Zbigniew OLSZAK

ON CONFORMALLY RECURRENT MANIFOLDS, I. SPECIAL DISTRIBU才IONS

DEDICATED TO PROFESSOR MIECZYSł.AW KUCHARZEUSKI ON THE OCCASION OF HIS 70TH BIRTHDAY.

Summary. On a pseudo-Riemannian manifold (M, g) of dimension $n \geq 4$, consider the distribution D defined in the following way

$$
M \ni p \nmid D_{p}=\left\{\left.u \in M_{p}^{*}\right|_{x, y, z} \zeta_{p} u(x) C(y, z)=0 \text { for any } x, y, z \in M_{p}\right\}
$$

where C is the Weyl conformal curvature tensor and ζ indicates the cyclic sum. If $C_{p} \neq 0$, then dim $D_{p} \leq 2$. Assume additionally that (M, g) is conformally recurrent. It is proved that the metric g can \%lways be non-trivially locally conformally deformed to a certain conformally recurrent metric if $\operatorname{dim} D=1$. And if $\operatorname{dim} D=2$ and $n \geq 5$, then:

1) the metric g can always be locally deformed conformally to a cerain conformally symmetric metric, 2) the recurrence form of the tensor C is closed and belongs to the distribution $D, 3$) the Ricci tensor is generated by elements of D. In the forthcoming paper, it will be shown among others that the assertion of the last theorem does not hold when $n=4$.

1. PRELIMINARIES

Let (M, g) be a pseudo-Riemannian maifold. We always assume that M is of class C^{∞}, paracompact, connected and $\operatorname{dim} M=n \geq 4$. ∇ is the Levi-Civita connection of (M, g) and $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ is the curvature operator defined for any $X, Y \in \mathscr{X}(M), \mathscr{X}(M)$ being the Lie algebra of vector $f i e l d s$ on M. Denote by C the Weyl's conformal curvature tensor defined by

$$
\begin{align*}
& C(X, Y) Z=R(X, Y) Z-\frac{1}{n-2}\{\rho(Y, Z) X-\rho(X, Z) Y+g(Y, Z) \tilde{\rho} X- \\
& -g(X, Z) \tilde{\rho} Y\}+\frac{\tau}{(n-1)(n-2)}\{g(Y, Z) X-g(X, Z) Y\} \tag{1}
\end{align*}
$$

for $X, Y, Z \in \nsupseteq(M), \rho$ being the Ricci tensor, $\tilde{\rho}$ the Riccio operator $(\rho(X, Y)=$ $=g(\tilde{p} X, Y))$ and τ the scalar curvature. Assume additionally that $C(X, Y, Z, W)=$ $=g(C(X, Y) Z, W)$ for $X, Y, Z, W \in \mathscr{X}(M)$.

For a point $p \in M$, let M_{p} (resp., M_{p}^{*}) be the tangent vector (resp., covector) space at p. Let D_{p} denote the linear subspace of M_{p}^{*} defined by

$$
\begin{equation*}
D_{p}=\left\{\left.u \in M_{p}^{*}\right|_{x, y, z} ^{\zeta} u(x) C(y, z)=0 \quad \text { for any } x, y, z \in M_{p}\right\} \tag{2}
\end{equation*}
$$

where ζ indicates the cyclic sum.

Lemma. Suppose that $C \neq 0$ at a point p of M. Then we have:
1°. If $0 \neq u \in D_{p}$, then there exists a symmetric $(0,2)$-tensor S such that

$$
\begin{aligned}
C(x, y, z, w) & =S(y, z) u(x) u(w)+S(x, w) u(y) u(z)- \\
& -S(x, z) u(y) u(w)-S(y, w) u(x) u(z)
\end{aligned}
$$

for any $x, y, z, w \in M_{p}$.
2°. D_{p} is an isotropic subspace of M_{p}^{*}, that is, arbitrary covectors $u, v \in D_{p}$ are orthogonal.

$$
\begin{aligned}
& 3^{\circ} \cdot u(C(x, y) z)=0 \text { for any } u \in D_{p} \text { and } x, y, z \in M_{p} \\
& 4^{\circ} \cdot \operatorname{dim} D_{p} \leq 2
\end{aligned}
$$

5°. $\operatorname{dim} D_{p}=2$ if and only if at the point p it holas that $C=\varepsilon \omega \otimes \omega$, where $\varepsilon= \pm 1$ and ω is certain skew-symmetric (0,2)-tensor. The 2-form ω occurring in the above can always be choosing as $\omega=u_{1} \wedge u_{2}$ for some linearly independent $u_{1}, u_{2} \in D_{p}$.

The assertions of the above lemma are pure algebraic consequences of the definition of the subspace D_{p} and seem to be known. Therefore, we shall omit the details of the proof.

Remark 1. If $\operatorname{dim} M=4$, then the subspace D_{p} can be equivalently defined as

$$
\begin{equation*}
D_{p}=\left\{u \in M_{p}^{*} \mid u(C(x, y) z)=0 \text { for any } x, y, z \in M_{p}\right\} \tag{3}
\end{equation*}
$$

Indeed, in view of Lemma, p. 3°, it is sufficient to show that in this case the subspace defined by (3) is just that subspace defired by (2). For, Fecall that any Riemannian as well as pseudo-Riemannian 4 -dimensional manifold fulfils the identity (cf. [PA]. eq. (8.7))

$$
x_{1}, x_{2}, x_{3} \quad y_{1}, y_{2}, y_{3} g\left(x_{1}, y_{1}\right) c\left(x_{2}, x_{3}, y_{2}, y_{3}\right)=0
$$

for any $x_{i}, y_{i} \in M_{p}, \quad i=1,2,3$. Consequently, in this dimension we have

$$
\zeta_{x_{1}, x_{2}, x_{3}}^{\zeta}\left\{u\left(x_{1}\right) C\left(x_{2}, x_{3}, y, z\right)+g\left(x_{1}, y\right) u\left(C\left(x_{2}, x_{3}\right) z\right)-g\left(x_{1}, z\right) u\left(C\left(x_{2}, x_{3}\right) y\right)\right\}=0
$$

for any $x_{1}, y, z \in M_{p}, i=1,2,3$, and $u \in M_{p}^{*}$. Hence the assertion follows.
In this paper we consider conformally recurrent manifolds, i.e., pseudo--Riemannian manifolds (M, g) whose Weyl's conformal curvature tensors C satisfy the following condition: At any $p \in M$, the tensors $\nabla_{x} C$ and C are linearly dependent for any $x \in M_{p}$. Let \hat{M} be the set of the points of M at which $C \neq 0$. If (M, g) is conformally recurrent and $\hat{M} \neq \phi$, then it holds on \hat{M} that $\nabla C=A \otimes C$ for certain (uniquely defined) 1-from A, which will be called the recurrence form of C. A conformally recurrent manifold for which $\nabla C=0$ will be called coformally symmetric (cf. [CG])

The Roter's paper $[\mathrm{RO}]_{1}$ on conformally related conformally recurrent metrics has stimulated the author to study the subspaces D_{P} and the distribution $M \ni p \nrightarrow D_{p}$, which will be denoted by D. The following proposition shows that the distribution D has nice properties in certain situations.

Proposition. Let the Weyl's conformal curvature tensor C of a pseudo-Riemannian manifold (M, g) satisfy the condition $\nabla C=A \otimes C$ on the whole of M for certain 1 -form A. Then the distribution D has constant dimension on M. and moreover, it is smooth and parallel.

Proof. Since $\nabla C=A \otimes C$, the tensor field C vanishes everywhere or nowhere on M (cf. (WO] 1,2). We shall concentrate on the second case only, otherwise the assertion is trivial.

At first, let us make the following observation. For arbitrary fixed points $p, q \in M$, let $[0,1] \ni t \longrightarrow \gamma(t) \in M$ be a (smooth) curve joining p and $q, \gamma(0)=p, \gamma(1)=q$. Let $\left(E_{1}, \ldots, E_{n}\right)$ be an orthonormal frame consisting parallel vector fields along γ. Defire $C_{1 j k}{ }^{1}, 1 \leq i, j, k, l \leq n$, to be the (smooth) functions on $[0,1]$ such that $C\left(E_{i}, E_{j}\right) E_{k}=\sum_{1=1}^{n} C{ }_{i j k}{ }^{1} E_{1}$. There is a positive function f on $[0,1]$ such that $C_{i j k}{ }^{l}(t)=C_{i j k}{ }^{l}(0) \cdot f(t)$ for $t \in[0,1]$ (cf. [WO] 2, p. 477). Denote by $\left(\omega^{1}, \ldots, \omega^{n}\right)$ the dual frame to $\left(E_{1}, \ldots, E_{n}\right)$ along γ. We claim that if $u_{0} \in D_{p}$ and $u_{0}=\sum_{i=1}^{n} \lambda_{i} \omega^{i}(0)$, then $u=\sum_{i=1}^{n} \lambda_{i} \omega^{i}$ the parallel covector field along γ such that $u(0)=u_{0}$, and $u(t) \in D_{\gamma(t)}, t \in[0,1]$.

With the help of the above observation one can deduce that dim D_{p} does not depend on $p \in M$, and D is parallel. Of course, D is smooth. Indeed, taking a normal coordinate neighborhood P around a point $p \in M$, fixing a basis of D_{p} and propagating the basis to each point of P along geodesics starting from p we obtain a smooth basis for D on P. QED.

Now, we formulate the main results of the paper $[R O]_{1}$ since they will be applied in the present paper.

Theorem A. Let g and $\bar{g}=e^{2 f} g$ be two conformally related conformally recurrent metrics on a manifold M, f being a function on M. Denote by A and \bar{A} the recurrence forms of C and \bar{C}, respectively.

Then

$$
\zeta_{x, y, z}^{\zeta} \operatorname{df}(x) c(y, z)=0
$$

for any $x, y, z \in M_{p}$ and any $p \in M$. Moreover, $\bar{A}=A-4 d f$ a points at which $\mathrm{C} \neq 0$.

Theorem B. Suppose that (M, g) is a conformally recurrent manifold and f a function satisfying (4) on M. Then the metric $\bar{g}=e^{2 f} g$ is conformally recurrent too.

2. A CONFORMAL INTERPRETATION OF THE DISTRIBUTION D

Using Theorem A, Lemma and Proposition, we can deduce the following: If (M, g) is a conformally recurrent manifold with $C \neq 0$ at each point of M, and the metric g admits a non-homothetic conformal transformation into a new conformally recurrent metric, then $d i m \quad D=1$ or 2 .

However, it should be added that there are conformally recurrent manifolds for which $D=0$. Taking the product $M=V_{1} \times V_{2}$ of two surfaces V_{1}, V_{2} such that the sum of the Gauss cuvatures $K_{1}+K_{2}$ never vanishes on M we get a 4-dinensional pseudo-Riemannian manifold with the desired property.

In this section we prove that a conformally recurrent metric g for which dim $D=1$ or 2 can always be locally conformally transformed into some conformally recurrent metric. The transformations are non-trivial in general.

Theorem 1. Let (M, g) be a conformally recurrent manifold for which the distribution D has constant dimension equal to 1 . Then for any $p \in M$ there exists a neighborhood P of p and a function $f: P \longrightarrow R$ such that df $\neq 0$ at each point of P and the metric $\bar{g}=e^{2 f} g$ is conformally recurrent on P.

Following Roter (cf. [RO] ${ }^{\text {) }}$ an analytic conformally recurrent manifold (M, g) is said to be special if its metric is locally non-trivially conformal to a non-conformally flat conformally recurrent one. From Theorem 1 we obtain immediately:

Corollary. An analytic conformally recurrent manifold for which the distribution D has constant dimension equal to 1 is special.

We also need another definition given by Roter in [RO\} A conformally recurrent manifold is called simple if its metric is locally conformal to a non-conformally flat conformally symmetric one.

Theorem 2. Let (M, g) be a conformally recursent manifold of dimension $\Omega \geq 5$ for which the distribution D has constant dimension equal to 2 . Then:
(a) for the recurrence form A we have $A \in D$ and $d A=0$,
(b) for any $p \in M$ there exists a neighborhood P of p and a function $f: P \longrightarrow R$ such that the conformally related metric $\bar{g}=e^{2 f} g$ is conformally symmetric (this is of special interest at points at which $A \neq 0$), i.e., (M, g) is simple conformally recurrent,
(c) the Ricci tensor p of the manifold (M, g) is generated by elements of the distribition D.

Remmark 2. In case of $\operatorname{dim} M=4$, the assertion of Theorem 2 does not hold in general. An example of 4 -dimensional conformally recurrent metrics for which dim $D=2$ and $d A \neq 0$ will be constructed in our forthcoming paper.

3. PROGFS OF THE THEOHEMS

Proof of Theorem 1. By the assumptions, $C \neq 0$ at each point of $M(\hat{M}=M)$, and the recurrence form A is defined on the whole of M. Fix a point $p \in M$ and choose a 1 -form $U \in D$ which is nonzero on some neighborhood, say P_{1}, of p. Thus we have

$$
\begin{align*}
& \zeta \tag{5}\\
& X, Y, Z
\end{align*} \quad U(X) C(Y, Z)=0
$$

for $X, Y, Z \in \mathscr{X}\left(P_{1}\right)$. Differentiating (5) covariantly and using $\nabla_{W} C=A(W) C$, we find

$$
\zeta_{X, Y, Z}^{\zeta}\left(\nabla_{W} U\right)(X) C(Y, Z)=0
$$

for $W, X, Y, Z \in \mathscr{C}\left(P_{1}\right)$. Hence, by the assumption $\operatorname{dim} D=1$, we must have

$$
\begin{equation*}
\nabla_{\mathrm{X}} \mathrm{U}=\mathrm{V}(\mathrm{X}) \mathrm{U} \tag{6}
\end{equation*}
$$

for $X \in \mathscr{H}\left(P_{1}\right)$, where V is certain 1 -form on P_{1}. Consider the distribution ker U defined on P_{1}. Using (6) and

$$
d U(X, Y)=\frac{1}{2}\left\{\left(\nabla_{X} U\right)(Y)-\left(\nabla_{Y} U\right)(X)\right\}
$$

we see that $d U=V \wedge U$. By Frobenius theorem, the distribution ker U is integrable. Therefore, we can choose a neighborhood P of $p\left(P \subset P_{1}\right)$ and two functions $f, h: P \longrightarrow R$ such that $h U=d f$ and $h \neq 0$ at each point of P. Now, we have on $P: d f \neq 0$ and $d f \in D$. To finish the proof it is sufficient to use Theorem B. QED.

Proof of Theorem 2. As in the previous proof, $C \neq 0$ at each point of M and the recurrence form A is defined on M. In the sequel we shall prove that under our assumptions the following two facts hold for (M, g)

$$
\begin{align*}
& A \in D \tag{7}\\
& d A=0 . \tag{8}
\end{align*}
$$

This is just the point (a) of our theorem. In virtue of the above facts, to obtain the assertion (b) it is sufficient to take a function f defined on a neighborhood of a point $P \in M$ and such that $A=4 d f$. By Theorem B the metric $\bar{g}=e^{2 f} g$ is conformally recurrent, and by Theorem A we have $\bar{A}=$ $A-4 d f=0$. Thus, the metric \bar{g} is conformally symmetric. The assertion (c) follows from the formula (23) which will be proved below. QED.

Proof of (7). Fix a point $p \in M$ and choose a neighborhood Q of p with 1 -forms $U_{1}, U_{2} \in D \mid Q$ such that on Q we have $C=\varepsilon \omega \omega \omega, \varepsilon= \pm 1, \omega=U_{1} \wedge U_{2}$ (cf. Lemma, p. 5°). As it is well-known, the Weyl's conformal curvature tensor C satisfies the identity (cf., e.g., [EI], p.91)

$$
\begin{align*}
& \stackrel{\zeta}{X, Z}\left\{\left(\nabla_{X} C\right)\left(Y, Z, W_{1} W_{2}\right)-\frac{1}{n-3} \sum_{n=1}^{n} \varepsilon_{i}\left\{\left(\nabla_{E_{i}} C\right)\left(X, Y, W_{1}, E_{i}\right) g\left(Z, W_{2}\right)-\right.\right. \tag{9}\\
& \left.\left.-\left(\nabla_{E_{i}} C\right)\left(X, Y, W_{2}, E_{i}\right) g\left(Z, W_{1}\right)\right\}\right\}=0
\end{align*}
$$

for any $X, Y, Z, W_{1}, W_{2} \in \mathscr{X}(M)$, where $\left(E_{1}, \ldots, E_{n}\right)$ is an orthonormal frame and $\varepsilon_{i}=g\left(E_{i}, E_{i}\right), 1 \leq i \leq n$. Let $U_{\alpha}^{\prime}(\alpha=1,2)$ denote the contravariant field of U_{α}, i.e., $g\left(X, U_{\alpha}^{\prime}\right)=U_{\alpha}(X)$ for $X \in \notin(Q)$. From (9) we get

$$
\begin{equation*}
\underset{X, Y, Z}{\zeta}\left\{\omega\left(W_{1}, W_{2}\right) A(X)+\frac{1}{n-3}\left\{g\left(W_{1}, X\right) \omega\left(W_{2}, A^{\prime}\right)-g\left(W_{2}, X\right) \omega\left(W_{1}, A^{\prime}\right)\right\}\right\} \omega(Y, Z)=0 \tag{10}
\end{equation*}
$$

for $X, Y, Z, W_{1}, W_{2} \in X(Q)$, where A^{\prime} is the contravariant field of A. Putting $X=U_{\alpha}^{\prime}$ into (10) and using $\omega\left(U_{\alpha}^{\prime}\right.$,) $=0$ (this is a consequence of Lemma, p. 2°), we find

$$
\begin{equation*}
\omega\left(W_{1}, W_{2}\right) A\left(U_{\alpha}^{\prime}\right)+\frac{1}{n-3}\left\{g\left(W_{1}, U_{\alpha}^{\prime}\right) \omega\left(W_{2}, A^{\prime}\right)-g\left(W_{2}, U_{\alpha}^{\prime}\right) \omega\left(W_{1}, A^{\prime}\right)\right\}=0 \tag{11}
\end{equation*}
$$

for $W_{1}, W_{2} \in \mathscr{X}(Q)$. Putting now $W_{2}=A^{\prime}$ into (11) we obtain ($\left.n-4\right) A\left(U_{\alpha}^{\prime}\right)$ $\omega\left(W_{1}, A^{\prime}\right)=0$ for $W_{1} \in \not \subset(Q)$. Since $n \geq 5$, comparing the last relation with (11) one has $U_{\alpha}\left(A^{\prime}\right)=A\left(U_{\alpha}^{\prime}\right)=0$. Therefore $\omega\left(., A^{\prime}\right)=0$, which applied to (10) yields

$$
\underset{X, Y, Z}{\zeta} A(X) \omega(Y, Z)=0
$$

for $X, Y, Z \in(Q)$. Hence it follows that $A \in D$. QED.

Proof of (8). $\mathrm{p}, \mathrm{Q}, \omega, \mathrm{U}_{\alpha}^{\prime}$ are the same as in the above. From $\nabla C=A \otimes C$ and $C=\varepsilon \omega \otimes \omega$ we get $\nabla_{X} \omega=\frac{1}{2} A(X) \omega$ for $X \in \mathscr{X}(Q)$. Hence $\nabla_{X Y}^{2} \omega=$ $=\frac{1}{2}\left\{\left(\nabla_{X} A\right)(Y)+\frac{1}{2} A(X) A(Y)\right\} \omega$ for $X, Y \in \mathscr{X}(Q)$, and consequently

$$
\begin{align*}
& -\omega(R(X, Y) Z, W)-\omega(Z, R(X, Y) W)=(R(X, Y) \omega)(Z, W)= \\
& =\left(\nabla_{X Y}^{2} \omega-\nabla_{Y X}^{2} \omega\right)(Z, W)=d A(X, Y) \omega(Z, W) \tag{12}
\end{align*}
$$

For convenience, we restricte our considerations to the point p. And so x, y, z, w will be arbitrary vectors tangent to M at p. Moreover, suppose $u_{\alpha}=\left(U_{\alpha}\right)_{p^{\prime}} \quad \alpha=1,2$. Since $\omega_{p}=u_{1} \wedge u_{2}$, from (12) we find
$-u_{1}(R(x, y) z) u_{2}(w)+u_{2}(R(x, y) z) u_{1}(w)-u_{1}(z) u_{2}(R(x, y) w)$
$+u_{2}(z) u_{1}(R(x, y) w)=(d A){ }_{p}(x, y)\left\{u_{1}(z) u_{2}(w)-u_{2}(z) u_{1}(w)\right\}$.
This shows that we must have

$$
\begin{equation*}
u_{\alpha}(R(x, y) z)=\frac{1}{n-2} \sum_{\beta=1}^{2} b_{\alpha}^{\beta}(x, y) u_{\beta}(z) \tag{13}
\end{equation*}
$$

where $b_{\alpha}^{\beta}(1 \leq \alpha, \beta \leq 2)$ are certain skew-symnetric (0,2) -tensors such that

$$
\begin{equation*}
\langle d A)_{p}=-\frac{1}{n-2}\left(b_{1}^{1}+b_{2}^{2}\right) \tag{14}
\end{equation*}
$$

Applying (2) and the third part of Lemma to the identities (13) we get

$$
\begin{align*}
& \rho(y, z) u_{\alpha}(x)-\rho(x, z) u_{\alpha}(y)+g(y, z) \rho\left(x, u_{\alpha}^{\prime}\right)-g(x, z) \rho\left(y, u_{\alpha}^{\prime}\right) \\
& -\frac{\tau}{n-1}\left\{g(y, z) u_{\alpha}(x)-g(x, z) u_{\alpha}(y)\right\}=\sum_{\beta=1}^{2} b_{\alpha}^{\beta}(x, y) u_{B}(z) \tag{15}
\end{align*}
$$

where $u_{\alpha}^{\prime}=\left(U_{\alpha}^{\prime}\right)_{p}$. Taking $z=u_{2}^{\prime}$ into (15) , we obtain

$$
\begin{aligned}
& \rho\left(y, u_{2}^{\prime}\right) u_{1}(x)-\rho\left(x, u_{2}^{\prime}\right) u_{1}(y)+\rho\left(x, u_{1}^{\prime}\right) u_{2}(y)-\rho\left(y, u_{1}^{\prime}\right) u_{2}(x)= \\
& =\frac{\tau}{n-1}\left\{u_{1}(x) u_{2}(y)-u_{2}(x) u_{1}(y)\right\}
\end{aligned}
$$

Hence we see it must hold that

$$
\begin{equation*}
\rho\left(x, u_{\alpha}^{\prime}\right)=u_{\alpha}(\bar{\rho} x)=\sum_{\beta=1}^{2} \lambda_{\alpha}^{\beta} u_{\beta}(x) \tag{16}
\end{equation*}
$$

where λ_{α}^{β} are constants such that

$$
\begin{equation*}
\lambda_{1}^{1}+\lambda_{2}^{2}=\frac{\tau}{n-1} \tag{17}
\end{equation*}
$$

From (16) ${ }_{\alpha}$ and Lemma, p. 2°, it follows easily that

$$
\begin{equation*}
\rho\left(u_{\alpha}^{\prime}, u_{\beta}^{\prime}\right)=0 \quad \text { for } \quad \alpha, \beta=1,2 . \tag{18}
\end{equation*}
$$

Supposing $y=u_{\bar{\beta}}^{\prime}$ into (15) for $\alpha, \beta=1,2$ and using (16) α_{α} (17): (18) and Lemma it is possible to derive the relations

$$
\left\{\begin{array}{l}
b_{1}^{1}\left(x, u_{1}^{\prime}\right)=\left(\lambda_{1}^{1}-\lambda_{2}^{2}\right) u_{1}(x)+\lambda_{1}^{2} u_{2}(x) \tag{19}\\
b_{1}^{2}\left(x, u_{2}^{\prime}\right)=\lambda_{1}^{2} u_{2}(x), \quad b_{2}^{1}\left(x, u_{1}^{\prime}\right)=\lambda_{2}^{1} u_{1}(x) \\
b_{2}^{2}\left(x, u_{2}^{\prime}\right)=\lambda_{2}^{1} u_{1}(x)+\left(\lambda_{2}^{2}-\lambda_{1}^{1}\right) u_{2}(x)
\end{array}\right.
$$

On the other hand, from (13) α it follows that

$$
\rho\left(x, u_{\alpha}^{\prime}\right)=\frac{1}{n-2} \sum_{\beta=1}^{2} b_{\alpha}^{\beta}\left(x, u_{\beta}^{\prime}\right)
$$

Hence and from (19) one finds

$$
\left\{\begin{array}{l}
\rho\left(x, u_{1}^{\prime}\right)=\frac{1}{n-2}\left\{\left(\lambda_{1}^{1}-\lambda_{2}^{2}\right) u_{1}(x)+2 \lambda_{1}^{2} u_{2}(x)\right\} \tag{20}\\
\rho\left(x, u_{2}^{\prime}\right)=\frac{1}{n-2}\left\{2 \lambda_{2}^{1} u_{1}(x)+\left(\lambda_{2}^{2}-\lambda_{1}^{1}\right) u_{2}(x)\right\}
\end{array}\right.
$$

Comparing the relations (20) and (16) , since $n \geq 5$, we get easily $\lambda_{\alpha}^{\beta}=0$ for $1 \leq \alpha, \beta \leq 2$. Therefore, from (17) we have $\tau=0$, and from (20) $\rho\left(x, u_{\alpha}^{\prime}\right)=0$ for $\alpha=1,2$.

Thus, the equalities (15) can be rewritten as follows

$$
\begin{equation*}
\rho(y, z) u_{\alpha}(x)-p(x, z) u_{\alpha}(y)=\sum_{\beta=1}^{2} b_{\alpha}^{\beta}(x, y) u_{\beta}(z) \tag{}
\end{equation*}
$$

It can be deduced from (21), that

$$
\begin{equation*}
b_{1}^{\alpha}=2 u_{1} \wedge v_{\alpha} \tag{22}
\end{equation*}
$$

for certain covectors $v_{\alpha}, \alpha=1,2$. Using the first Bianchi identity it can be deduced from (13) that $b_{1}^{1} \wedge u_{1}+b_{1}^{2} \wedge u_{2}=0$. Hence, in view of (22), it follows that $u_{1} \wedge u_{2} \wedge v_{2}=0$. Therefore we have $v_{2}=\lambda_{1} u_{1}+\lambda_{2} u_{2}$ for certain $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. The substitution of the last relation and (22) into (21) 1_{1} gives

$$
\begin{aligned}
& \left\{\rho(y, z)-v_{1}(y) u_{1}(z)-\lambda_{2} u_{2}(y) u_{2}(z)\right\} u_{1}(x)= \\
& \left\{\rho(x, z)-v_{1}(x) u_{1}(z)-\lambda_{2} u_{2}(x) u_{2}(z)\right\} u_{1}(y)
\end{aligned}
$$

This and the symmetry of ρ imply

$$
\rho=\lambda u_{1} \otimes u_{1}+v_{1} \otimes u_{1}+u_{1} \otimes v_{1}+\lambda_{2} u_{2}^{\otimes u_{2}},
$$

where $\lambda \in \mathbb{R}$. Substituting the last identity into (21) ${ }_{2}$, we can show that v_{1} depends linearly of u_{1} and u_{2}. Consequently, the Ricci tensor ρ has the form

$$
\begin{equation*}
\rho=\lambda u_{1} \otimes u_{1}+\mu\left(u_{1} \otimes u_{2}+u_{2} \otimes u_{1}\right)+v u_{2} \otimes u_{2} \tag{23}
\end{equation*}
$$

for some $\lambda, \mu, v \in \mathbb{R}$. Finally, from (21) by (23) it follows that

$$
b_{1}^{1}=2 \mu u_{1} \wedge u_{2}=2 \mu \omega_{\mathrm{p}}, \quad b_{2}^{2}=-2 \mu \omega_{p},
$$

which used in (14) give $(d A)_{p}=0$. Since p was taken as an arbitrary point of M, we have $d A=0$. QED.

Institute of Mathematics
 Technical University of Wrocław Wybrzeże Wyspianskiego 27
 50-370 Wrockaw

Poland

Wpłynę lo_{0} do Redakcji 30.08. 1988 r.

REFERENCES

[AM] Adati T. and Miyazawa T.: On a Riemannian space with recurrent conformal curvature, Tensor N.S. 18(1967), 348-354.
[CG] Chaki M.C. and Gupta B.: On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122.
[EI] Eisenhart L.P.: Reimannian geometry, Princeton 1966.
[PA] Patterson E.M. : A class of critical Riemannian metrics, J. London Math. Soc. (2) 23(1981), 349-358.
[RO], Roter W. : On conformally related conformally recurrent metrics, I. Some general results, Colloq. Math. 47(1982), 39-46.
[RO] $]_{2}$ Roter $H .:$ On a class of conformally recurrent manifolds, Tensor N.S. 39 (1982), 207-217.
[RO] ${ }_{2}$ Roter W. : On the existence of certain conformally recurrent metrics, Colloq. Math. 51 (1987), 315-327.
[WO] ${ }_{1}$ Wong X.-C.: Recurrent tensors on a linearly connected differentiable manifold, Trans. Amer. Math. Soc. 99 (1961), 325-341.
[WO] 2 Wong Y.-C.: Linear connexions with zero torsion and recurrent curvature, Trans. Amer. Math. Soc. 102 (1962), 471-506.

O ROZMAITOSCIACH KONFOREMNIE REYURENCYJNYCH,
I. DYSTRYBUCJE SPECJALNE

Streszczenie

Na rozmaitosci pseudoriemannowskiej (M, g) wymiaru $n \geq 4$ rozważmy dystrybucje D zdefiniowana nastepujaco:

$$
M \ni p \longrightarrow D_{p}=\left\{u \in M_{p}=\left.\right|_{x, y, z} u(x) C(y, z)=0 \text { dla dowolnych } x, y, z \in M_{p}\right\}
$$

gdzie C jest tensorem krzywizny konforemnej Weyla a ζ oznacza sume cykliczną. Jesili $C_{p} \neq 0$. to dim $D_{p} \leq 2$. Zazóżmy dodatkowo, że rozmaitość (M,g) jest konformnie rekurencyjna. Dowodzi sie, że jesli dim $D=1$, to metryka g moze być w sposob nietrywialny lokalnie zdeformowana konforemnie do pewnej metryii konforemnie rekurencyjnej. A jesil dim $D=2 i n \geq 5$, to: 1) metryka g może być lokalnie zdeformowana konforemnie do pewnej metryki konforemnie symetrycznej, 2) forma rekurencji tensora C jest zamknieta i leży w dystrybucji $D, 3)$ tensor Ricciego jest generowany przez elementy dystrybucji D. W następnej mojej pracy wykazuje m.in., ze teza ostatniego twierdzenia nie jest prawdziwa w przypadku, gdy dim $M=n=4$.

О КОНФОРМНО РЕКУРРЕНТНЫХ МНОГООБРАЗИЯХ, I. СПЕЦИАЛЬНЫЕ РАСПРЕДЕЛЕНИЯ

Резюме. На псевдоримановом многообразии (M, g) размерности $\mathrm{n} \geq 4$ рассмотривается распределение D определенное следующим образом:

где C_{\sim} - тензор коноормной кривизны Вейла, а ζ обознанает циклическую сумму. dim $D_{p} \leq 2$ если $C_{p} \neq 0$. Кроме того, мы препполагаем, что (M, g) конжормно рекуррентное многообразие. Доказывается, что метрика g можег быть нетривиальным способом локально кондормно депормированная. в нека. торую кончормно рекуррентную метрику в случае когда dim $D=1 . \mathrm{B}$ случае когда dim $\mathrm{D}=2$ и $\mathrm{n} \geqq 5$: 1) метрика дможет быть локально конбормно дебормированная в некоторую конжормюо сияметрическую метрику, 2) форма рекуррентности тензора C замкнута и приналежит к распределению D, 3) злементы распределения D генерирукт тензор Риччи метрики д. В следуюней раБоте доказывается между прочим, что тезис последней теоремы неверен, когда $n=4$.

