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ON A GENERALIZATION OF THE ENTROPY EQUATION

Summary. The general solution of the generalized multi-dimensional entropy
equation of multiplicative type on the open domain is given.

O UOGOLNIENIU ROWNANIA ENTROPII

Streszczenie. W pracy podane jest og6lne rozwigzanie uogdlnionego wielowy-
miarowego réwnania entropii typu multyplikatywnego na obszarze otwartym.

OB OEOEHIEHMH yPABHEHMH 9HTPOIIHM

PemoMe. B »tom ctttlh mk oflique pemeHnji 0606in;eHHoro mho-
roMepHoro ypaBHeHM aHTponrm Myjit TmuiHKaiproHHcro Tuna Ha oTKpuTof
00JiaCTH.

1. Presentation of the result

Axiomatic characterizations of information measures (in particular, the Shannon en-
tropy) have been studied extensively for many years. The paper [5] can be considered as
the culmination of these efforts; it contains the general solution of the following equation
on the open domain Dnin R", defined below:

h{s) + P(I —s)/2""j_s) = /3() + p(l — > s,t e Dn, 1)

where /i is a given arbitrary multiplicative function on In := (0,1)1 (that is, fi(st) =
n(s)n(t) for s,t € In) and /; are unknown real-valued functions on Infor i = 1,2,3,4.
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The domain D is defined in the following way:
Dn :={(s,t) : si,s+1i€/,}.

Here and in the sequel vectors in R" are denoted by Latin and their coordinates by
the corresponding Greek characters, and operations on vectors axe coordinatewise, e.g. if
t= (ri,...,Th)and x = (£-,,... then 1-i = (- tu ..., L-r,), tx =(r™i,..., r,fn)
etc.

Equation (1) is a generalization of the so-called fundamental equation of information:

+ + ("v)eDu (2)

where / : -t R1is an unknown function. Equation (2) characterizes, under some
additional conditions, the Shannon entropy (cf. [2], pp. 71-74, 100-101).
In [7], another description of the Shannon entropy was given by using the so-called
entropy equation:
EB»7.0=#(E+ 4,00+ H(( T0), 3)

where H is a symmetric, homogeneous (of order 1) and continuous function on the set

x ={(£,>/i0: i,)*/.C> o0, (v+ 2(+ (( >0}

or , more generally, a Schwartz distribution on an open set containing X.

Z. Daroczy in 1974 (in an unpublished manuscript) and, independently, J. Aczel in [1]
have shown that the continuous (general) solution of (3) can be easily obtained from the
continuous (general) solution of (2).

Note, however, that (3) and symmetry of H imply

F(f+*7,0+ne.77)=|:ti+C'7)+FU’() (4)

for £,77, € >0, where F({, 17) = 77(£, 17, 0) is homogeneous on (0, oo)2ltcan beproved that
(4)with homogeneous F is equivalent to (2). More generally, equation (1)is equivalent
to

Fi{x +y,z) + F2(x,y) = F3(x + z,y) + Ft(x,2), (x,y,z)eDn, (5)
where
Dn:= {(x,y,z): x,y,z,x +y+zeln},
H is a given multiplicative function and F, : Dn—=R1 (i = 1,2,3,4) are unknown

/¢,-homogeneous functions, i.e.

F,(tx,ty) = fi(t)Fi(x,y), t£/, (x,y) € Dn. (6)
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Therefore the general solution of one of equations (1), (5) can be obtained from the
general solution of the other, e.g. Theorem, formulated below, on the general solution of
(5) can be derived from Theorem 3.1 in [5].

We shall call equation (5) generalized entropy equation, because of the mentioned
connection of equations (3) and (4).

Notice that the general solution of (4) with homogeneous F follows from Theorem 6
of the known paper [6]. On the other hand, all proofs of results about various forms of (1)
and (5) (including the proof of Theorem 3.1 in [5]) are based, as a matter of fact, on the
same theorem and the proofs stand for rather compound combinations of transforming
both equations (1) and (5) simultaneously.

Therefore it is natural to look for a proof of Theorem, independ on Theorem 3.1 and
based exclusively on the generalized entropy equation.

We accomplish here this idea, giving in the next section such a proof; we avoid com-
bined methods of solving (1) and (5) by an appropriate modification of techniques used
in [8], [3] and [5].

Theorem. Given a non zero multiplicative function on In, the general solution of

(5) - (5) is given, for x = (6 .mmm.in), V = (rJu---,Vn) such that (x,y) € Dn, by the
formulae:

(1) for additive p:

Fi{x,y) - K x)lix)+ Ky)Kv) - K x +y)Kx +y) + aiKx) + «2My).
£20c,y) = y(x)i()* riv)Kv) -+ y)Kx +y)

+(a5- ax)p(x) + (ad- ax)p.{y),
F3(x,y) = p(x)Ix)Fymiy) - px Ty ty) Fozyx)  Fasp(y),
Fa(x,y) = px)Iy)+ y(I(y) - p(x +Y)I(x +y)

+(a5- a3)p(x) + (az- a3)p(y),

where | is logarithmic on In (i.e. I(xy) = I(x)I(y) for x,y £ In) and p(x) = £* for some
fixed k;

(1) forp = 1:

F.(*.y) = (i+1) 1+28 + aa+ a2

Fax.y) = I%x +)y) +h\£ +yf .

F3(x,y) = (12+ h) [T +h( 3 A4+02+ <3,
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Fa(x,y) - h(x+yj)+ \xzi-yj + Qi,

where 1% are logarithmic on In;
(1) for fi ya 1, non-addilive:

Fi(x,y) = b(x,y) -fa~(x) + az2fi(y) - a3ft(x +y),
F-i(x,y) = ~b(x,y) + adp(x) + abp(y) - adp(x +y),
Fz(x,y) = -b(x,y) + abfi(x) + asy(y) - a3p(x +y),
F4(x,y) = b(x,y) + otdfi(x) + a2//(y) - abft(x +vy),

where b and ft have one of the following forms:

(@) b(x,y) = d(£k) mrjk - e<%*), fi(x) = for some Kk,

(6) b(x,y) = alm[vp(™)vaM)], fi(x) = M &)|2 for some k,
(©) b(x,y) = a(ryk- (ki)j), ii{x) = for some j, k, j / Kk,
(d) b(xy) =0

(here d is a real derivation, i.e. d is additive and d(£~l) = —£_2d(£) and tp is a nontrivial
field embedding of R1 onto C).
All a s above are constants.

2. Proof of Theorem

In the proof of Theorem we shall need the following two statements shown in [5]
(results of [2] and [8] are used in the proof). The proof of Proposition 2 (consisting of the
proof of Lemma 4.1 and Theorem 4.4 in [5]) is completely free from considerations of the
fundamental equation of information, used only in a fragment of the proof of Proposition 1
(Lemma 4.3 in [5]). But it can be eliminated even from that fragment by an appropriate
modification of the proof. We omit here the details.

Proposition 1. A function 4: Dn —*R1 satisfies the system of equations:

$(x +y,2)+$(x,y) = fx+zy) +$(x,2), (x,y.z2)&Dn; (M

$(x,y) = $(/,x),  (xy,)eDn; (8)

$(tx,ty) = fi(t)$(x,y), (x,y) e Dn, t€ In; 9)
where ft ~ 0 is multiplicative on if and only if

~xoy) = PLRi(x) +p(y) +fi(x+ y)}, (x,y) € Dn (10)
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in case y is not additive, and

$(x,y) = yO)I(x) + y(WI(Y) - y(x + )I(x +vy), (x,y) € Dn (11)

in case y is additive, where | is logarithmic on In and 0 G R1;* and | are extendable
to Pn := (0, 00)n so that y is multiplicative and I is logarithmic on Pn and 4> defined by
(10 ) - (11 ) on P2, satisfies (7) - (9) for x,y,z,t € Pn-

Proposition 2. Let y be a multiplicative function on Pn. [f is y-homogeneous on
P2 and

$(x,y) = f\(x) +fi{y) - £3{x+y), Pn,
then
fi(x) = a(x) + Piy(x) + r,(x), x e Pn
in case y is not additive, and

fi(x) = a(x) + ctiy(x) + y(x)I1(x) + r,(x), x €Pn

in case y is additive, for i = 1,2,3, where a 5 are constants, the functiona is additive,
I is logarithmic on Pn and r % satisfy the equation:

r<(xy) = y(x) rt(y) + rfx) (12)
for x,y € Pn nnd are of the form:
r,(x) = I,(x) incasey —1, r,(x) —a-—ctiy(x) incasey” 1 (13)
for x 6 Pn and i = 1,2,3. Moreover, rj + r2= r3 on Pn.

The following lemma will be used in the proof of Theorem and will allow us to avoid
considering separately the three different domains: Pn, [l,00)n and [2,00)n, appearing in
the proofs given in [5].

Lemma. Let$ : Pn—»R1be a given function and suppose that for every a € (0,1]
there exist functions /,: [cr,00)n —=R1 (i = 1,2,3) such that

$(x,y) = f2(x) +ft[y) - fZ(x +vy), (x,y) e k,°0)n, (14)

then there exist functions /,»: P,, —R 1 (i = 1,2,3) such that

$(x,y) = h(x)+ My) - f3(x +y), (x,y) e Pn- (15)
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Proof. Take arbitrary o, r E (0,1], a < r and define the functions = g°'r =
/If —/Ir (i — 1,2,3). By (14), & satisfy the Pexider equation on the domain[t, 00)2n.
Using appropriate substitutions and Theorem (0. 3. 3) from [2] on the general solution of
the Cauchy equation on [r,00)2, one can easily deduce that

Ir(*)= 7(*) + «'m"(*)+ ofIT, x € [3r, 00)n (16)

for i = 1,2, 3, where a<lis an additive function on Rn and a"'Tare constants such that
0qT+ a-f = Q3T. In particular, for every p E

H(*) = 1?2(*) + «'(*) + of, xe[3,00)" (17)
where 0'1:= a"land a? := of’l, i.e. of + «5 = <3-
Fix a,t £ (0,1), € < t.By(16) and (17) with p —a and p = t, we get

aaT(x) + of’7=a”x) - aT(@) + a" —a[, 2 €£€[3,00)n (18)

for i = 1,2,3. Of course, each z E Pn can be represented in the form 2 = x —y, where
X,y £ [3,00)WLTherefore additivity of the a's and (18) imply

a°,T(z) = ac(z) - aT(z), zE Pn; (19)

al'T= af -aj, ¢= 1,2,3. (20)

Now, define
[,(1)) :=#(,)-«"(*)-0f,

whenever x E [3<r,00)n for a E (0,1) and i = 1,2,3. The functions /, are well defined on
Pn, according to (16), (19), and (20). Clearly, (15) holds.

Proof of Theorem. First notice that p: In—+R1and {\Dn—=R1 (i = 1,2,3,4)
can be uniquely extended to Pn and P2, respectively, so that equations (5) - (6) are
satisfied for t,x,y,z £ Pn (cf. [3]), pp. 8-9). If we replace y by 2 and conversely in (6),
then add and subtract the resulting equation to and from the original equation in an
appropriate way, we obtain the following equations:

$j(x +vy,2)Ais2x,y) = $,(r+2,y) fi$2(z, 2), (21)

$32+vy,2)fis42,y) fi$32+ 2,y fi$42,2)=0 (22)

for x,y,z E Pn, where
$1 = + "3i $2 ;= F2+ P4, $3:= Pi —F3, $4:= P2—F4 (23)

are /¢-multiplicative on Pn.
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Consider first(21) and put z = Za= (Co, **+, Co) € Pn- This gives
= $i(* +-F0,y)-*I(*+ PO+ $H(F <), (24)
Substituting (24)into (21), letting x = u+ z0,y =v + z0,z = w + z0 and denoting
tii (u,v) ;= $i(u +2i0,u + 20) —S$i(u + 2z0,z0) (25)
for u,v G Pn := [0,00)", we obtain the generalized entropy equation:
$1(11 4 v, w) + V) = Ni(u + to,v) + i i(u, w) (26)
for u,v,w G Pn. Defining
ty2(u,v) = ®i(«,v) - \Pi(o,u), u,v 6 Pn, 27)

we see that satisfies the generalized entropy equation and is symmetric, in view of (26)
with u = 0. By Theorem 5 in [6],

'W(u,v) = tp(u) + tp(v) - <p(u + v), u,v € Pn
for some function ip: P,, -+ R 1. Hence, by (27) and (25),
$i(any) = yx{x) + ip2(y) - ip3(x +y),  x,y G[3Co,00)n,

where <pi(t) := jf(t-2z0)+" 1(t,z0), F2(t) 'm=¥>(<-20)+'l'i(0,t-z 0) and B(i) := <p(t-Zz0)
are functions defined for t G [3Co,°0)n.
By Lemma,

$i(*,2) ~ fi{x) + fiiy) ~ fz{x +y), X,y GPn
for some functions fi : Pn —=*R1 (i = 1, 2,3). In view of Proposition 2, we have

$i(x,y) = Pinix) + fhKy) - #F(* + y) +
+JT(s) + Pli(y) —(r, + r2)(x +y) (28)

in case ft is not additive, and

$,(x,1) = ai/i(x) + a2p(y) - a3ft(x +y) +
+n(x) +r2(y) - (ra+ r(x +y) +
+FHX)(X) + y[y){y) - n(x + y){x +y) (29)

in case p is additive, for x,y G Pn.
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Now, we substitute (28)-(29) into (21), applying (24), and separate the variables y
and z in the resulting equations. The functions on the left and right hand side after the
separation depend neither on y nor on z, so we can denote them as follows:

M*,y)+ AM® +y) - fay{y) + n(z +y) - r2{y) =: h(x) (30)
in case y, is not additive, and
®i(x,y) +ain{x +y) - a2p(y)+
+r(x +y) - r2y) + i+ )X +y) - y{y){y) -m k(x) (1)
in case p is additive, where h k are functions on Pn. Define
fii(x) = h(x) - (rx- r2)(x); kAx) = k(x) - (rt- r2)(x) - fi(x)I(x).

It follows from p-homogeneity of $2 and (12) that /it and ki are also p-homogeneous.
Hence

h(x) = (n - r2)(x) + £4z(x),
k(x) = (rj - r2)(x) + a4p(x)1(x) + p(x)/(x),
where (3A:= /m(1) and aq fci(l). Therefore (30) and (31) imply
$2(x,y) - P*n[x)+ M y) - Oin{x +y)+
+(n-r2)(x) +r2(y)-r.(x +vy) (32)
in case p is not additive, and
$2(xy) = aiy(x) +azy(y)-aly(x +y) +
+(n - r2)(x) + r2(y) - r(x +y) +
+p(X)/(x) + n(y)I(y) - p(x + y)I(x +y) (33)

in case p is additive, for x,y 6 Pn.
Consider now (22). Interchanging x and y and adding the obtained equations, we get

2$3(x +y,z) + $3(2,1/) + $3(x + z,y) +
+$3(j/+ z,x) + $4(x,x) + $4(y,z) = 0 (34)

for x,y,z € Pn, where
™M *,y) = $4(z,y) + $4(Y,a), X,y €Pn

is p-multiplicative function. Substituting in (34) z = 1, replacing in (22) x,y,z by I,x,y,
respectively, and comparing the obtained equations, we get

~3{x,y) =gi(x)+gt(y)-g3(x +v), X,y € Pn, (35)
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where
<p(x) := $4(1,x) - $4(x, 1) =: y2(x); y3(x) := 2$3(x, 1) (36)
for x € Pn.
Putting y —z —1 in (22), we obtain
$a(x,1) = $3(x+ 1,1). (37)

Since ~3 is p-homogeneous, we can apply Proposition 2 to (35) and to find the form of
y3. Substituting it to the second formula in (36), we can find subsequently $3 and i>4,
due to the formulae (37) and

$.(x;y) = p(y)$."M ), =34

Thus, taking into account (12), we obtain

273(x,y) = p(y)arj + Bp(x) + r(x) - r(y), (398)
-28%4(x,y) = p(y)ar +1j m/Bp(x +y)+r(x +y)- ry) (39)

in case p is not additive, and
2$3(x,y) = fi(y)a(rd +ait(x) + +r(x) - r(y), (40)

-2A(xy) = p(y)at + 1M +adp(x+y)+p(x+y)/n o+l o+
+ r(x-fy)- ry) (41)
in case p is additive. Substituting the above forms of <3 and <& into (22) and using the
additivity of a, we get

p(2)ao ) +p(y)a”j - [p(y) + p(z)]a(l) = 0 (42)

in case p is not additive, and

p(z)ag) +p(y)a(j) - [p(y) + p()]a() + p(y)i(j) +p(z)f*) =0 (43)

in case p is additive, for y,z € P,%
Now, we replace y by 2y in (42) and (43) and compare the equations soobtained with
the original equations (42) and (43), respectively. We get

n K2)

,  PO)ali - p@«) - [2- p(@)py)a(l) = 0 (44)
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in case fi is not additive, and

HW=1 " ) @)

in case fi is additive.

Consider the case fi is non-additive and fi ~ 1. Obviously, fi ~ 1, but now the multiplic-
ity of fi implies p(1) = 1. Hence, puttingy =z = 1in (44), we get [1—/i(2)/2] a(l) = 0.
The supposition a(l) ~ 0 would imply p(2) = 2 and, substituting the last value to (44)
with y = 1, we would obtain fi(z) = a(z)/a(l), i.e. the contradiction with the assumption
that fi is non-additive. Therefore a(l) = 0 and (42) with y = 1yields the equation

a(r) + p(z)a0j =0, ze Pnm (46)

The general solution of (46) is given by one of the following forms:

(ai) a(i) =d((k)- (k, Kx)=( for some

(bi) a(x) = alm~f*)], fi(x) = \ip((k)\2 for some k,
(cx) a(x) = a(ij - fr), fi{x) = (jh for some j, k, j ~ Kk,
(di) a(x) =0

for x = (?if-)in),J/ = (Nly-ivn) € P,, which is proved in [4] (see also [9]). We
substitute (o-i) —(d\) into (28), (32), (38) and (39), taking into account (13). Hence, by
(23), we get formulae (II1) in Theorem (after renaming the constants).

In case fi = 1, equation (42) for y = 1yields a(z) = fa(l) which, by virtue of the
additivity of a, gives a = 0. Now, substitutting (28), (32), (38), (39), with r’s given by
(13), into (23), we arrive at the formulae (Il) with appropriate I’'sand a’s.

Finally, suppose that fi is additive. Substituting (45) into (40), (41) and using (13)
again, we see that (x,y) and 44(i,j/) are linear combinations of fi{x) and fi(y). This
and equations (29), (33), due to (13) and (23), lead to formulae (I) in Theorem, after the
appropriate change of the constants.

To complete the proof of Theorem it remains to notice that F’s given by formulae (1)

- (M) satisfy (5) - (6).
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Streszczenie

Sposrdd rozmaitych charakteryzacji miar informacji (w tym entropii Shannona) za po-
moca. rownan funkcyjnych szczeg6lnie interesujacy jest opis podany w pracy [5] ze wzgledu
na najogélniejszg posta¢ rozpatrywanego tam rdéwnania, tzw. uogdlnionego réwnania in-
formacji typu multyplikatywnego:

his) + A ~ s)"2('jTTs) = —O0/4(yTHH1) s'Ne

rozwazanego na obszarze otwartym

Dn:= {(i,t) : s,t,s +te /,},
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gdzie fi sa szukanymi funkcjami rzeczywistymi na zbiorze In O,)ndlai=1,2,3,4,an
jest ustalong funkcjg multyplikatywna na In, tzn. taka, ze = p(s)p(i) dla €1/,.

Mozna dowie$¢, ze uogodlnione réwnanie informacji typu multyplikatywnego jest row-
nowazne nastepujagcemu uog6lnionemu réwnaniu entropii:

Fi(x +vy,2z) + F2(x,y) = F3{x + z,y) + FAX, 2), (x,y,z) 6 Dn,

gdzie
= {{x,y,2): x,y,z,x +y+zel,},
a Fi' Dn—R1 (i = 1,2,3,4) sg poszukiwanymi funkcjami p-jednorodnymi, tzn.

Fi(tx,ty) = ii(t)Fi(x,y), t€ (x,j!) € Dn.

W prezentowanej pracy znajduje si¢ ogdlne rozwigzania uog6lnionego réwnania entro-
pii metoda bezposrednia, bez korzystania z wynikéw dotyczacych réwnania informacji.



