A., Deszcz R.: On totally umbilical submanifolds of some class of some class of Riemannian manifolds. Demonstration Math., 16(1983), 39-59.
[2] Deprez J., Deszcz R., Verstraelen L.: Examples of pseudo-symmetric conformally flat warped products, Chinese J. Math., 17 (1989), 51-65.
[3] Derdziński A., Roter W.: On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor, N.S., 31 (1977), 255-259.
[4] Deszcz R.: Notes on totally umbilical submanifolds, in Geometry and Topology of Submanifolds, Proc. Luminy 1987, 89-97, World Scientific Publishing, Singapore 1989.
[5] Deszcz R.: On Ricci-pseudo-symmetric warped products, Demonstration Math., 22 (1989), 1053-1065.
[6] Deszcz R.: On pseudo-symmetric warped product manifolds, to appear.
[7] Deszcz R., Ewert-Krzemieniewski S., Policht J.: On totally umbilical submanifolds of conformally birecurrent manifolds, Colloquium Math., 55 (1988) 79-96.
[8] Deszcz R., Grycak W.: On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica, 15 (1987), 311-322.
[9] Deszcz R., Grycak W.: On manifolds satisfying some curvature conditions, Colloquium Math., 57 (1989), 89-92.
[10] Deszcz R., Hotlos M.: Notes on pseudo-symmetric manifolds admitting special geodesic mappings, Soochow J. Math., 15 (1989), 19-27.
[11] Deszcz R., Hotlos M. : Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor, Prace Nauk. Pol.Szczec., 11 (1988) 23-34.
[12] Nomizu K.: On the decomposition of generalized curvature tensor fields, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo (1972) 335-345.
[13] Olszak Z.: On totally umbilical surfaces in some Reimannian spaces, Colloquium Math., 37 (1977), 105-111.
[14] Szabo Z.I.: Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0, J$. Diff. Geom. , 17 (1982), 531-582.

Department of Mathematics
Agricultural University of Wrockaw
ul. C. Norwida 25
50-375 WROCLAW, P O L A N D

O PSEUDOSYMETRYCZNYCH CALKOWICIE UMBILIKALNYCH PODROZMAITOSCIACH ROZMAITOSCI RIEMANNOWSKICH, DOPUSZCZAJĄCYCH PEWNE TYPY UOGÓLNIONYCH TENSORÓW KRZYWIZNY

Streszczenie

Niech M będzie całkowicie umbilikalną podrozmaitością, z równoległym wektorem krzywizny stredniej H, rozmaitości N dopuszczajacej ($0, k$) pseudosymetryczny tensor \tilde{T}, przy czym $3 \leq \operatorname{dim} M<\operatorname{dim} N \quad i \quad k \in \mathbb{N}$. Wówczas tensor T, będący rzutem ortogonalnym tensora \tilde{T} na M, jest również pseudosymetryczny. Ponadto, jeśli \tilde{T} jest uogólnionym tensorem krzywizny na N,
$\operatorname{dim} M \neq 41$ tensor krzywizny R podrozmaitosici M jest pseudosymetryczny, to funkcje stowarzyszone L_{T}, L_{T} i L_{R} tensorów \tilde{T}, T i R spełniaja na zblorze $V \subset M$, składajacym sieq ze wszystkich punktów M, w ktorych tensory T i R sa jednocześnie nietrywialne, następujaca, równość

$$
\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{\widetilde{\mathrm{T}} \mid \mathrm{M}}+\tilde{\mathrm{g}}(\mathrm{H}, \mathrm{H})=\mathrm{L}_{\mathrm{R}}
$$

О ПСЕВДОСИММЕТРИЧЕСКИХ МОЛНОСТЬЮ ОМБИЛИЧЕСКИХ ПОДМНОГООБРАЗИЯХ РИМАНОВЫХ МНОГООБРАЗИИ ДОПУСКАЕМЫХ НЕКОТОРЫЕ ТИПЫ ОБОБЩЕННЫХ ТЕНЗОРОВ КРИВИЗНЫ

Резюме. Пусть м будет полностью омбилическим подмногообразием, с параллельным вектором средней кривизны н, многообразия \mathbf{n} допускающего $(0, k)$ - псевдосимметрический тензор \tilde{T} где $3 \leq \operatorname{dim} \mu<\operatorname{dim} N \quad$ и $k \in \operatorname{IN}$. Тогда тензор т, являющийся ортогональной пройекцей тензора \tilde{T} на м, есть также псевдосимметрический тензор. Кроме того, если г есть обобщенный тензор кривизны на N, $\operatorname{dim} m \neq 4$ и тензор кривизны R подмногообразия м псевдосимметрический, тогда объединенные бункции $L_{\tilde{T}}, L_{T}$ и L_{R} тензоров \tilde{T}, τ и R исполняют на множестве v с м, состоящим из всех точек н, в которых тензоры т и в одновременно нетривиальные следующее равенство

$$
L_{T}=L_{\tilde{T} \mid M}+\tilde{g}(H, H)=L_{R} .
$$

