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ON SOME GENERALIZATION OF ELEMENTARY KLEIN
SPACE

Summary. The aim of this paper is to formulate definitions and state some
properties of the generalized elementary Klein space over arbitrary field. It is show
that affine and projective space are the examples of such spaces.

O PEWNYM UOGOLNIENIU ELEMENTARNEJ PRZESTRZENI
KLEINA

Streszczenie. Celem niniejszej pracy jest podanie definicji i pewnych witasno-
$ci uog6lnionej przestrzeni elementarnej Kleina nad dowolnym ciatem. Przestrzen
afiniczna i rzutowa sg przyktadami tego rodzaju przestrzeni.

HEKOTOPEIE OEOEIHEHME BJIEMEHTAPHOrO IIPOCTPAHCTBA
KJIETTHA

Pe3ioMe. I1leJiK) HacTonmeit padoTbi iibthctch nepcACTannemie onpe,ae-
nemni h HeKOTopux CBoficTB o6o6ipeHHoro aneMeHTapHoro npocTpaHCTBa
KneiiHa Hafl npou3Bojithbim noneM. AijufudHHoe h npoeKTHBHoc npocTpaHCTBo
9TO npHMepM OTHX npocTpaHCTB.

Introduction

M. Kucharzewski in [1] defined, using the concept of abstract object, notions of Klein
space, geometric object and Klein geometry. By the abstract object supported by the
group G we mean any triplet

(X,G,F) (1)
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consisting of a nonempty set X , an arbitrary group G and an action F of the group G on
the set X, i.e. a mapping F : X x G — X satisfying the conditions:

F {F{x,0i),02) = F(x,902mi), F(x,e) = x

for all x G X and gi, 942 € G, where e is the unity in G and g\ mg2 denotes product
in G. These conditions are called, respectively, the translation equation and the identity
condition. The set X is a fibre of the object (1), where as F is a transformation formula
(or transformation law) of this object.

It can be shown (see [1]), that the mapping

Fa:X->X, Fg(x):=F(x,g)
is a bijection of the set X onto itself, and
F :G -* g{X), F(g) := Fa

is @ homomorphism of the group G into the group Q{X) of all transformations of the
set X. This homomorphism will be called a representation of the group G in the group
of transformations Q(X), or — simply — the representation of the object (1). Abstract
object (1) will be called effective iff its representation F is a monomorphism. Effective
abstract objects are called Klein spaces.

The above definition of KLein space is too general. In [5], using the notion of linear
space of translations of the set, the elementary Klein space over arbitrary field was de-
fined. However, the class of such spaces is too narrow: e.g. the projective space is not an
elementary Klein space.

The aim of this paper is to formulate definitions (section 1) and state some properties
(section 3) of the generalized elementary Klein space over an arbitrary field. In section 2
it is shown that affine, Euclidean, projective and elliptic spaces are the examples of such
spaces.

1. Vector structure of a set over the field

The group of transformations T (M) of a nonempty set M will be called a group of
translations of this set iff it acts straightly transitively, i.e. for any p,q £ M there exists
one and only one r 6 F(M) such that r(p) = q.

Let K be an arbitrary field, with zero and unity denoted by 0 and 1, respectively. Note

that the abelian group of translations T(M) with outer operation

(K x T(M) — T(Af), ©
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satisfying, for all a, b€ K and n ,r2,r £ T(M), conditions:

a-(rior2) = (ae*r,) 0o(amyz,
(a+ b)-T - (a-r)o (bmr),
(ab) m = amber), (3)

1 mt = o,

is a linear space over K.

According to the definition given in [5], the Abelian group of translations T (M) with
outer operation (2) satisfying conditions (3) will be called a linear space of translations
of the set M over the field K and denoted by T(M, A).

The notion of the group of translations and the linear space of translations of the set
M can may be generalized as follows:

Définition 1. The group of transformations Td{M) of the set M will be called a
group of quasi-translations of this set with the quasi-domain D (ty~ D C M) iff it acts
straightly transitively on D and for all t £ Tq{M) the condition

g idm\d

holds. The abelian group of quasi-translations Td(M) satisfying for all a,b € K, £
Td (M) conditions (3) will be called a linear space of quasi-translations of the set M over
the field K, and denote by Td(M,I\).

In particular, if D = M, the linear space of quasi-translations is the linear space of
translations of M over K.

Dénnition 2. Let \Td{M ,K))dss be a system of linear spaces ’of’%quasi-—'lranslali%rrl;s
of M over K, where A is afamily of quasi-domains of these spaces, and let {A p(M)}peM
be a system of groups of transformations of M, satisfying, for allp £ M and a £ AP(M)
the equality a(p) = p. The pair

({Td(GW, A")}DeANAP(M)} omy €))
is called a vector structure of the set M over the field K iff the following axioms are true:

V1 For all D,D" £ A, D D' and each r £ To(M,K), t' £ TnfiM, K), a £ K the
following conditions hold: r(D') £ A and

to TD'{M ,K)ot~1 Tt(d«)(M, K),

roja-r*Jor"”l = d"]|To/or"1j;
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V2 For each p,g GM there exists a quasi-domain D G A such that p,q G D;
V3 Forallp GM,D GA andr GTd(M,K)
TO0.4p(M) 0T“1 = Ar(r){M)\

V4 There exists a point p G M such that for every two quasi-domains D', D' of the

family
Ap:= {£) GA: pG-D}

fAere exists one and only one transformation a G AP(M) satisfying conditions:

a(D') = D" and
a 0TD‘(M, K) 0ft-1= TDn(M,A"),

where as for each a GA tmd r' GTd'{M,K) the relation
ao(er)oa-1 =a”~oor'o a_1)
holds.

Now, let
Ta(M ,A):= U W A ) (5)

DEA

and consider, for r GT\(M, A), a function
L;:7a(M ,A)-T a(Ai,A), i;(f) =Tdaior-". (6)
As the immediate consequence of axioms V 1-V 4 we get the following two corollaries:

Corollary 1. Aor each r G T\(M,K) mapping (6) is a bijection. Moreover, for any
D G A, its restriction L\. . ¢s a linear isomorphism of the linear space Td (M ,K)

onto A).

Corollary 2. Conditions slated in axiom V4 are satisfied at any pointp G M .

Using these corollaries and axioms V1-V 4, we will prove
Corollary 3. All linear spaces of the system {TpfM, A*)}oeA are isomorphic.

Proof. Let us consider arbitrary two linear spaces Td'{M, K) and To" (M, K),
D',.D"™ GA and two pointspG D', g G D". According to V2 there exists r G
such that r(p) = g. By Corollary 2, spaces and XT(Ev)(M, A) are isomorphic
and ¢ G r(D"). In virtue of axiom V4 and Corollary 2 we infer that spaces A)

and 7b" (M, A) are isomorphic, which ends the proof..

Corollary 3 implies that all linear spaces of the system {7b(M, A)}dea are of the

same dimension.
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Definition 3. The common dimension of all linear spaces To{M, K), D £ A will be
called the dimension of vector structure (\).

Now, let us consider a Klein space
(M,G,f) Q)]
and vector structure of the fibre of this space.

Definition 4. Vector structure (4) of the fibre of Klein space (7) will be called com-
patible with this space iff the following two compatibility conditions are satisfied:

(i) Foreachgg G, D6 A, r€ Tp(M,K) anda 6 I\

fgoTd(M,K) o/ " = TfAD)(M ,K),
fgo(oer)of~" = »-(/.oro/;1);

(ii) Foranyg6 G andp€ M

fgoAp(M)of-*

Definition 5. Klein space (7) will be called n-dimensional generalized elementary
Klein space iff there exists an n-dimensional vector structure (4) of the fibre M over K,
compatible with this space.

2. Examples ofthe generalized elementary Klein space

2.1. Elementary Klein space

Let T(M, K) be a linear space of translations of the set M overthefield K and let
for each p e IfAP(M) be a trivial group { i@w}e It is easily seen thatthe pair

{7(Af, A} {AW Y, Ap(M) = { idM) lovpeM (8)

satisfies axioms V1-V 4. Hence it is a vector structure of M over K. The pair (8) is called
an elementary vector structure.
Klein space (7) is called an n-dimensional elementary Klein space over K (cf. [5]) if
there exists n-dimensional elementary vector structure (8) compatible with this space.
Vector space, affine space, Euclidean and pseudo-Euclidean space are the examples of
elementary Klein spaces (cf. [2], pp. 14-17).
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2.2. Projective space
Consider an n-dimensional projective Klein space (cf. [3], pp. 32):
(Pn,GP(n,K),f). 9)

Let A denotes the family of all subsets of the fibre P' of the form D = Pn\ H, where
H is an (n —I)-dimensional projective hyperplane, whereas Tp(Pn) will denote the group
of projective translations. Such a group acts straightly transitively on the set Pn\ H.
and its elements r satisfy the condition r|w = id«. Stability subgroup (cf. [3], pp. 23)
of hyperplane H is isomorphic with affine group (cf. [3], pp. 36), whence for each group
Md{P’1), D £ A we can define outer operation

ek XrD(pn)-»rD(pn)

in such a way that 7b(P") becomes a linear space Tp(Pn,K) of quasi-translations of the
set P".

The duality principle implies that for each p G P'" there exists a subgroup Ap{Pn)
of stability group in p, acting straightly transitively on the set of (n —1I)-dimensional
hyperplanes not containing p. It can be easily shown that a pair obtained in such a way

({TD{Pn,A")}0€A , M P(P n)}p£P,,) (10)

satisfies axioms V1-V4. Therefore (10) is a vector structure of the set Pn.

It is easy to verify that this structure is compatible with projective Klein space (9).
Hence, projective Klein space is a generalized elementary Klein Space.

It is obvious elliptic space (cf. [3], p. 41) is a generalized elementary space as well.

3. Tangent bundle

In [2] and [4] some techniques of construction of geometric objects are shown. Using
one of them we can define a factor object. Let

(X,G,F) (11)

be a geometric object of Klein space (7) and r a congruence of the fibre of this object,
i.e. an equivalence relation satisfying condition

Xjr =>e¢ F(xug) rF(x?,9)
for all xi, x26 X and g € G. Then the mapping

Fr:(Xfr) x G -> X/r, F' ([xU) = [P(x,9)]
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is an action ofthe group G on factor set XL. Thus, we can define a new geometric object

(x/r,a,r)

of Klein space (7), called a factor object of the object (11) by congruence r.
Now, consider n-dimensional generalized elementary Klein space (7) over K and a set

TM ={(p,r): p€ M, r 6 TD(M,K), DE£ A}
It is easily seen that the function F\T M xG —=TM, defined by the formula
F ((P,T),ff) = (/(Pi5)1/30TO0/,_1) .
is an action of G Ol TM. Thus the triplet
(TM,G,F) (12)

is a geometric object of space (7). We will define a certain relation in the fibre of this
object.

Definition 6. We say that (p,r), (g,r\) £ TM are in relation r iffp = g and there
exists a £ AP(M) such thata or Oa-1 = ¢\

It is easy to note that r is a congruence in the fibre of object (12). Let us denote
TM :=TMjr

and define factor object
(TM,G,Fr) (13)

of object (12) with respect to congruence r.

Definition 7. Geometric object (13) of generalized elementary Klein space (7) will be
called an abstract tangent bundle and its fibre a tangent bundle of this space. Abstraction
classes [(p, r)] will be called a tangent vectors to space (7) at the point p. The set of all
tangent vectors to the space at a fixed point p will be denoted by TPM and called tangent
space to space (7) at the point p.

AxiomV 4,Corollary 2 and Definition 6 implythat for eachtangentvector [(p, r)]
and D' £Apthere existsexactly one quasi-translation r'£Td'{M,K) such that(p.r’) £
[(p,r)]. Moreover, if

vp= [(P.r)I. wp= [(P.?)]: where r,r 6 Td(M, K),
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and
P, 7 E vp, (p,t) £ wp, where r', f* € To'(M, A",
then
(p,r" o2y £ [(p,7'0f) and (p,am) ¢ [(p,am)] for each a £ K.
Thus, in each space TPM we can define the addition of two vectors

[(P>T)] + I(P.?)] = [(P-To0:?)]- where r,f € TD(M, K), (14)

and the multiplication of a vector by an element of the field K

“ml(P. T := [(P.a- T)I- (15)
Hence, tangent spaces TPM with operations (14) and (15) form n-dimensional linear spaces
over K.

Now, we will prove that for each p £ JIf, vpwp £ TPM, a £ K and g £ G the following
equalities hold:

Fr(vp+ wp,g) = Fr{vwp,g) + FT(wp,g), (16)
Fr(avp,g) = aFr(vp)g). 17

Indeed, for each r,f £ Td(M,K), where D £ A/> we get

([P )] + [(p,?)1.$) = Ar([(p,Tof)],5f) =
= [A((p. Tof),s)] = [(/(p. A JiOrotolin] =
= [(/(P,f1).fg°rof~rofgo?o0 /-1)] =
\(f(p,g)Js OTO/SD] + [(/(p.i).liofoi 1] =
* = [A((p.1).p)i + [F((p.?).5)] =

= F([(p.n).fM)+ Fr(l(p,?)].*).

Thus, equality (16) is proven. Similarly, one can prove (17).
Results obtained above can be expressed the following theorem.

Theorem 1. Abstract tangent bundle (13) of n-dimensional generalized elementary
Klein space (7) has the following properties:

(@
TM = (J TPM

(6) Tangent spaces TPM with operations (I1f) and (15) form n-dimensional linear spaces
over the field K .
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(c) Foreachg £ G and p £ M the mapping Ff|r M is a linear isomorphism of the tangent
space TPM onto the tangent space Tf"p<gM, i.e. for eachp 6 M, vp, wp £ TPM ,
a € K and g € G the relations (16) and (17) hold.

For elementary Klein space (7) abstract tangent bundle (13) is an object equivalent
to the object

(M x.T(M,K),G, F), /' ((p.t).s)=(/(p.5)./jotol;1),
which is a product (cf. [3], p. 17) of space (7) and the object
(T(M,K),G,F0), % sy=1/ljoto/;". (18)

For elementary Klein space object (18) instead abstract tangent bundle is usually consid-
ered. It is called an abstract free vector (cf. [5]).

It is easily seen that for each r £ T\(M, K ) the mapping

LT:TM —TM, Lr([(p,?)]) = [(r(p),r of or-1)] (19)

is well defined and is a bijection.

Definition 8. Mapping (19) will be called a parallel transposition of tangent bundle
TM. If &T(p) = LT(vp), we say that tangent vector wT is defined parallel transposi-
tion (19) of tangent vector vp from the point p to the point r(p).

Axiom V2 implies that each vector vp can be parallely transposed from the point p
to an arbitrary point q.

It is easy to note that for each r £ 7a(M,K), p £ M, vp,wp £ TPM and a £ K the
equalities:

LT(vp+-tUp) = Lr(vp)£T(mp)l
Lr(avp) = aLT(vp)

remain true. Hence, the following theorem is also true:

Theorem 2. Each parallel transposition (19) is a bijection and for each p £ M its re-
striction LT|r M is a linear isomorphism of tangent space TPM onto tangent space Tr(p) M .

Using the notation of tangent bundle we can define fc-dimensional hyperplane in
n-dimensional generalized elementary Klein space (1 Stk ~ n —1).
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Streszczenie

Celem niniejszej pracy jest podanie definicji i pewnych witasnosci uog6lnionej prze-
strzeni elementarnej Kleina nad dowolnym ciatem.

Wprowadzona przez Kucharzewskiego w pracy [1] definicja przestrzeni Kleina jest zbyt
ogdlna. Na podstawie tej definicji w pracy [5], wykorzystujac pojecie przestrzeni liniowej
translacji zbioru nad ciatem, okres$lono pojecie elementarnej przestrzeni Kleina nad do-
wolnym ciatem. Klasa tych przestrzeni jest jednak zbyt waska, np. przestrzeh rzutowa nie
jest elementarng przestrzenig Kleina.

W niniejszej pracy podano definicje (rozdziat 1) i pewne wasnosci (rozdziat 3) uogo6l-
nionej przestrzeni elementarnej Kleina nad dowolnym ciatem. W rozdziale 2 pokazano, ze
przyktadami tego rodzaju przestrzeni sg takie przestrzenie, jak: afiniczna, euklidesowa,
rzutowa i eliptyczna.



