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Summary. On a pseudo-Riemannian manifold (M,g) of dimension n 2: 4, 
consider the distribution D defined in the following way

M a p  I— > D = <u 6 M* P P Ç u(x)C(y,z) = 0 for any x,y, z e M }, 
x, y. z ^

where C is the Weyl conformal curvature tensor and ^ indicates the
cyclic sum. If C * 0, then dim D ^ 2. Assume additionally that M,g) P P
is conformally recurrent. It is proved that the metric g can .iways 
be non-trivially locally conformally deformed to a certain conformally 
recurrent metric if dim D = 1. And if dim D = 2 and n 2: 5, then:
1) the metric g can always be locally deformed conformally to a 
cerain conformally symmetric metric, 2) the recurrence form of the 
tensor C is closed and belongs to the distribution D, 3) the Ricci 
tensor is generated by elements of D. In the forthcoming paper, it 
will be shown among others that the assertion of the last theorem does 
not hold when n = 4.

1. PRELIMINARIES

Let (M,g) be a pseudo-Riemannian maifold. We always assume that M is 
00of class C , paracompact, connected and dim M = n £ 4. V is the Levi-Civita 

connection of (M,g) and R(X,Y) = ~ ^[x Y] *S curva*-ure operator
defined for any X,Y e 3£(M ), &{M) being the Lie algebra of vector fields on M. 
Denote by C the Weyl’s conformal curvature tensor defined by
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C(X,Y)Z = RCX,Y)Z - -|p(Y, Z)X - p(X,Z)Y + g(Y,Z )pX

' g(X*Z)^Y} + (n-lHn-2) {gfY’Z)X ~ *(X-Z)Y}

(1)

for X,Y,Z e 3£(M), p being the Ricci tensor, p the Ricci operator (p(X, Y) =
= g(pX,Y)5 and x the scalar curvature. Assume additionally that C(X,Y,Z,W) =
= g(C(X,Y)Z,W) for X, Y,Z,W e 3£(M).

For a point p e M, let (resp. , M*) be the tangent vector (resp. ,
covector) space at p. Let D denote the linear subspace of M* defined byP P

DD - ju e M* ę u(x)C(y,z) = 0 for any x,y,z 6 M I, 
 ̂ x, y, z

(2 )
x, y, z

where C, indicates the cyclic sum.

Lemma. Suppose that C * 0 at a point p of M. Then we have:

1 . If 0 * u € 0̂ , then there exists a symmetric (0,2}~tensor S such
that

C(x,y,z,w) = S(y,z)u(x)u(w) + S(x,w)u(y)u(z) -

- Six,z)u(y)utw) - S(y,w)u(x)u(z)

for any x, y, z, w e M .
P

2 . D is an isotropic subspace of M*. that is, arbitrary covectorsP p J
u,v e Dp are orthogonal.

3 . u(C(x,y)z) = 0 for any u e D and x, y, z e M .
P P

4°. dim D < 2.P
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5 . dim D = 2 if and only if at the point p it holds that C = e (j ® u, 
P

where e = ± 1 and u> is certain skew-symmetric (0,2)-tensor. The 2-1 orm ui 
occurring in the above can always be choosing as a = A for some

early independent u ^>u2 € p̂'
The assertions of the above lemma are pure algebraic consequences of the 
inition of the subspace D 

omit the details of the proof.

linearly independent u ^>u2 € p̂' 

definition of the subspace Dp and seem to be known. Therefore, we shall

Remark 1. If dim M = 4, then the subspace Dp can be equivalently defi­
ned as

D = iu e M* u(C(x,y)z) = 0 for any x,y,z e M l.
P t p pJ

(3)

Indeed, in view of Lemma, p. 3°, it is sufficient to show that in this case 
the subspace defined by (3) is just that subspace defined by (2). For, recall 
that any Riemannian as well as pseudo-Riemannian 4-dimensional manifold 
fulfils the identity (cf.[PA], eq.(8.7))

xr x2,x3 y 1,y2 ,y3
lU v yl)C(x2,x3,y2,y3)

for any x^y^ 6 Mp> 1=1,2,3. Consequently, in this dimension we have

|u(x1)C(x2,x3,y,z)+g(x1,y)u(C(x2,x3)z) - gtx^ z)u(C(x2> x3 )y)j=
xr x2--3

for any x.,y,z e M , i=l,2,3, and u e M*. Hence the assertion follows,i p P
In this paper we consider conformally recurrent manifolds, i.e., pseudo-

-Riemannian manifolds (M,g) whose Weyl’s conformal curvature tensors C
satisfy the following condition: At any p e M, the tensors V^C and C are
linearly dependent for any x e M . Let M be the set of the points of M at
v/hich C * 0. If (M,g) is conformally recurrent and M * <p, then it holds
on M that VC = A ® C for certain (uniquely defined) 1-from A, which will
be called the recurrence form of C. A conformally recurrent manifold for
which VC = 0 will be called coformally symmetric (cf. [CG]).
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The Roter’s paper [RO] on conformally related conformally recurrent
metrics has stimulated the author to study the subspaces D and the

P
distribution M => p j— > D , which will be denoted by D. The following pro­
position shows that the distribution D has nice properties in certain 
situations.

Proposition. Let the Weyl’s conformai curvature tensor C of a pseudo-Rie- 
mannian manifold (M,g) satisfy the condition VC = A ® C on the whole of M 
for certain 1-form A. Then the distribution D has constant dimension on M, 
and moreover, it is smooth and parallel.

Proof. Since VC ~ A © C, the tensor field C vanishes everywhere or
nowhere on M (cf. [ WO ] ̂ )̂- We shall concentrate on the second case only,
otherwise the assertion is trivial.

At first, let us make the following observation. For arbitrary fixed
points p,q e M, let [0,1] a t — > y(t) e M be a (smooth) curve joining p
and q, T(0) = p, y(l) = q. Let (E,,...,E ) be an orthonormal frame1 n
consisting parallel vector fields along y. Define C , 1 £ i. i k 1 £ nilk J ’

n lto be the (smooth) functions on [0,1] such that C(E.,E.)E, = Y C E There1 J k jtj IJW 1
is a positive function f on [0,1] such that C . jk 1 ( t ) = C ^(O) • f(t) for
t e [0,1] (cf. [WO] 2 » P- 477). Denote by (u .....y11) the dual frame to

n
(Ej Eq) along y. We claim that if uQ e D and uQ = £ A.u1(0), then

n  ̂ ^ i=l 1
u = E the parallel covector field along y such that u(0) = u , and

i=l 0
u (t) e Dy(t), t 6 [0,1],

With the help of the above observation one can deduce that dim D does not
P

depend on p € M, and D is parallel. Of course, D is smooth. Indeed, 
taking a normal coordinate neighborhood P around a point p e M, fixing a 
basis of 0^ and propagating the basis to each point of P along geodesics 
starting from p we obtain a smooth basis for D on P. QED.

Now, we formulate the main results of the paper [R0]1 since they will be 
applied in the present paper.

_ 2f
Theorem A. Let g and g = e g be two conformally related conformally 

recurrent metrics on a manifold M, f being a function on M. Denote by A 
and A the recurrence forms of C and C, respectively.
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Then

£ df Cx)C(y,z) = 0 )
x, y, z

for any x,y, z e M and any p e M. Moreover, A — A - 4df a points at which 
C * 0.

Theorem B. Suppose that (M,g) is a conformally recurrent manifold and f
2fa function satisfying (4) on M. Then the metric g = e g is conformally 

recurrent too.

2. A CONFORMAL INTERPRETATION OF THE DISTRIBUTION D

Using Theorem A, Lemma and Proposition, we can deduce the following: 
If (M.g) is a conformally recurrent manifold with C * 0 at each point of M, 
and the metric g admits a non-homothetic conformal transformation into a new 
conformally recurrent metric, then dim D = 1 or 2.

However, it should be added that there are conformally recurrent
manifolds for which D = 0. Taking the product M = V x of two surfaces 
V ,V such that the sum of the Gauss cuvatures K,+K never vanishes on M1 2  1 ¿L
we get a 4-dimensional pseudo-Riemannian manifold with the desired property.

In this section we prove that a conformally recurrent metric g for which
dim D = 1 or 2 can always be locally conformally transformed into some
conformally recurrent metric. The transformations are non-trivial in general.

Theorem 1. Let (M,g) be a conformally recurrent manifold for which the
distribution D has constant dimension equal to 1. Then for any p 6 M there
exists a neighborhood P of p and a function f: P  > R such that df * 0

2fat each point of P and the metric g = e g is conformally recurrent on P.
Following Roter (cf. [R0]3) an analytic conformally recurrent manifold

(M, g) is said to be special if its metric is locally non-trivially conformal
to a non-conformally flat conformally recurrent one. From Theorem 1 we obtain
immediately:

Corollary. An analytic conformally recurrent manifold for which the 
distribution D has constant dimension equal to 1 is special.
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We also need another definition given by Roter in [RO] A conformally 
recurrent manifold is called simple if its metric is locally conformal to a 
non-conformal.ly flat conformally symmetric one.

Theorem 2. Let (M.g) be a conformally recurrent manifold of dimension n z 5 
for which the distribution D has constant dimension equal to 2. Then:

(a) for the recurrence form A we have A e D and dA = 0,.
(b) for any p e M there exists a neighborhood P of p and a function

f: P such that the conformally related metric g = e ^ g  is conformally
symmetric (this is of special interest at points at which A * 0), i.e., (M,g) 
is simple conformally recurrent,

(c) the Ricci tenser p of the manifold (M,g) is generated by elements 
of the distribution D.

Remmark 2. In case of dim M = 4, the assertion of Theorem 2 does not 
hold in general. An example of 4-dimensional conformally recurrent metrics 
for which dim D = 2 and dA * 0 will be constructed in our forthcoming 
paper.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. By the assumptions, C * 0 at each point of M (M = M),
and the recurrence form A is defined on the whole of M. Fix a point p e M
and choose a 1-form U e D which is nonzero on some neighborhood, say P , 
of p. Thus we have

C U(X)C(Y,Z) = 0 (5)
X, Y,Z

for X, Y,Z e 3C(P ). Differentiating (5) covariantly and using V,,C = A(W)C,wwe find

c (v U)(X)C(Y,Z) = 0 
X, Y, Z

for W,X,Y,Z e 3£,(Pi). Hence, by the assumption dim D = 1, we must have
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for X e J6(Pj), where V is certain 1-form on Pj. 
but ion ker U defined on P^. Using (6) and

Consider the distri-

dUCX,Y ) = i |(VXU)(Y) - (VyU)(X)|

we see that dU = V A  u. By Frobenius theorem, the distribution ker U is 
integrable. Therefore, we can choose a neighborhood P of p (P c Pj) and two

Now, we have on P: df ^ 0 and df e D. To finish the proof it is
sufficient to use Theorem B. QED.

Proof of Theorem 2. As in the previous proof, C * 0 at each point of M
and the recurrence form A is defined on M. In the sequel we shall prove
that under our assumptions the following two facts hold for (M,g)

This is just the point (a) of our theorem. In virtue of the above facts, to 
obtain the assertion (b) it is sufficient to take a function f defined on a 
neighborhood of a point p e M and such that A = 4df. By Theorem B the

A - 4df = 0. Thus, the metric g is conformally symmetric. The assertion (c) 
follows from the formula (23) which will be proved below. QED.

- Proof of (7). Fix a point p e M and choose a neighborhood Q of p with 
1-forms U ,U2 e D | Q such that on Q we have C = e u ® w, e = ± 1, o> = l^A U2 
(cf. Lemma, p.5°). As it is well-known, the Weyl’s conformai curvature 
tensor C satisfies the identity (cf., e.g., [El], p.91)

functions f.h: P  > R such that hU = df and h * 0 at each point of P.

A e D, (7)

dA = 0.

metric g = e2fg is conformally recurrent, and by Theorem A we have A

X, Y, Z '■
< i(VxC)(Y ■,Y,W1,Ei)g(Z,W2) -

(9)

for any X,Y,Z,W ,W2 € 9&(M), where (E1 Er ) is an orthonormal frame and
e = e(E E ) 1 s i sn. Let U’ (a = 1,2) denote the contravariant field i i’ i ’ “
of U i.e., g(X,U’) = U (X) for X e 3£(Q). From (9) we get 

a a a
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C, |u(W1,W2)A(X) + ^  |g(Wr X}u(W2,A' )- gty^XlutHj.A' )jj u(Y,Z) = 0
Cio)

for X,Y,Z,Wj,W2 6 3C(Q), where A’ is the contravariant field of A. Putting 
X = into (10) and using u(U^, . ) = 0 (this is a consequence of Lemma,
p. 2°), we find

u(Wr W2 )A(lP ) + jgCWj.LP )o.(W2,A- ) - g(W2,U^)iJ(W1,A1 )| = 0 (11)

for W ,W e 36(Q). Putting now W_ = A' into (11) we obtain (n-4)A(U’)1 ^ Z a
w(W^,A’) = 0 for Wj e3£.(Q). Since n 2 5, comparing the last relation with
(11) one has I M A ’) = A(IM = 0. Therefore w(.,A’) = 0, which applied to
(10) yields

< A(X)w(Y,Z) = 0 
X, Y, Z

for X,Y,Z e i£(Q). Hence it follows that A e D. QED.

Proof of (8). p, Q, w, U’ are the same as in the above. From VC
i

and C = e u ® to we get = - A(X)w for X e "X(Q). Hence

= 2 | ^ V ^  ̂  + \ A(Y)| u for X,Y e 3c(Q), and consequently

-w(R(X, Y)Z,W)-u(Z,R(X,Y)W) = (R(X,Y)u)(Z, W) =

= (V2yiu - Vyxu)(Z,W) = dA(X,Y)u(Z,W).

For convenience, we restricte our considerations to the point p. And so
x.y.z.w will be arbitrary vectors tangent to M at p. Moreover, suppose
Ua=(lV p ’ a = 1'2' Since “p = uj " u2> from (12) we find

- u1(R(x,y)z)u2 (w) + u2 (R(x,y)z)u1(w) - Uj(z)u (R(x,y)w)

+ u2 (z)Ul(R(x,y)w) = (dA) (x,y){u1(z)u2 (w) - u2 (z)u (w)}.

This shows that we must have

1 2 ftua (R(x,y)z) = _  ba (x,y)Uj3(z), (13)^

= A ® C 
2v u = XY

(12)
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where b^tl s a 13 ^ 2) are certain skew-symmetric (0,2) -tensors such that 
a

(dA) = - -Lj (bj + bh. p n-2 1 2
(14)

Applying (1) and the third part of Lemma to the identities (13) we get

p(y,z)u (x) - p(x,z)u (y) + g(y. z)p(x, u’ ) - g(x, z)p(y, u’ ) a cc

- ig(y, z)u (x) - g(x,z)u (y)l = Y. b^(x,y)u (z),
n-1 | a a J ß=l a 1

(15)

where u’ = (U’ ) . Taking z = ui into (15) we obtain 
a a p  2  i

p(y,u2)u (x) - p(x,u2)u1(y) + p(x,uj)u2(y) - p(y,u^)u2 (x) =

= |uJ(x)u2 (y) - u2(x)u1 (y) J-.

Hence we see it must hold that

p(x.U^) = ua (p x) = Y *a uß ix)l 
8=1

(16)

where A are constants such that a

,1 ,2 _ T
1 + 2 n-1'

(17)

From (16) and Lemma, p. 2°, it follows easily that 
a

p(u’,u’) = 0 for a,ß = 1,2. 
a ß

(18)

Supposing y = uL into (15) for a, 13 = 1,2 and using (16)^, (1?),' (18) and
p  a

Lemma it is possible to derive the relations

bj(x.u’) = (A* - A^lUj (x) + A2 u2(x),

bl(X> U2 ) = A1 U2 tx)’ b2 (X,Ul) = X2 ul(x)’

b2 (x,u2) = Aj U j (x ) + (A2 - Aj) u2(x).

(19)
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On the other hand, from (13) it follows thata
2

p(x,u') = — L  £ b^ (x.ul). a n-2 a |3

Hence and from (19) one finds

P(X’U1) " 5^2 {U 1 ‘ A2 )U1(X) + 2 Xf U2(X)}' 

p(x*u2 ) = ¿ 2  { 2 X2 U1(X) + U 2 "  X1)U2 (X)}-

( 20 )

Comparing the relations (20) and (16) , since n £ 5, we get easily A^ = 0
a a

for 1 s a,¡3 s 2. Therefore, from (17) we have x = 0, and from (20) p(x,u’ )= 0a
for a = 1, 2.

Thus, the equalities (15) can be rewritten as followsa
2 R

p(y,z)u (x) - p(x,z)u (y) = £ bp (x,y)u„(z). (21)a r a. ^  a ’J /3 a

It can be deduced from (21)̂  that

b“ = 2 ut A va (22)

for certain covectors v , a = 1,2. Using the first Bianchi identity it can
“ 1 2be deduced from (13Ĵ  that ^  A + b A u2 = 0. Hence, in view of (22),

it follows that u^ A  u2 /\ v2 = 0. Therefore we have v = A^u^ + A2u2 for
certain e The substitution of the last relation and (22) into (21)^
gives

jp(y,z) - VjtyiUjtz) - A2u2 (y)u2 (z)| Uj(x) =

jp(x,z) - v.txJUjtz) - A2u2(x)u2 (z)| Uj(y).

This and the symmetry of p imply

p = Au^Uj + vl®u1 + u^evj + A2u2®u2,

where A e IR. Substituting the last identity into (21)2, we can show that v^ 
depends linearly of u^ and u0. Consequently, the Ricci tensor p has the 
form
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p = Au^u^ + ptUjOu,^ + u,,®^) + i>u2®u2 (23)

for some ^p.reR. Finally, from (21)^ by (23) it follows that

bj = 2jj Uj A u2 = 2pwp, b2 = - 2pwp,

which used in (14) give (dA) = 0. Since p was taken as an arbitrary point
of M, we have dA = 0. QED.
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0 ROZMAITOŚCIACH KONFOREMNIE REKURENCYJNYCH,
I. DYSTRYBUCJE SPECJALNE

S t r e s z c z e n i e

Na rozmaitości pseudoriemannowskiej (M,g) wymiaru n £ 4 rozważmy 
dystrybucję D zdefiniowaną następująco:

M a p   > D = {u e M*
P P C u{x)C(y,z) = 0 dla dowolnych x,y, z e M }, 

x, y,z p

gdzie C jest tensorem krzywizny konforemnej Weyla a ę oznacza sumę cykliczną. 
Jeśli 0^ * 0, to dim s 2. Załóżmy dodatkowo, że rozmaitość (M,g) jest 
konformnie rekurencyjna. Dowodzi się, że jeśli dim D = 1, to metryka g 
może być w sposób nietrywialny lokalnie zdeformowana konforemnie do pewnej 
metryki konforemnie rekurencyjnej. A jeśli dim D = 2 i n 2: 5, to: 1) metry­
ka g może być lokalnie zdeformowana konforemnie do pewnej metryki konforem­
nie symetrycznej, 2) forma rekurencji tensora C jest zamknięta i leży w 
dystrybucji D, 3) tensor Ricciego jest generowany przez elementy dystry­
bucji D. W następnej mojej pracy wykazuję m.in. , że teza ostatniego twier­
dzenia nie jest prawdziwa w przypadku, gdy dim M = n = 4.

0 K0H$0PMH0 PEKYPPEHTHbiX MHOrOOEP A3MSiX, I. CIlEllMAJlbHblE PACIIPEIIEJIEHMS

Pe3ioMe. Ha nceBHopnMaHOBOM MHoroo6pa3HH (M,g) pa3MepHOCTH n i 4 pacc- 
MOTpMBaeTCH pacnpeneneHHe D onpeneJieHHoe cmenyiomnM o6pa30M:

M s p |-— > D - {u e M* ę u(x)C(y, z) = 0 for any x, y, z e M }, P P Dx, y, z p
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rne C_ - TeH3op xoHSopMHow KpMBM3Hbi BeHJia, a <7 o6o3HaHaeT unKJiiisecKy» 
cyMMy. dim Dp s 2 ecjin Cp * 0. KpoMe Toro, m m  npennoJiaraeM, h t o  (M,g) 
KOHSopMHO pexyppeHTHoe MHoroo6pa3He. floKa3b!BaeTca, h t o  MeTpMKa g Moxex 
6blTb HeTpMBHajIbHMM Cn0C050M JlOKaJibHO KOHSEOpMHO AesopMMpoBaHHa«7 b Hexa-- 
Topyio KOH$opMHo pexyppeHTKy» MeTpuxy b cJiynae Korna dim D = 1. B cJiynae 
Korna dim D = 2 m n ^ 5: 1) MexpuKa AMoxeT BaTb noxajibHO x o h s o p m h o  a s - 
sopMHpoBaHHaa b HexoTopyio xoHSopMi-io CHMMeTpMHecxyio MeTpmcy, 2) $opMa pe- 
KyppeHTHOCTM TeH3opa C 3aMKHyTa m npMHaAexHT k pacnpeAejieHHio D, 3)
3AeMeHTbi pacnpenejieHMSi D reHepHpyioT TeH3op Phhhh MeTpMXM a . B CAeAyioineM 
paBoTe AOKa3UBaeTCH Mexny npoHMM, h t o  Te3nc nocjieAHefi TeopeMM HeeepeH, 
KorAa n = 4.


