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A B S T R A C T . We give the representations of different subsets of com­
positions, decompositions, number and set partitions by means of choice 
functions of indexed families. The structure of the symmetric sets of choice 
functions is represented by investigated tables D related to Pascal’s trian ­
gle and to  the Stirling’s numbers. Unranking and ranking representation 
models concerning sets of choice functions are developed. We study  trans­
formations of the models their equivalence, congruence and isomorphism 
basing 011 the tables D. We have shown superiority of the investigated mod­
els for representing the sets of combinatorial objects in comparing with the 
classical methodology. Then, the basic algorithms and their variants for dif­
ferent classes of models concerning the generation of choice functions are 
developed. The_algorithms concerning rank use widely the tables D. The 
general methodology for parallel or distributed generation of the choice 
functions in SIMD or MIMD systems is used and developed.

S T R E S Z C Z E N IE . Zaproponowano metodę reprezentowania arbitralnych 
pod- zbiorów kompozycji liczb, dekompozycji zbiorów, podziałów liczb i 
zbiorów poprzez odpowiadające zbiory funkcji wyboru rodzin indeksowych. 
Istotne znaczenie dla reprezentowania arbitralnych zbiorów obiektów kom- 
binatorycznych m ają rosnące funkcje wyboru, monofoniczne funkcje wyboru 
oraz bijekcje. Zaproponowano i rozwinięto modele zbiorów obiektów kom- 
binatorycznych jako modele nierankingowe oraz modele rankingowe. Przed­
stawiono ogólną teorię struk tury  arbitralnych zbiorów funkcji wyboru. Struk­
tu ra  ta  reprezentowana jest poprzez tablice D, których elementy pozostają 
w związku z trójkątem  PascaPa oraz liczbami Stirling’a. Tablice D są wyko­
rzystywane ponadto w algorytmach tworzących podstawy systemu gen­
erowania obiektów kombinatorycznych. Przedstawione w dalszej części twier­
dzenie o rankingu precyzuje własności modeli optymalnych z punktu widze­
nia możliwie najbardziej zwartych zbiorów rankingów funkcji należących 
do modelowanych zbiorów. Uzyskanie możliwie najbardziej zwartego zbioru 
rankingów m a istotne znaczenie dla sekwencyjnego, rozproszonego i równole­
głego generowania zbiorów funkcji wyboru. Ogólna metodologia generacji 
zbiorów funkcji wyboru w systemach SIMD, MIMD jest przedstawiona i 
rozwinięta w kolejnych rozdziałach.

K ey  words: partition, composition, decomposition, indexed families, mono­
tonie choice functions, increasing choice functions, choice bijections, mod­
eling by rank, layer, structural numbers, Ranking Theorem, combinatorial 
object generation
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Introduction

The main combinatorial computations concern the generation and pro­
cessing subsets, subgraphs or submatrices or other similar structures or 
different their collections. These all structures are commonly called the 
combinatorial objects. This text is devoted to the representation method­
ology of arbitrary sets of the combinatorial objects and to their automatic 
generation in sequential or distributed or parallel systems.

Many authors have contributed to the generation of full sets of permu­
tations, combinations, partitions, compositions and decompositions in the 
last two decades [1], [8], [23], [2], [3], [32],[49], [57], [44], [52], [13], [51], [37], 
[38], [55]. On the other hand the problem of generation of full sets of the 
basic combinatorial objects has been discussed for over 300 years and the 
details concerning the old history and newest achievements can be found 
in [23], [44], [42], [53],

The classical approach represents sets of combinatorial objects basically 
by means of full sets of permutations or combinations or partitions or com­
positions or decompositions. However, arbitrary sets (subsets) are much 
more needed for practical applications than the full sets of the basic com­
binatorial objects. The classical approach proposes only very few solutions 
of this problem. The main method is to represent and to generate sets of 
combinatorial objects by rank [1], This method is not suitable for numerous 
practical applications especially if the rank range of the represented set is 
not compact. In fact, if more compact rank range, then usage of the rank 
is more suitable. The reasons are as follows:

(z) the algorithms concerning rank are more time consuming than the 
counterparts not related to the rank,
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(ii) if more compact rank range, then less runs of a ranking algorithm 
required,

(in) the sets of combinatorial objects represented by non-compact rank 
ranges are very hard for uniform distribution,

(iv) the method lacks of efficient modelling subsets of combinatorial ob­
jects by ranking.

In the last years several algebraic and linguistic approaches for modelling 
and generation of sets (subsets) of combinatorial objects have been pro­
posed [4], [17], [19], [33], [49], [54], [41], Among them the general methodol­
ogy of representing sets of combinatorial objects by sets of choice functions 
proposed by the author in [19] seems to be the most attractive. Several 
papers contribute to this approach [49],[35], [39], [23], [20].

This text accepts and develops the methodology basing on the choice 
functions of indexed families. We investigate and study the unranking mod­
els those represent sets of choice functions. Our main concerns are sets of 
increasing choice functions, sets of monotonic choice functions and sets of 
choice bijections. We demonstrated usage of these models for representing 
the basic combinatorial objects, i.e., permutations, combinations, varia­
tions, partitions, decompositions and compositions. The given concepts can 
be seen as a development of the consequences that could be drawn from 
Hall’s Theorem [14]. That theorem by many authors was considered as the 
basic result in combinatorics but developed here theory for the first time 
shows it so widely. Then, the tables D for representing the structure of sets 
of choice functions are studied. The tables D create new theoretical founda­
tion for deeper understanding the structure of the whole combinatorics in 
relation to Stirling’s numbers and to Pascal’s triangle. These tables are the 
main components of the ranking models, we investigate also transforma­
tions of the models basing on the tables D. Ranking Theorem presents the 
main existential result for our philosophy of getting the most suitable mod­
els. As far as the representation of sets of combinatorial objects is concerned 
the choice function approach gives benefits that could not be obtained us­
ing the classical methodology, we demonstrate these benefits. Then, we 
develop the system of the basic procedures for the generation of choice 
functions. We investigate the general algorithms and their most efficient 
variants dedicated to specific classes of the models. We emphasize that the 
tables D are the essential components of the developed algorithms concern­
ing the rank. Then, the sequential, parallel or distributed systems of the 
generation are given. In the last years there are investigated non-standard 
generation problems and tasks that concern non-exhaustive generation and 
generation of a specified subset of combinatorial objects [45], [46], [5], [10]. 
It can happen for these new tasks that no backtracking-less algorithms ex­
ists for their solving. The investigated notion ” the Q property” enables us 
to explain the model properties leading to existence of backtracking-less 
algorithm. We demonstrate also usefulness of the presented here approach 
into solving the general tasks for the models that the Q property does not
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hold. We have shown backtracking and looking forward algorithms showing 
simultaneously the structure of efforts undertaken in order to diminish as 
much as possible the number of backtracking and looking forward steps. 
We have also shown development of digital signature system basing on the 
given theory. The results concerning non exhaustive generation are for the 
first time so strongly unified supplying convenient tools for implementation 
and further development of optimization algorithms especially the genetic 
algorithms.

The most important advantages of representing the combinatorial objects 
by choice functions of indexed families and by using the proposed here 
approach can be pointed out as follows:

(i ) methods of modelling are versatile and flexible in order to meet dif­
ferent and easily changeable requirements,

(it) methods of generation of choice functions of indexed families are also 
very flexible, and suitable for sequential, parallel or distributed systems,

(in) algorithms for the generation of the basic combinatorial objects by 
means of choice functions are the fastest known,

(iv) the known methodology is very convenient, both for development 
of the software generators and for development of the dedicated hardware 
generators as well [34], [36], [39],

(v) the whole theory that is developed for modelling and for the gener­
ation is versatile and it enables us to find good methods of the generation 
for very uncommon and irregular sets of combinatorial objects too, even if 
symmetry of the sets of choice functions or the Q property do not hold,

(vi) the given approach separates clearly modelling problems from the 
generation problems, so selection of proper algorithms is oriented towards 
a model instead being oriented towards an application that is commonly 
used till now.

Chapter 1 is devoted to recalling the known results concerning choice 
function modelling and to the essential properties of the basic models, from 
the point of view of their correctness and their convenience for modelling.

Chapter 2 develops usage of particular models for representing full sets 
of the basic combinatorial objects and their subsets.

Chapter 3 presents structural properties of the models and it investigates 
widely the tables D and it studies their properties.

Chapter 4 develops ranking concept using the tables D and it contains 
Ranking Theorem.

Chapter 5 presents examples of intuitive modelling given sets of combi­
natorial objects and it contains formal methods of transformations of the 
models representing a set of combinatorial objects.

Chapter 6 presents the basic algorithms and their variants concerning the 
generation of choice functions and the ranking and unranking methodology.

Chapter 7 is devoted to the methodology of the generation of sets of 
choice functions in sequential or distributed or parallel systems.



xiv

Chapter 8 presents miscellaneous generation methods and algorithms 
concerning non-exhaustive or random generation mainly for the models 
that the Q property does not hold. We have also given modeling and gen­
eration of combinatorial objects that is widely applicable in cryptography.

Acknowledgments. The main ideas objective for this text were investi­
gated when the author stayed at the University of Aizu in Japan and led the 
project ’’Generation of combinatorial objects” for development new teach­
ing subject and offered the classes on SCCP project for students under the 
same title. The results concerning the generation of combinatorial objects 
for cryptography purpose was supported by Polish Committee for Research, 
project no 811C - 026 - 98C/4258. The author wish to thank to the referees 
Professors Konrad Wala from Academy of Mining and Metallurgy in Cra­
cow and Józef Drewniak from the Silesian University in Katowice. Thanks 
are also to dr. Zbigniew Kokosinski who participated in the SCCP project 
supporting the theory especially by development of hardware generators 
of combinatorial objects. The author wish to thank to his former students 
from the University of Aizu for their active participation at the classes of 
SCCP, that revealed the topics requesting more detailed explanations.



1

Preliminary

1.1 Basic notions and properties
By a basic combinatorial object, we mean permutation, variation1, 
combination, set partition, number partition, number composition or set 
decomposition.

We recall now some definitions concerning the basic combinatorial ob­
jects.

A com position of a number n  into m  parts is an ordered set of numbers 
ni,  U2,..., nm, so that n =  ni + n2 + ...+  nm.

A partition of a number n into m parts is a composition for which 
additionally ni+x>m, 1 <i< m  — 1.

A decom position of a given set S  = {1, 2, ..., n)  is a set of blocks 
(subsets of S) {Bi, B2,..., Bm}, so that BiU B2U...UBm =  S, and for any 
two Bj, Bj, BjflBj =  0, i, jG {1, 2, ..., m}. It is allowed that B{ =  0, 
however, we may also make the restriction B ^ 0, so always one has to 
make sure whether empty blocks are allowed or not. Distinct enumerations 
of blocks means different decompositions, for instance, Bi =  {1, 2, 4}, B2 =  
{3, 5} and Bi =  (3, 5}, B2 =  {1, 2, 4} are two distinct decompositions.

A decomposition whose blocks are not empty and are enumerated in 
accordance with an increasing order of their minimum elements is called a 
partition of a set.

1 The term permutation instead variation is widely used in English
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So, the set of partitions is a subset of the corresponding set of decompo­
sitions.

Now, we will recall the basic definitions and results concerning indexed 
families and choice functions. The basic theory for representation of com­
binatorial objects by choice functions of a given indexed family has been 
given in [19].

With denotation < Gi > ,1  <  i < m, we mean an indexed family of 
sets; where Gi QU, U =  {1, 2, ....n}, we write also ”< Gi >, for every 
t€  / ” or shortly < Gi >, I  if I  C {1, 2, ..., m }.

A mapping h: i — >q, where 1 <i< m, qGGi is called a choice function  
[56].

If a choice function h of a given indexed family has to represent a given 
combinatorial object, then h(i) — q must satisfy a defined requirement 
W. We say also that q satisfies requirement W  or, if this requirement is 
satisfied for every i£ I, then we say that function h satisfies the requirement 
W . Generally, the requirement W  is given in the form h(i) R E [i,h(i — 1), 
h(i—2),..., h( 1)] where by R, we mean a relation and E[x, h(i—1), /i(z—2),..., 
/i(l)] denotes any expression involving i and/or h(i — 1), h(i — 2),..., h(l). 
For the most common cases the requirement W  posses a simpler and more 
convenient form, i.e., h(i) R E[/i(z-l), h(i—2),..., h(l)]. We denote by {h}gi 
the set of all the choice functions h of a given indexed family < Gi >, 
1 < i < m. With denotation h € {h}^, we mean that the given choice 
function h satisfies the given requirement W  and it is a choice function of 
the family < Gi >, 1 < i < m. This complicated denotation we use since 
there is need to distinguish sets of choice functions {h} of not specified 
indexed family, sets of choice functions {h}gi of the indexed family < Gi > 
, 1 < i < m, and sets of choice functions {h}gj of an indexed family < Gj >, 
j  € J  or different their subsets.

A set of choice functions {h}s4 of a given indexed family that satisfy a 
fixed requirement W, we will call the full set of choice functions. A set of 
choice functions represents the corresponding set of combinatorial objects. 
The given full set of choice functions represents the full set of combinato­
rial objects. Since a set of combinatorial objects can be a subset of another 
greater set of combinatorial objects, therefore, full set of combinatorial ob­
jects and full set of the corresponding choice functions are relative notions 
dependent on a given model.

We model subsets of choice functions in three ways:
(*) by restricting indexed sets of the original indexed family,
(**) by imposing additional requirement W\ that is to be satisfied by 

the choice functions of the original indexed family, then a choice function 
belongs to the requested subset if it satisfies conjunction of the requirements 
W  and Wi,

(***) by specification of the ranks of the choice functions which create a 
given subset.
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The indexed family is reduced or not redundant for given W  and W\ 
if for every i E I  and for every q G Gi there is a choice function h e  [h}gi 
that h(i) =  q. We say correspondingly that an indexed set Gi is reduced or 
not redundant if the above is satisfied for Gi-

The set of choice functions {h}gi of a given indexed family < Gi >, 
1 < i < m, satisfies the Q property if for any incomplete choice function / :  
1 — » qi, 2 — > z — * Qzi qz&Gz, there exists h E {h}gi so that / ( j )  = 
h(j), where 1 < j  < z, z <m. Both /  and h must satisfy the requirements 
W  and W \ , if any. Briefly speaking satisfiability of the Q property means 
that for each partial choice function there is its extension to a full choice 
function of the given indexed family. If the model containing a given indexed 
family and the requirements W  and W\ satisfies the Q property, then the 
choice functions can be generated using backtracking—less algorithm, see
[191-
D efinition 1.1.1 The indexed family < Bi >, 1 < i < m, is called the 
maximal indexed family for a given requirement W  if it is not redundant 
and if {h}B{ — {h}^, where £i =  {1 , 2, ..., n}, 1 < i  < m.

Suppose, the indexed family < Bi >, 1 < i < m is the maximal indexed 
family for a fixed requirement W.

D efinition 1 .1.2 We say that a given family < Gi >, 1 < i < m, is 
a deformed indexed family for a given requirement W  if {h}gi C {h}si; 
where choice functions {/i}^ satisfy the same requirement W.

If < Gi >, 1 < i < m  is a deformed indexed family, then there exists at 
least one set Gi that Gi C Bt.

Given is an indexed family < Gi >, 1 <i< m, Gi G {1, 2, ..., n}, let <G\, 
G{, ••., Gi‘> be a partition of the set Gi into ki non-void blocks.
Any indexed family of the form < G[' >, 1 < i<  m, 1 <rt<ki\ we call the 
layer of the family < Gi >, 1 < i < rn.

The following result is the foundation for development of distributed 
models of a set of combinatorial objects and for the generation of choice 
functions, in a distributed or parallel system.

Any choice function h£ {h}gi is the choice function exactly one of its 
layer < QP >, 1 <i< m,[19].

1.2 Main unranking models

Definition 1.2.1 The basic unranking models Su are the following sys­
tems <indexed family, requirement W, set of choice functions> or shortly 
«  Gi>, 1 < i  < m \ W \  {h}gi > .
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Usually.. we model fiitt sets of distinct combinatorial objects as tbe  sets 
of increasing choice functions or as the sets of choice bisections or as: the 
sets of monntonic choice functions or as certain their subsets..

Subsets of the full sets of combinatorial objects are represented, by the: 
models S jj =  «  G( > r 1 < i <  m; W: WL; {hfy; >  . Then, the choice 
fimctions h £  {h}g> have to satisfy conjunction of the requirements W  
and W \.  Therefore, we use also the following specification Srj = «  Q\ >.. 
L <  z <  m; WA Wr. {h}g> >  . The indexed sets Q[ satisfy the requirement 
G'iGQi- 1 < i < m .If  C[ C Gi at least for one index i T then [h}gr c  {h}g-i 
even if the requirement Wj is void.

The requirements W  and \ \ \  have the structure of a Boolean expression 
that uses alternative and conjunction. On the other hand each their' com­
ponent can represent even single choice function. Therefore,, every arbitrary 
set of choice functions can be represented by the model Su-

The left part of this section is devoted to fundamental properties of the 
basic unranking models.

1.2.1 Increasing choice functions
Given is an indexed family <  A  >  • 1 <  i <  m, where A  =  i 4-1, ..., 
n  — m —i}. The requirement

W : h(i) > h(i -  1) (IT)

is to be satisfied by each choice function h £  {/fcfyt-.
The system «  A  >  , 1 <  i < m; W  given in (1-1);- h £  (h}..g >  

represents all the increasing choice functions of the indexed family < A  >. 
1 < i <  m .

It is known [19] that the above model satisfies the Q property and that 
the increasing choice functions of a given model correspond one-to-one m — 
elements combinations chosen from n items. Moreover, the indexed family 
<  A  > , i  <  i < rn, is the maximal indexed family.

For modelling subsets of the given set of increasing choice functions, we 
will use both restricting the indexed sets or imposing additional require­
ments Wx.

Assumptions.
Given is the model:

«  Vi > , I < i < m ;IV given in (I. l);/t G {h}pi > (1.2)

representing subsets of {h}A<, where 
(j) V i  C A> 1 < i <  m.
(it) max(’Pj) > max(Pt »), 2 < t < m Y 
(Hi) min(Pi) >min(P, t ), 2 A S  m.
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Proposition 1.2.1 The model (1.2) satisfies the Q property and the in­
dexed family < Vi >, 1 < i < m  is reduced, if and only if, the assumptions
(i) — (in) given above do hold.

Proof. For proving the sufficient condition, we observe that if (ii) and 
(in) hold, then the indexed family is the reduced indexed family, since for 
each q € V i  we can have a partial mapping h(l), h(2), ...h(i -  1), h(i) =  q 
that h(j) =  min(Pj), for every j  < i.

Moreover, for every partial mapping h( 1), /i(2), ...h(i -  1), we can assign 
i — ► max('Pi). Then, /r(l), h(2), ..., h(i — 1), h(i) =  max('Pi) is the 
increasing partial mapping, for every 2 < i < m. Hence, we have assertion 
that the Q property holds.

We prove now the necessary condition.
If (ii) does not hold, then exists j  that max(',Pj_1) > max(P_)j ,  j  G {2,3, 

..., m}. Suppose, (ii) holds for every i < j. Then, exists an increasing partial 
mapping h(l), h(2), ..., h(j — 1) that h(j -  1) =  m ax(Pj_i). Then, no 
value h(j) G V j  could be assigned, in order to have an increasing partial 
mapping h( 1), h(2), ..., h(j — 1), h(j). Consequently the Q property does 
not hold.

If (Hi) does not hold at least for one value j  G {2, 3, ..., m}, then 
min(Vj) < q, q G V j - 1- Then, the value min(Vj) could not be assigned to 
any increasing partial mapping h( 1), h(2), ...h(j — 1), so that the partial 
mapping /i(l), h(2), ...h(j — 1), h(j) =min('Pj) would be increasing one. 
Hence, the indexed family < V, >, 1 < i < m  would not be reduced.

It finishes the proof.

□
We consider sets of choice functions of the indexed family < Ai >, 1 <i< 

m  that satisfy the requirement W  A W\, where W  : h(i) > h(i — 1) and W\ 
is an additional requirement.

Consider the following cases of W \.

h(z) ^  q, where q ^  max(Ms),z  G {1,2, ...,m}. (1.3)

h(z) = max(Ms), ^ G {1,2, ...,m}. (1.4)

h(z) =  h(z — 1) +  1 ,2  G { 1 ,2 ,..., m }. (1.5)

h(z) -  h(z -  1) q, z G {1,2,..., m ) , q ^ l . ( 1.6)
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For W\ given in (1.5) or (1.6) the model < <  Ai > , 1 < i < m\ W  given in
(1.1); W\; hG > satisfies the Q property.

One can observe that the model < <  Ai > , 1 < i < vn\ W  given in (1.1); 
W\ is given in (1.3) or W\ given in (1.4); /iG { h } ^  > is equivalent to the 
model (1.2). Moreover, if W\ is given in (1.4), then the Q property holds 
since the assumptions (i ), (ii), (Hi) hold, however if Vi =  max(M-), then 
the indexed family < Vi >, 1 < i < m  is not reduced. If W\ is given 
in (1.3), then the Q property holds. Moreover, if q min(M2), then the 
corresponding indexed family < Vi >, 1 < i < m  is also reduced.

Testing satisfiability of the Q property for models containing any indexed 
family < Vi >, 1 <i< m  and W\ given in (1.3) or (1.5) or (1.6) requires 
individual considerations.

If an arbitrary requirement W\ is given, then for satisfiability of the Q 
property and for making the model reduced, the indexed sets can require 
to be deformed.

Given is the requirement

W  : h(i) > h(i — 1) +  ai, ai G {0,1,...}, where 2 < i < m. (1.7)

The indexed family < Vi >, 1 < i < m, is specified as follows IZi = { 
1 +  a<2 +  (Z3 +  — +  n¿, 1 + U2 T a3 +  — +  Ut +  1 ,..., n — m — a^ — an_ 1 — 
... —a¿ + t} . Then, the model

< <  IZi >, 1 < i < m; W  given in (1.7); {h}n¡ > (1-8)

is reduced and the Q property holds. One can prove it observing that 
max(7^) — max(77.,_i) +  a; and min(7?^) =  min(77.j_i) +  a¿. Hence, using 
arguments similar to those given in Proposition 1.2.1, we can prove that 
the Q property holds and that the model is reduced.

Setting values ai -r an, we can model widely subsets of increasing choice 
functions. If aj =  a% =  .... =  an =  r, then the model

< <  % >, 1 < i < m; W  : h(i) > h(i -  1) +  r; {h}r< > (1.9)

is an instance of model 1.8 , where % = {1  +r.(i — 1), 1 + r.(i — 1) +  1 , ..., 
n — (r +  l).(m  — i)}. Model 1.9 is very convenient for handling, so we will 
also use it as a foundation for more general considerations given in Chapter 
4 concerning model 1.8.

1.2.2 Monotonic choice functions
Monotonic choice functions of indexed families are also used for modelling 
sets of combinatorial objects. Usually, we use non-decreasing choice func­
tions, however, non-increasing choice functions could also be used.



Given is the indexed family < £* >, 1 <i< m  , where Si = {1, 2, ..., n }.

W  : h{() > h(i -  1) (1.10)

The model

< <  >, 1 < i < m; VP given in (1.10); {h}£i > (1-11)

represents the set of non-decreasing choice functions of the family < Si >, 
1 < i < m .

The indexed family < Si > is the maximal indexed family for the re­
quirement W  given in (1.10). It is known that the above model satisfies 
the Q property [19]. The set of increasing choice functions of the family 
< Ai >, 1 <i< m  is a subset of the set of non-decreasing choice functions 
of the indexed family < Si >, 1 <i< m.

Let < 77j >, 1 < i<  m, be the indexed family, where 77, is a subset of Si 
that contains max(£i). Then, the model

< <  TZi > ,l  < i < m ;W  given in (1.10); {h}^. > (1-12)

corresponds to a subset of the set of non-decreasing choice functions. This 
model satisfies the Q property. Moreover, if min(77i) > min(77^_i), 2 < i < 
m, then the model is reduced. The arguments are similar to those given in 
the previous section.

Consider now the following cases of the additional requirement W \.

h(z) 7  ̂q, where q ^  max:(£2), z G {1,2, ...,m}. (1.13)
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h(z) = max(£j), z G (1,2,..., m). (1-14)

h(z) =  h(z — l ) , z  G {1,2, (1.15)

h(z) -  h(z — 1) ^  q,z  G {1, 2,..., m}, q 0. (1-16)

If Wi is given in (1.13) or (1.14) or (1.15) or (1.16), then the model < <  £, >, 
1 < i < m\ W  given in (1.10); W\; {h)£i > satisfies the Q property.

If we replace the indexed family < Si >, 1 <i< m, with the indexed 
family < IZi >, 1 <i< m, then for W\ given in (1.14) the Q property is 
still satisfied. Testing satisfiability of the Q property for models containing
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any indexed family < >, 1 <i< m  and W\ given in (1.13) or (1.15) or
(1.16) requires individual considerations.

Given is the indexed family < % >, 1 <i< m , where % =  {r.(i — 1) +  1, 
r.(i — 1) +  2, ..., n — r.(m  — z)}, 1 <z< m  ; r G {0, 1, 2, ..., int(n/m)}. The 
requirement W  is specified as follows:

W  : h{i) > h(i -  1) +  r. (1.17)

Consider now the following general model:

< <  % >, 1 < i < m; W  given in (1.17); {h}r, > (1-18)

The choice functions h G {h}^  satisfy h(i) > h(i—l)+r, 2 < i < m. The set 
of choice functions {/i}-j; is a subset of the set {h}£i of non-decreasing choice 
functions according to the model (1.11). For proving satisfiability of the Q 
property by the model (1.18), we observe that setting h(i) — n — r.(rn — i ) 
that is the maximum of 7Î, 1 < i< m, we get h(i) > h(i — 1) +  r for every 
i G {1, 2, ..., m}. Hence, the model satisfies the Q property. On the other 
hand r.(i — 1) +  1 > r.((z — 1) — 1) +  1 +  r. Therefore, every q G % can 
be assigned to i in order to create a choice function h G {h}ri- Hence, the 
model is reduced.

The model (1.18) presents certain generalization of increasing choice 
functions and non-decreasing choice functions. If r  =  0, then the set of 
choice functions {/i}rt is equivalent to the set of non-decreasing choice 
functions. If r — 1, then the corresponding set {/i}7; is equivalent to the 
set of increasing choice functions.

1.2.3 Choice bijections
Given is the indexed family < £) >, 1 <i< m, £i = {1, 2, ...., n}, m<n  as 
it was specified previously. The requirement

W  : h{i) Ï  h(i -  1), h(i) Ï  h(i -  2),..., h{i) + h( 1). (1.19)

The model

< <  £i >, 1 < i < m\ W  given in (1.19); h G {h}£i > (1-20)

represents a set of choice bijections of the indexed family <  £; >, 1 <i<m. 
If n  =  m, then the model represents the full set of permutations of n  that 
is called the group of symmetry and denoted by Sym(n).

Consider now restrictions of the set {/t}^ replacing one or more indexed 
sets £i by their subsets <Sj. Then, we have the restricted model
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< <  Si >, 1 < i < m; W  given in (1.19); {h}^ > . (1-21)

We are concerned with satisfiability of the Q property for such restricted 
models. Let < Si >, 1 < i < m, Si C {1, 2, n}, m<n, be the reduced
family [19] for the choice bijections.

Proposition 1 .2.2 I f  for every {1, 2, ....m} at least one of the following
two conditions hold 
0i) | Si\>i
(ii) Si -  {S1US2U •••, 7̂ 0,
then the model (1.21) satisfies the Q property.

Proof. We prove by observing that for any partial choice mapping h of 
<  Si >, 1 <  i < i — 1, we can always select a value h(i) € Si that (1.19) 
holds, if (i) or («) holds.

□
We will study now in more detail conditions for satisfiability of the Q 

property and conditions for the model (1.21) to be reduced.
Let J  C {1, 2, ..., m}. The indexes contained in J  are ordered increas­

ingly, so we use also denotation J  =  {j  1, ..., j ,-}•

Definition 1.2.2 The indexed family < Sj >, j  G J, is a closed subfamily 
of the family < Si >, 1 < i < m, if \ S jt U Sj2U ... L)Sjr |= | J  |.

Definition 1.2.3 I f  the indexed family < Si >, 1 < i < m possess a closed 
subfamily and if for any indexed set Si that i J  we have (Sjl U«Sj2U ... 
U<Sjr ) n S i ^ $ ,  then the set Si is called a successor i f  i > j r while Si is 
called a predecessor if i < j r .

Proposition 1.2.3 The indexed family < Si > , l < i < m ,  is the reduced 
indexed family, if and only if, it does not possess the successor.

Proof. If Si is a successor, then there is an element q that it belongs to 
at least one indexed set S jl or Sj2 or ... or SJr and to the set Si. Since 
| Sjx U Sj2U ... USjr |=  | J  |, so all the elements of the set S j 1 U Sj2U ... 
USjr are assigned to the set of indexes J. Therefore, q could not be assigned 
to the index i. Hence, the set S l is not reduced. That finishes the proof of 
the necessary condition.

We are concerned now with the proof of the sufficient condition. If the 
indexed family does not possess the successor Si, then it does not possess 
any closed subfamily that j r < m. Therefore, for any index i there is not 
any subset of S2 being codomain of all partial mappings h( 1), h(2), ..., 
h(i — 1). for the subfamily < Sk >, 1 < k < i — 1 of the family < Si >, 
1 <i<m  — 1, i.e., S k = Si for k'—i. Therefore, each q € Si can be assigned
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to i that h(i) =  q and h G {h}s,. Hence, there is no q and there is no Si 
that q E Si and q is redundant in S l. Therefore, the set Si is not redundant.

Consider now the case of existence of a closed subfamily that j r — m. 
Then, for each q 6 Sm there is a choice function h G {h}^. that h(m) = q. 
That finishes the proof of the sufficient condition.

□
P roposition  1.2.4 The indexed family < Si >, 1 <i<m, satisfies the Q 
property if and only if it does not possess the predecessor.

Proof. We will prove now the necessary condition.
If exists a predecessor Si, then exists q G Si and q E S3l U Sj .2U ... U Sjr , 

where < S j , , Sj2, ... , S jr > is the subfamily for the set of indexes J  = { j lt 
j 2, ..., j r }- Since h(i) can equal q, so all values of the set Sjx USj2U ... U<Sjr 
belong to the codomain of each partial choice mapping h( 1), h(2),..., h(i) =  
q, ..., h(jr — 1). Hence, no value could be assigned to the index j r . Therefore, 
the Q property does not hold. We conclude that existence of a predecessor 
Si effects that the Q property does not hold. Hence, the necessary condition 
for satisfiability of the Q property is lack of the predecessor S{.

We are concerned now with the sufficient condition.
If there is no predecessor Si, then no closed subfamily of the family 

< Si >, 1 <i<m, exists. Then, for each index i and for each partial mapping 
/i(l), h(2), ..., h(i — 1) there is a value q E Si that q does not belong to 
the codomain of the partial mapping. Hence, h(i) can equal q. Therefore, 
the Q property holds. That finishes the proof.

□
The last two propositions lead to exponential algorithms for testing sat­

isfiability of the Q property and for testing whether the indexed family 
is reduced. We can diminish time complexity of these algorithms by the 
following observations:

(z) if Si = Si, then Si does not belong to any closed subfamily of the 
family < Si >, 1 < i < m,

(ii) if Si =  Si, then S, is not any predecessor neither any successor. 
Basing on the above observation, we see that it is needed to consider only 

collections of indexed sets Si that Si C Si. It means that for numerous 
instances of the model (1.21) the test for satisfiability of the Q property 
and for the model be reduced can be done in polynomial time.2

We need to mention here that the representation of permutations by 
choice bijections was investigated by Mirsky [49].

2 It is interesting to observe that Hall’s theorem [49], [14], [15] on match­
ing problem could be expressed using the concepts of reducibility and Q 
property.



1.3 Hierarchical models Su  25

1.3 Hierarchical models Su
We are concerned now with hierarchical unranking representation models 
Su- Hierarchical representation models are developed in order to replace a 
complex requirement W  with a simpler one. We can make a hierarchical 
model also in order to make assertion that the Q property would be satisfied 
if it does not hold for a given model. Moreover, we develop,hierarchical 
systems Su  in order to manage parallel or distributed generation of a set 
of choice functions.

Let the indexed family <  5; > , 1 < i < m be given. With denotation 
J, we mean a set of indices J  =  { j i, ..., j p, ..., j r}, J  C {1, 2, ..., m}. 
Correspondingly, we have the indexed subfamily < Gj >, j  C J , of the 
family < Gi >, 1 < i < m, that Gjp = Gi if j P =  i. With denotation / ,  
we mean a choice function of the family < Gj >, j  G J- The set of all the 
choice functions /  satisfying the requirement W i  is denoted with { f}g r

The hierarchical Su is a collection of the following systems.

{ System fo r  J  =  {J} generation,
«  Gj >. 3 € J; W  { f } Qj >, fo r  each J  £ J ,  (1.22)

< <  Gi >, 1 < i < m\ W ; {h}Si >,

With denotation we mean a choice function h £ {h}gi that is simul­
taneously an extension of /  to h. Then, to each choice function /  £ {f}gj 
corresponds a set of choice functions {h?} that {h f }  C {/i}^. With deno­
tation fk  we mean any choice function /  £ { f}g it where 1 < k < z, z =
| {f}gj |. So, we have sets of choice functions {/H1}, {/H2}, ..., {h*‘ } that 
are extensions of the choice functions f i ,  f i ,  ..., f z , accordingly. Observe, 
the second line contains a number of systems equal to | J  | . Nevertheless, 
it can happen that \ J  \— I.

Definition 1.3.1 We say that the set of choice functions {f}gj creates a 
partition on the set {/x}^ if { h ?2}U ... U { h fz } =  {h}gi and if
{V»}n {/i ̂  } =  0 for any two indices s, t that 1 < s < z, 1 < t < z.

Creation of a partition on the set {h}gi is an important property of the 
hierarchical model Su- The requirement W? is specified with the following 
general form W f  : f ( j p) R E [ f( ju  / ( j 2, ..., f  (jp_ i), j u j 2, ..., j p ], 1 < p < 
r.

Definition 1.3.2 We say that the requirement W? is a restriction of the 
requirement W  if for every f  £ {/}g;. there exists h £ {h}gi that h(jp) — 
f { j p) and =  f ( j p- i) .

For instance, if W  : h{i) > h{i — 1), then the requirement W? : f { j p) > 
f { jP- 1) +  (jp ~ j P- 1 -  1) is a restriction of the requirement W. Making 
the requirement W*  as the restriction of the requirement W  is relatively a



26 1. Preliminary

simple task. We take the requirement W  and for each pair (h(jp- 1), h(jp)) 
the relation R is to be specified by the form h(jp) R E[/i(ji, h(j2,..., h(jp- 1), 
j i ,  j 2, j p  ], 1 <  p < r. Replacing the symbol h with / ,  we get W? that is 
the restriction of the requirement W. It is obvious that for the hierarchical 
system given in (1.22) must be a restriction of the requirement W, 
otherwise we have no assertion that {/iTl }U {h^2}U ... U {h^z} =  {h}gi 
holds. On the other hand making as a restriction of the requirement 
W  is not sufficient for assertion that {h ̂  }fl {h^‘} =  0 holds for any two 
indices s, t. Therefore, making as a restriction of the requirement W  
is not sufficient for assertion ” {/}■£:_, creates a partition on the set {hjgf'.

Consider now the hierarchical model Su  as follows:

( J  = { l,2 ,...,r} , r < m
 ̂ «  Gj >, j  G J; W f( j) -  { f } Qj >, (1.23)
[  «  Gi >, 1 < i  < m ; W ; h  G {/i}^ >,

where W  * (j) is the restriction of the requirement W. It is obvious that 
if the Q property holds for the system < <  Gi >, 1 < i < m; W; {h}gi >, 
then it holds also for the system «  Gj >, j  € J; W ^{j)\  {Z}^ >  •

Proposition 1.3.1 I f  for the system Su = «  Gi >, 1 < i < m ; W(z); h G 
{h}gi > the Q property holds, then the set of choice functions {f}g, of the 
system Su given in (1.23) creates a partition on the set {h}gx.

Proof. Each choice function /  G [ f}g} is a partial mapping for < Gi >,  
1 < i < m. Since the Q property holds, so each /  G {f}g, could be extended 
up to a full choice function h G {h}g,. Two choice functions f p and f q that 
f p  = f q  are the distinct prefixes of two sets of choice functions and
{ h ^ ) .  Hence, {h =  0 for any p, q.

On the other hand each choice function h possess a prefix /  G { f}g r  
Therefore, we have assertion that {/i^}U {/z^2}U That
finishes the proof.

□
Observe, each choice function /  G { f}g j of the hierarchical representa­

tion model given in (1.23) can be identified with the following non-void 
layer of the indexed family < { /(l)} , {/(2)}, ..., {/(«)}, < Gi » ,  t + 1 < 
i < m. Moreover, the representation model (1.23) can be identified with 
splitting indexed family into special layers. The hierarchical models given 
in (1.22) that {/}{?• creates a partition on the set {/i}gv can not be always 
identified with splitting the indexed family < f t  >, 1 <  i < m, into lay­
ers. That happens since for a pair ( /1, /o) their domains can differ. Conse­
quently, an index j  that belongs to domain of f \  may not belong to domain 
of f%. So, we would have the indexed families < ■■■{fi(j)}--- >, 1 < i < rn 
for the function f i  and < ...Gj... >, 1 < i < m for the function fi-  Because
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{/i(j)}  C Gj, hence the indexed families < > , 1  < i < m  and
< ...Gj... >, 1 < i < m can not be the products of splitting the indexed 
family into layers. The given result can be generalized
if we let | J  |=  1. Then, the assumption J  =  {1, 2, ...,r} is not needed for 
proving that {f}ç j  creates a partition on the set {h}gt . Generalization of 
the above given proposition seems to be rather obvious.

On the other hand there are the general models (1.22) that | J  |> 1 
and the hierarchical system used can not be identified with partition of the 
indexed family into layers, while the sets of choice functions {f}ç j  create a 
partition on the set We will consider later on such specific models.

1.4 Conclusions
We have investigated the basic unranking models concerning arbitrary sets 
of choice functions. These basic models concern increasing choice functions, 
monotonie choice functions and choice bijections. We have shown a number 
of criteria enabling us to judge whether the models are reduced and whether 
the Q property holds. The researched classes of models have important 
applications as to representations of basic sets of combinatorial objects.
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Basic representations

In this chapter we are concerned with unranking representation models Su- 
The goal is to give representation method for arbitrary sets of compositions 
or partitions of a number and decompositions or partitions of a set by the 
corresponding sets of choice functions of indexed families. The main phi­
losophy is to represent the full sets of combinatorial objects. Then, we will 
discuss restrictions of the model in order to represent its subsets. The com­
mon method is to create requested representation model by restricting the 
indexed sets and/or by imposing additional requirements W\. Moreover, 
representing a set of combinatorial object by a partial choice mapping will 
also be used. We recall the representation of sets of combinations and per­
mutations given in [19],

2.1 Compositions of numbers
Given is the indexed family < Hi >, 1 < i < m, where Hi =  {i, i +  1, ..., 
n — m  + i } , l < i < m — I and H m =  {n}. We are concerned with the 
following model

< <  Hi > ,1  < i < m; W  given in (1.1); {h}w, > (2.1)

The requirement W  given in (1.1) means that the set of choice functions 
{h}ft. is the set of increasing choice functions. Observe, we have Hi =  Ai 
for 1 < i < m  — 1. It is known that the model containing indexed family 
< Ai > , 1 < i < rn — 1 and the requirement W  : h(i) > h(i — 1) satisfies
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the Q property. Therefore, the Q property is satisfied for the subfamily 
{7-fi}, 1 < i < m  — 1. Since max(Hm_i) =  n  — 1 and H m =  {ti}, so 
h(m) > h(m  — 1). Hence, the model (2.1) satisfies the Q property.

Let {ni, ri2, •••) nm} be a composition of the number n into m  elements
that rij ^  0, 1 < j  < m  and n\ + ni + ... +  nm =  n.

There is correspondence between each composition of n  and the choice 
function h G {/i}«, as follows:

rii — h{i) — h(i — 1), 1 < i < m; h(0) =  0. (2.2)

Since — h(i — 1)) =  n, and two distinct compositions that
differ at least by two components rii and n ,+i correspond to the choice 
functions hi and hi that h\[i) ^  hi(i), so the correspondence between 
the choice functions and the compositions is one—to—one. For a given set 
of numbers {ni, ni,  ..., nm} the corresponding choice function can be 
evaluated recursively using the following top-down procedure, 

for i <—  m down to 2 do 
h{i — 1) =  h(i) — 7ii;

Example 2.1.1 For n — 7 and m  — 4, we can represent a composition of 
71 by the corresponding choice function h G

Hi =  {1,2,3,4} , H i = {2,3,4,5} , =  {3,4,5,6} , U4 = {7}

For instance the choice function h: 1 — > 3, 2 — » 4, 3 — > 6, 4 — * 7 
represents the following composition Tii =  3, ri2 =  1, 713 =  2, 714 =  1, n = 
Til +712 +713 + 7I4.
For the composition {2, 1, 2, 2} we have the following choice function h : 
h(4) =  7, /i(3) =  5, /i(2) =  3, h{l) = 2.

□
We can also represent certain generalization of the given compositions 

enabling 7i; =  0. Then, we use for modelling the non-decreasing choice 
functions of the indexed family < Zi >, 1 <i< m, where Z{ =  {0,1, 2, ...71} 
for 1 <i< 771—1 and Z m =  {ti}.

The model

< <  Zi >, 1 < i < m- W  given in (1.10); {/i}^ > (2.3)

represents the set of compositions {ni, 712,..., n m} that ti, =  0 is enabled.
The Q property for this model is satisfied since for every index i, max(2'j) =  

7i. Hence, we have assertion that h (i ) > h(i — 1).
If the order < n on the set of compositions is defined as the lexical order 

of 771 numbers {tij, 712, ..., nm} and the order <h 011 the corresponding set
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of choice functions is defined as the natural lexical order of m  — 1 numbers 
{/i(l), h(2), ..., h{m — 1)}, then these two orders are in accordance, i.e., 
if there are correspondences {hl ( 1), h1(2), ..., hl ( m -  1)} —> {n}, n\, ..., 
< ;}  and {/i2( 1), h2(2), ..., /i2( m -  1)} -> {nf, n\, ..., n2,}, then {/i1 (1), 
h}(2), ..., h [m — 1)} <h (h2(l), h2(2), ..., /i2(m -  1)} {n}, n\, ...,

<" {«1, «2, - ,  ™m}-
We now consider modelling subsets of compositions. Consider sets of 

compositions represented by (2.1). The requirements W\ given in (1.3) or 
(1.4) or (1.5) or (1.6) can be used for restricting {h}-n(. Selection of the 
specified requirement W\ corresponds to the following subsets of composi­
tions.

If W\ is selected according to (1.3), then the corresponding set of compo­
sitions satisfies additionally: the sum nj + n 2+...+nz 7= q, and consequently 
nz+1 +  n z+2 +  ... +nm ^  n — q.

If W\ is selected according to (1.4), then the corresponding set of number 
compositions satisfies additionally: the sum n\ +  «2 T ... +nz = max(Hz) 
and consequently n z+1 +  n~+2+ ... +nm = n — max(77-).

If Wi is selected according to (1.5), then the corresponding set of number 
compositions satisfies additionally: n- =  1.

If W\ is selected according to (1.6), then the corresponding set of number 
compositions satisfies additionally: n- where q ^  1.

We know basing on the properties of the restricted models concerning 
increasing choice functions that the Q property holds.

We are concerned now with the sets of compositions represented by the 
model (2.3).

If W\ is selected according to (1.15), then the corresponding set of com­
positions satisfies additionally: nz — 0.

If W\ is selected according to (1.16), then the corresponding set of com­
positions satisfies additionally: nz 7%, where 0.

If W\ is selected according to (1.13) or (1.14), then the compositions 
are similar to those specified by the requirements given in (1.3) or (1.4), 
respectively.

For the corresponding restricted models the Q property holds.

E xam ple 2 .1.2  Represent the set of the compositions that nii^ 2, and n 3 
=  0 .

If we accept ”nj can equal 0 for i 7= 2”, then the requirement W\ is 
conjunction of the instances of the requirements (1.16) and (1.15). We 
specify Wi in (2.4).

h(2) -  h(l) £  2, h(3) -  h{2) =  1 (2.4)

For instance, the following function h\ 1 — > 3, 2 — » 3, 3 — * 4, 4 — 7 7 
satisfies additionally (2.4) and it corresponds to the following composition 
of number 7, n\ — 3, ri2 =  0, n3 =  1, ua — 3.
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□
The model (1.8) can also be adopted for modelling sets of compositions. 

Given is the indexed family < TZi >, 1 < i < m, that IZi =  { l  +  a.2 + a 3 + 
— +  a,i, 1 +  <22 T <13 + — 4* o,i +  1 ,..., n  — tti — a„ — an_ 1 — ... — + i } 
for i < m  — 1 and 'Rm — {n}. Then, the model

< <  TZi >, 1 < i < tti; IV : h(i) > h(i -  1) +  ai} a* € {0,1,...}; { h } ^  >

represents the set of compositions that tii > ai. Since, this model satisfies 
the Q property for 1 < i < m  -  1 and max(7£m_i) +am = n, so the Q 
property holds also for i = m.

Consider now the following general model:
< <  % >, 1 <i< 771—1, % =  {r.(i —1) +  1, r.(i — 1) +  2, n - r . ( m - i ) } ,

Tm =  {n}; W  given in (1.17); where r € {0, 1, 2, int(n/m)}.
Using the form tz, =  h(i) — h(i — 1) each he {/i}t, represents a com­

position of n into 77i integers such that ni> r. We know (Section 1.2.1.) 
that for the subfamily < % >, 1 <i< m  -  1 the Q property holds. Since, 
the maximal value taken by h(m — 1) =  n — r  and h(m) =  n, so we have 
assertion that h(m) -  h(m -  1) > r. Hence, the Q property holds.

If we do not care about satisfiability of the Q property, then we can 
model the requirement Wf in a very flexible manner. For instance,

Wi : h(q) -  h(q -  1) < h(q + 1) -  h(q) (2.5)

Then, each choice function /iG {h}zi of the model

< <  Z{ >, 1 < i < m\ W  given in (1.10); W\ given in (2.5); {h}Zi >
(2.6)

corresponds to a composition such that nq<nq+\, where q£ {2, 3, ..., 771}. 
The Q property does not hold for that model.

2.2 Partitions of numbers
A composition of a number n that 7ij+i > ni, 1 < i < m  — l i s  the 
partition of the number 71. Therefore, a set of choice functions representing 
a given set of partitions is a subset of the set of choice functions representing 
compositions. We will develop the model of partitions basing on the model 
(2.1).

, , ( r  — (771 — i), if it is positiveLet 71 =  m.a +  r, while b — < n , ., .( 0 if r — (m — i) is negative
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Given is the indexed family < M i  >, 1 < i < m, where M i = {i, i + 1, 
..., a.i + b} for 1 <i< m  — 1 and M m = {n}. The following requirements 
are investigated.

h(i) — h(i — 1) > h{i -  1) — h(i — 2) (2.7)

n  -  h(i -  l).(m  -  i) 
m — i

We have the model

< <  M i  >, 1 < i < m; W  equals(l.l) A (2.7) A (2.8); {h}Mi > . (2.9)

With denotation W  equals (1.1) A(2.7) A(2.8), we mean that the require­
ment W  is conjunction of (1.1) and (2.7) and (2.8).

P roposition  2.2.1 Any choice function h£ { /i} ^  represents a partition, 
that ni =  h(i) — h(i — 1), 1 < i < m  — 1, where h{0) =  0. The model is 
reduced and the Q property holds.

Proof. The requirement (1.1) satisfied makes assertion that the corre­
sponding sets of partitions is a subset of the set of compositions.

If the requirement (2.7) holds, then we have assertion n{ > n ;_i. Hence, 
the requirement (2.7) satisfied makes assertion that the components n ^ i  
and ni are enumerated following the non-decreasing order of their values. 
The requirement (2.8) satisfied for i makes assertion that the requirement 
(2.7) can be satisfied for j  > i. Hence, the requirement (2.8) is an auxiliary 
one enabling satisfiability of the Q property by a system that contains the 
requirement (2.7). We observe it noting that for given h(i) and for given 
h(i — 1) the corresponding component of the partition is 7q. Then, h(i) < 

satisfied makes assertion that i(nj)  ^  ^¿.(m —i). If it
holds, then we can create the corresponding partition that the components 
nj can be not smaller than the component n .̂

The requirement h(i) -  h(i -  1) > h(i -  1) -  h(i -  2) satisfied, makes 
assertion that ni > ni+\.

For proving that the model is reduced, we observe that assigning h(i) = 
max(Ali) we get the corresponding partition whose rank according to the 
lexical order is maximal, while assigning h(i) = min(Afj), we get the par­
tition that its rank is minimum. All values of M i  between min(Adi) and 
max(Adj) can also be assigned into i, in order to make a choice function h.

□
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Example 2.2.1 For n — 9 and m  =  3 the task is to represent all the 
partitions.

We use the model given in (2.9).
The indexed family is as follows: M \  =  {1, 2, 3}, M 2 =  {2, 3, 4, 5, 6}, 

M 3 =  {9}, since a = 9/3 =  3 and b = 0 for every i.
We have the following choice functions satisfying the requirement W  and 

the corresponding partitions.

No h( 1) M2) M3) Til n 2 n 3
1 1 2 9 1 1 7
2 1 3 9 1 2 6
3 1 4 9 1 3 5
4 1 5 9 1 4 4
5 2 4 9 2 2 5
6 2 5 9 2 3 4
7 3 6 9 3 3 3

The choice functions are listed following the lexical order and the corre­
sponding partitions are listed accordingly.

□
Consider modelling subsets of the partitions.
We are concerned now with the representation model for the set of par­

titions that ni < 2, where z > a. Then, the choice functions have to satisfy 
the additional requirement W\ given in (2.10).

Wi : h'(i) -  ti{i -  1) < 2 (2.10)

The reduced indexed family < A 4 ( > , l < z < m ,  has to satisfy the 
conditions:

(i ) max(Adi) -  max(A4(_j) < z,
(it) min(A4() — min(A4(_1) < z, 1 < i < m.
Since max(A4() =  a.i + b and (6 =  r or b — 0 ), so we have max(A4() 

=  a.i-i-r and max(jVf(_1) =  a.(i — 1), for certain value i . Then, z  > a .i+ r— 
(a.(z —1)) =  r+ a . For other values of i we have to have 2 > a.i—a(i—1) =  a 

Then, the set of choice functions h' £ {/i'Im ' of the model

«  M'i >, 1 < i < m; W  equals(1.1) A (2.7) A (2.8); W x = (2.10); { t i}M > >
(2.11)

represents a subset of all the partitions possessing the biggest component 
rij not greater than 2, where 2 >a or z > a + r. Since the numbers {nj,
n 2, ..., nm} creating the partitions are ordered increasingly, so we have
nm =  h'(m) — h'(m  — 1) < 2, where h1 € {/i'J-a-i;-
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Since max(Adi) — max(A/i ■) < z, so
(i) the Q property holds automatically,
(ii) the requirement W\ given in (2.10) is satisfied automatically. 
Therefore, the following model represents the set of partitions that n, <

z.

«  M i  >, 1 < i <  m; W  given in (1.1) A (2.7) A (2.8); {h'}M> > . (2.12)

2.3 Decompositions into at most m  enumerated 
blocks

We are concerned now with representation of the decomposition of a set 
A =  {1, 2, ..., n} into at most m  blocks, m <n. For some blocks no item 
can be assigned but we have to have at least one non—void block.

Let < Bi >, 1 <i< n, be the indexed family, where B\ — Bz ■=...= Bn = 
= {1, 2, ..., m}.

Then, we have the representation model

< <  Bi >, 1 < i < n; {h}ßi > . (2.13)

Any choice function h € {/¡.}bi of the family < Bi > represents a decom­
position of the set A  into at most m  enumerated blocks, each value q — h(i) 
has the following interpretation: the i —th item belongs to the q—th block. 
We have to emphasis that no requirement W  is to be satisfied by functions 
hC {hjß,- Please note that a value q£ {1, 2, ..., m} may not be assigned 
to any index {1, 2, ..., n}. It means that no item belongs to the block 
Bi, so |B{]= 0. Obviously, the Q property holds for this model.

Example 2.3.1 For instance the distribution B\ =  {1, 2, 3}, B2 =  0, 
£3 =  {4}; B4 =  0, B5 =  {5, 6} of the set {1, 2, 3, 4, 5, 6} is represented 
by the choice function: h( 1) — 1, h(2) — 1, h(3) — 1, h(4) =  3, h(5) =  5, 
A(6) =  6.

□
We can restrict the set of decompositions into m  blocks by replacing any 

original set or by modelling the requirement W i. Since 110 requirement 
W  has to be satisfied by the choice functions of the family < Bi >, so 
replacing Bi by its any non—void subset does not affect the Q property.

Consider now the following requirements W\ which can be imposed on 
the set of the choice functions of the family < Bi >:
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Wi '■ Mi) = M M  or Mi) 7̂ M M  Í > * (2.14)

Wi : MM =  <? or MM ^  q, q e  {1,2, 

One can prove that for the models

(2.15)

< <  Bi >, 1 < i < n; Wi; {/i}/?; > (2.16)

the Q property is satisfied if W\ is given in (2.14) or if W\ is given in (2.15).
If we combine both a restriction of the set(s) Bi and a formulation of 

the requirement W \ , then satisfiability of the Q property is an open prob­
lem, since for intersection of these two conditions no value from Bi can be 
selected.

E xam ple 2.3.2 The task is to model the set of all the decompositions of 
the set {1, 2, 3, 4, 5, 6} into at most 3 enumerated blocks so that the items 
3—th and 4—th do not belong to the same block and items 5—th and 6—th 
do not belong to the 3—th block.

The requested set of the decompositions can be modeled by the choice
functions {h}Bi of the following indexed family < Bi >, 1 <i< 6; Bi =  B% = 
B3 =  64 = {1, 2, 3}, B5 =  Be = {1, 2}. The requirement W\ to be satisfied 
by {h}t3i is as follows: Wi:h(4) 7̂ ( 3) anc* MM T^MM- Since | B3 |>  1, 
| Bi |>  1, | B5 |>  1, | Be |>  1, so the Q property holds for the model.

2.4 Partitions of a set into at most m  blocks
Let the family < >, such that T i  =  {1, 2, ..., min(i, m)}, 1 < i < n,
be given. The requirement W  is given in (2.17).

M l) =  1) for every i > 1, h[i) =  j, only if there exists

□

¿1 < ż,so that h{i\) — j  — T,j < m (2.17)

< <  Ti >, 1 < i < n; W  given in (2.17); h e  {h}^{ > (2.18)
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Proposition 2.4.1 The model given in (2.18) represents the set of all par­
titions of the set A  =  {1, 2, ..., m } into at most m  subsets.

Proof. The assignment h(i) — j  means that the i—th element belongs to 
the j —th block. Two choice functions hi, hi such that h\(i) ^  /12(f) for any 
i € {1, 2, ..., m} give distinct specifications of blocks for given items. In 
order to make assertion that each partition corresponds uniquely to exactly 
one choice function h € { / ¿ } , we have to prove that the obtained blocks 
of the partition are enumerated according to the increasing order of their 
minimum elements.
Given is j i  6 {1, 2, ..., m}, let i\ be the minimum element that i\  G A 
and h(ii) =  j \ .
Since h£  {h}^ satisfies (2.17), so we have assertion that exists i2<ii, so 
that h(ii) — j  1 — 1.

If ii is the smallest index for which the above is satisfied, then exists 
f3<^2) so that h(ii) =  h(i2) — 1. Repeating this argument j  1 times, we 
prove that if h(i) = j , then exist arguments ¿1, ¿2, i j - 1 such that 
i\ < ¿2 < ... < i j - 1 and h(i{) =  1, h(if) =  2, ..., h ( i j - 1) =  j  -  1. There­
fore, blocks of partitions are enumerated according to the increasing order 
of their minimum elements. Hence, there is one—to—one correspondence 
between partition of the set {1, 2, ..., m} and a choice function h€ {h}jr..

□
One can easily show that the Q property holds for the above model.

Example 2.4.1 Show the indexed family < Ti > and a choice function 
representing a partition of the set S  — {1, 2, ..., 7} into at most 3 blocks.

For this case we have: T\  =  {1}, T i  = {1, 2}, Tz =  Fa =  1F5 = —
T i  =  {1, 2, 3}. For instance, the choice function h: 1 — > 1, 2 — » 1, 
3 — > 2, 4 — > 1, 5 — ► 3, 6 — > 2, 7 — » 1 corresponds to the partition 
that Bi =  {1, 2, 4, 7}, B2 =  {3, 6}, B3 =  {5}.

□
We can create restricted models by imposing (2.14) or (2.15) as the 

requirements W\. Moreover, we can remove any number of upper elements 
from any indexed set T i  so that T{ remains non-void. Each such restricted 
model satisfies the Q property.

The correspondence between any restricted model and the represented 
set of partitions is enough obvious.

2.5 Decompositions into exactly m  blocks
We are concerned now with the set of decompositions of a given set A 
into exactly m  non—void blocks. If these decompositions were represented
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by the set of choice functions of the indexed family < Bi >, 1 < i < 
n, then making assertion that exactly m  different values would be taken
by the choice function h is essential for this modelling. So, the simple
representation models S jj would require investigation of rather composed 
W . The requirement W  has to be especially composed if satisfiability of 
the Q property is demanded. So, modelling the set of decompositions by a 
simple Su model is impractical.

In order to avoid the mentioned earlier difficulties, we use the hierarchical 
representation model.

Let < Ck >, 1 < k < m, where C* =  {1, 2, ..., n}, be an indexed family. 
We create an auxiliary model as follows:

«  Ck >, 1 < k < m; W  =  (1.19); {p}Ck > ■ (2.19)

So, the set of choice functions {p}ck is the set of choice bijections. The
model (2.19) satisfies the Q property because n > m. With denotation 
CDP we mean codomain of the mapping p. Since each p{k) G {1, 2, ...,

1 < k < m, so for every p we have CDP C {1, 2, ..., n}. With each 
codomain CDP, we have the set of indexes Jp = CDP, that the cardinal 
\ Jp \= m. With denotation {Jp} we mean the collection of all the sets of 
indexes, each set Jp is obtained for every p G {p}ck ■ For each Jp we have an
auxiliary indexed family < Bj >, j  G Jp that Bj  =  Bi if i — j, 1 < i < n.
We create the choice function /  G { /} s ;- that /  =  p-1 , i.e., the choice 
function /  is the inverse mapping for given p.

W  : h(i) = q, only if q £ Jp and if (2.20)
there exists s G Jp, that s < i and f ( s ) =  q (2.21)

For the choice functions {h}ei of the family < Bi > , 1 < i < n, the 
requirement W  given in (2.20) is to be satisfied.

Then, we have the following hierarchical models Su'-

< J  ={ Jp} is the collection of codomains of {p}ck >, (2.22)
< < Bk >, k G Jp; W f  given in (1.19); { f}u k >, JP € J ,
< < Bi >, 1 < i < n\ W  given in (2.20); {h}g4 > .

Each choice function h G {h}et is an extension of a choice function 
/  € {f}tsk> the Q property holds. The set of partial mappings /  is not the 
set of choice functions of one indexed family, therefore we have to make 
assertion that the set {f}i3k makes partition on {Ii}bx-

Proposition 2.5.1 I f  is an extension of f s and h/‘ is an extension of
ft and if f s ^  ft ,  then hi- ^  .
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Proof. Because /  =  p~~l , so for any pair of choice functions ( /s , ft) their 
domains differ. Since /  is one—to—one mapping and for any pair f t) of 
mappings their domains are disjoint and codomains are common so exist 
j i ,  j 2 such that j i ^ j 2 and f s( j i) =  f t {j2) = q, q € {1, 2, ...m}.

We have to prove now the following lemma:
if fs{ji)  =  f t { h )  = q and then hf “{j2) ^  hf t (jj).
For j i < j 2; we have already h ^ ( j i )  -f- q and hf‘ {j2) — q, hence hf‘ {j2) 7^

For J i> j2, we have h ^ ( j 2) 7  ̂ <7 and =  q, hence again h^a(j2) 7^
h*‘ (ji). It completes the proof.

□
The set { /}efc of the model < <  Bk >, k £ Jp; W =  (1.19); { /} s fc > 

represents all the possible assignments of the minimal element into the 
blocks, so { /¡Z1 }U { h?2} U... U { h ẑ} =  Since, we have assertion
that {h*’} H {h ^ }  = 0, so the set { /}efc makes partition on the set {h}^.

We discuss now the representation issue for the above model. Each choice 
function p £ {p}cj represents assignment of the blocks to their minimum 
elements, i.e., if p{k) = <7, then the element k is the minimum element of 
the block B, of a decomposition <B i, B2, ..., Bm > . The corresponding 
choice function /  represents assignment of the minimum elements to the 
blocks, accordingly. The choice function h being an extension of a function 
/  represents assignment of elements to the blocks of the decomposition. 
Satisfiability of the requirement W  given in (2.20) makes assertion that 
minimum elements are assigned to each block according to the function /  
indeed.

Example 2.5.1 The task is to represent a decomposition of the set {1 -r 
7} into 3 blocks.

For this case the auxiliary family < Cj > is as follows: C\ — C2 =  C3 = 
{ 1 -7 } .
Any choice bijection p of the family < Cj >, 1 < j  < 3 represents an 
assignment of a block decomposition to the minimum element of this block. 
For instance, p: 1 — > 1, 2 — > 5, 3 — > 4 assigns minimum elements 1, 5, 4 
to the blocks Bi, B2, B3, respectively. Then, the partial mapping /  =  p~l 
is as follows 1 — > 1, 5 — » 2, 4 — » 3 and C D j = {1, 4, 5}. Extending /  
up to a full choice function of the family < Bi >, 1 < i < 7, we have h: 
1 — ► 1, 2 — ► 1, 3 — > 1, 4 — ► 3, 5 — ► 2, 6 — ► 3, 7 — > 1. The given 
choice function h represents the following decomposition: Bi =  {1,2, 3, 7}, 
B2 =  {5}, B3 =  {4, 6}.

□
Important property of the modelling by usage of these two indexed fam­

ilies are different numbers of extensions for each / .
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Let | {hf}Bi | be the number of extensions of a mapping /  that /  =  p l . 
With denotation | n — p (l) | we mean the absolute value of the difference 
n - p ( l ) .
We have | {h/}*?; |= | n  — p(l) | . | n — p(2) | ... | n — p(m) |. If CD f  =  {1, 
2, ...m}, then | {h/}n, | is maximum, while for CD f = {n — m, n — m  + 1, 
..., n} the number of all extensions | {hf}Bi | of /  is minimum. Taking the 
formula | {h/}st |= | n - p ( l )  | . | n -p (2 )  | ... | n - p ( l )  | as the base, we see 
that the number of extensions of each /  =  p_1 is rather decreasing with the 
rank of / .  Since to a greater rank of p corresponds relatively smaller rank 
of / ,  so we say that the number of extensions is increasing with the rank 
of p, however this growing is not monotonie. This property has important 
consequences, when the generation issue is discussed.

Consider now modelling subsets of the full set of decompositions. The 
hierarchical model contains two independent indexed families < Cj >, 
1 < j  < Q and < Bi >, I < i < n  and their choice functions p and h, 
respectively. Deforming indexed sets of each indexed family or imposing 
additional requirements, we can restrict the set {p}cj and consequently the 
set of choice functions {h}si would be restricted. We can also restrict only 
the set of choice functions { h }^  leaving the set of choice functions {p}cj 
unchanged.

Distinct subsets of the set of the choice Injections p of the indexed family 
<  Cj >, 1 < j  < m  can be modeled using general rules concerning modelling 
subsets of the choice bijections.

Since each choice function p represents assignment of the minimum ele­
ment to each block of a modeled decomposition, so restrictions imposed on p 
represent the restrictions imposed on the assignment of minimum elements 
to each particular block. We can check whether restricted models satisfy 
the Q property following the general rules for subsets of choice bijections.

Example 2.5.2 Show the representation of the set of decompositions of 
the set {1, 2, 3, 4, 5, 6} into 3 non-void blocks, so that the 3—th item is 
not a minimum element of any block and the 5—th and 6—th elements do 
not belong to the block B3 .

The first requirement can be modeled by making proper indexed sets 
of the family <  Cj >, 1 < j  < m, while the second requirement can be 
modeled by making proper indexed sets of the family <  Bi > , 1 < i < n.

So, we have
Ci =  C2 =  C3 =  {1, 2 ,4 , 5, 6 ,} .  
B l = B2 = £3 =  Ba = {1, 2, 3}, B5 = B6 = {1, 2}.
One can observe that for this example the Q property holds.

□
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Consider now the following restrictions W\ which can be imposed addi­
tionally on the choice functions h of the family < Bi > for a fixed values 
j , k  6 {1, 2, ..., m} and q € {1, 2, ..., n}.

Wi : h{j) =  h(k), where k < j  (2.23)

Wx : h(j) *  q (2.24)

: M j) 7̂  ^(^)> where fc < j  (2.25)

Wi : h(j) =  q (2.26)

If we use (2.23) as Wi, then the Q property holds, while using (2.24), 
or (2.25) or (2.26) satisfiability of the Q property is an open question and 
depends on j  and q. One can observe that adding requests to the spec­
ified requirements W  the Q property can hold. We will not discuss that 
problem since its solution is oriented towards a given task. We have the 
following correspondence between the particular requirements W\  and the 
represented sets of decompositions:

(2.23) an element j  must belong to the same block as an element k, where 
k< j ,

(2.24) an element j  can not belong to the block q,
(2.25) an element j  can not belong to the same block as an element k, 

where k< j ,
(2.26) an element j  must belong to the block q.

2.6 Partitions of a set into exactly m  blocks
The full set of partitions of a set into exactly m  block is a subset of the full 
set of the corresponding decompositions. The main request of the modelling 
is to make assertion that the blocks are enumerated following an increasing 
order of their minimum elements. The other requirements are the same 
as for modelling decompositions into exactly m blocks. We use a similar 
hierarchical representation model as for representing decompositions.

Let the indexed family < Qj  >, l .<  j  < m, be given, where Qi =  {1}, 
Qj = {j, j  + 1, ..., m —j  +  1}, 2 < j  < m. Then, we have the representation 
model:

«  Qj > , l < j <  m; W  given in (1.1); {p}Qj > (2.27)
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For each choice function p £ {p} q} we create the set of indexes Jp = 
CDP. Then, we have the indexed family < T% >, 1 < i < m, Fi — {1, 2, 

min{i, m}} and the requirement (2.28).

W  : h(i) — q only if exists r £ Jv that r < i (2.28)

The indexed family •< T k >, k £ Jp is a subfamily of the indexed family 
< Ti >, 1 < i < m. Each choice function p is an increasing choice function. 
Since for each p 6 {p}q3' there is f  £ { f } p k that /  =  p -1 , so /  is an 
increasing choice function too. That happens because the reversal function 
to an increasing one is also an increasing function. The codomain of /  is 
the set {1, 2, ..., m}. Then, the following model is given.

{< J  —{Jp} is the collection of codomains of {p}Qfc,see(2.27) >,
< <  F k >, k € JP\W  given in ( l.l) ;{ /} ^ fc >, ( /  =  p“ 1), Jp £ J ,

«  f t  >, 1 <  i < n ;  W  given in (2.28);{/i}jri > .
(2.29)

The Q property holds for the model, moreover, the set of choice functions 
creates the full decomposition of the set The proof is very

similar to the given in the previous section for the decompositions.
Discussing the representation issue, we* state that each choice function 

p 6 {p}Qk represents assignment of each block to its minimum element, so 
that the increasing enumeration of blocks according to the increasing order 
of their minimum elements is preserved. Since /  =  p-1 so its representation 
is enough obvious. Each choice function h £ { h } ^  represents assignment 
of the elements to the blocks. Satisfiability of the requirement (2.28) makes 
assertion that assignment of the minimum element to each block is made 
according to the corresponding choice function p.

Exam ple 2.6.1 Given is the set {1, 2, 3, 4, 5, 6}. The aim is to construct 
a choice function h that would represent a partition of the set into 3 blocks. 
The basic representation is in the form of choice function h of the following 
indexed family:

? 1  = {1}, J~% = {1,2}, T 3 =  ^4 =  ^ 5 = ^ 6  = {1,2,3}

We create the following auxiliary family < Qj  >, 1 < i < 3, Qi = Q2 =  
Q3 =  {1, 2, 3, 4, 5, 6}.

Any increasing choice function p of the family Qj represents an as­
signment of blocks into minimum elements of these blocks by mapping 
indices of particular blocks into minimum elements of these blocks. For 
instance, the mapping p : 1 — » 1, 2 — » 4, 3 — » 5 corresponds to 
min(Bi) =  1, min(B2) =  4, min(B3) — 5. The inverse function /  =  p -1 :
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1 — > 1, 4 — » 2, 5 — * 3. In order to get any choice function h repre­
senting a partition of the set {1, 2, 3, 4, 5, 6} into 3 blocks, we have to make 
an extension of function /  to the whole functions he { h } ^ .  Therefore, we 
have the following choice functions that are extensions of /.: 

h i :  1 -+ 1 , 2 —+1 , 3 —> 1, 4 —> 2, 5 —*• 3, 6 -> 1
h2 : 1 —> 1, 2 —+ 1, 3 —»■ 1, 4 —> 2, 5 —> 3, 6 -> 2
h3 : 1 —> 1, 2 —♦ 1, 3 —> 1, 4 -*  2, 5 -»  3, 6 3

The following partitions are represented by hi, h2, /13.

I h  = <  B i =  {1,2,3,6}, B 2 =  {4}, B 3 =  {5} >,
n 2 = <  B i =  {1,2,3}, B 2 = {4,6}, B 3 =  {5} >,
n ,  = < 5 !  =  {1,2,3}, B 2 =  {4}, f?3 =  {5,6} >

□
For modelling subsets of the partitions by proper subsets of the choice 

functions, we can restrict the set {p} oj creating a set {p'} q'. and/or restrict 
the set creating In order to restrict the set {p}Qj the gen­
eral methodology for restricting sets of increasing choice functions can be 
applied. In order to restrict the set {h}jr. to the set we can restrict
the indexed sets Ti  by forming / /  C T x or we can impose an additional 
requirement W\. If each restricted set T[ contains the minimum element 
of Ti, then the Q property holds. Any requirement Wi which enables us to 
assign the minimum element of T i  as the value of h{i) can also be used for 
the models. Then, the Q property holds.

Example 2.6,2 In order to represent the set of partitions of {1 6} into
exactly 3 blocks, so that 4 is not the minimum element of any block and 
elements 2 and 3 do not belong to the same block, we use the following 
model.

Qi = {1}, Q2 =  {2, 3, 5}, Q3 -  {3, 5, 6}
=  {1}, ^2 =  {1, 2}, T 3 =  T 4 =  T 5 =  =  {1, 2, 3}

The requirement Wi : h(3) ^  h{2) is imposed on the set of choice func­
tions {h}jrt .

□

2.7 Decompositions with fixed cardinal of each 
block

By a decomposition with fixed cardinal of each block, we mean the de­
composition of the set A  into exactly m  blocks whose cardinals are given. 
Suppose, we have fixed the cardinals ki = | Bi  |, k2 = | B 2 |, ..., km = | Bm |
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of the blocks B\, Bm creating a requested decomposition of the
set {1, 2, n} into exactly m  blocks. Then, a decomposition is an as­
signment of elements of the set {1, 2, n} into the blocks. In order 
to make assertion that each assignment represents decomposition indeed 
and no two assignments represent the same decomposition, we make the 
following model.

With denotation sz we mean a ’’seat” inside a block, where z corresponds 
to the block number and t corresponds to the seat number inside the z —th 
block. Then, the codomain of the requested assignment can be seen as the 
ordered n -tu p le  < s\, 4 ,  - ,  sl  s2, •••> 4 2> •••> s"1, «?, -> >>
where s \ , S2, ..., ski represents the ’’seats” of the first block and so on.

We develop now the choice function model for representing the full set 
of the decompositions.

Let < Vi >, 1 < i < n be the indexed family, where V t = {1, 2, ...,
n ) =  {*!. s2> sh> s i> s2> st 2> s™> •••» sklrn}- We have the
following requirements W.

h : i — > szt only if there exists i\ < i such th a tii — > $t-i> 2 < t <  kx
(2.30)

h : i — > sz only if there is i\ < i that h(ii) =  s* 1 (2.31)
Ii : i — > s* only if for every i\ < i there is h(ii) ^  szt (2.32)

Then, we have the following representation model;

«  Vi >, 1 < i < n; W  equals(2.30) A (2.31); {h}Vi > . (2.33)

P rop o sitio n  2.7.1 Each h € {h}vi corresponds uniquely to one decom­
position of the set A into m  blocks with fixed cardinal of each block.

Proof. A decomposition must be represented by a bijection that maps 
the set {1, 2, .., n } into the set {s], s£, ..., s ^ ,  sf, ..., s |2, ..., s f , s f ,  
..., In order to make assertion that no two bijections represent the
same decomposition, we request that each partial assignment restricted to 
the elements s\, S2, ..., slk,, i.e., to all the ’’seats” of the same block is an 
increasing mapping. Since it is to be satisfied for every i : 1 < i < m, so 
the requested assignment is to be a bijection piecewise increasing.

The requirement (2.31) satisfied makes assertion that each h £ {h}^  is 
a one—to—one mapping.

The requirement (2.30) satisfied makes assertion that for each h € {/i}d, , 
we have h(i) =  sz and if h(j) =  sz , then j< i, r < t. Hence, the choice func­
tion h assigns increasingly the elements i to the numbers of seats of a block. 
Therefore, no two choice functions h can represent the same decomposition.
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Hence, each choice function h € {h}v t represents uniquely a decomposi­
tion of the set A  into m  blocks with fixed cardinal of each block.

□
The model (2.33) is not reduced, since the index i = 1 can only be 

assigned to the first seat of any block, the index i = 2 can only be assigned 
to the first or the second seat of any block and so on. Moreover, the index 
i = n can only be assigned to the last seats of each block, the index i =  n —1 
can only be assigned to the last or before last seat of each block and so on. 
In general the i —th index can be assigned to the seat sf) that its order q 
in the j —th block is not smaller than aj and is not greater than ry, where 
rj — min{i, kj}, aj = max{sj, (kj — (n — i))}.

The Q property holds for the model (2.33) since satisfiability of the
requirement W  that is conjunction of (2.30) and (2.31) makes assertion 
that only the seats s i  satisfying the above restriction could be assigned to 
the indexes i. Moreover, for every i we can assign an item

For creation of the reduced model we use the mentioned restriction for 
modelling the indexed sets of the family < fCi >, 1 < i < n. We have, 
K,{ — { <  — s i ,  Sq2 -t- s i ,  ..., s Z  Then, the reduced model is as
follows:

«  Ki >, 1 < t < n; W  equals (2.30) A (2.31); {h}Kt >, (2.34)

Example 2.7.1 Let A =  {1 fi- 7}, m  =  3 and |J5i|= 3, |i?21= 3, |i?3 |=  1. 
We specify the model for representing the decompositions.

Each choice function h £ { h } ^  of the model 2.34 represents a decom­
position of the set A. We have here < /Q > , 1 <  i < 7, /Cj={sj, s | , S3,
sf, s i, s |,  Sj}. For instance h : 1 — * sf, 2 — > sf, 3 — »■ sj, 4 — > s\, 
5 — > s |,  6 — » S2, 7 — > S3 represents decomposition that Bi =  {3, 6, 7}, 
B2 =  {1, 4, 5}, B3 =  {2}.

□
Consider now the restricted models. Since each h€, { h } ^  is a bijection 

piecewise increasing, therefore the restrictions of the indexed sets and ex­
tensions of the requirements W\ must follow the general rules concerning 
modelling subsets of bijections.

We are concerned now with modelling subsets {h}x't of the set {h } ^ .  
The elementary restriction is of the form:

i € l ,  I  C { l , 2 , . . . , n } , z G { l , 2 , . . . , m } , l < t < k z (2.35)

The elementary restriction (2.35) means that the i —th element can not 
be assigned to any s*, 1 < t < kz . The corresponding model represents the
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set of decompositions {h that the i —th element does not belong to the 
z —th block. If kz < n  — i + 1, then the model Su  containing a restricted 
indexed family < JCi >, 1 < i < n, whose an indexed set K!{ is modeled 
according to (2.35) satisfies the Q property. One can prove it observing that 
there are still (n — i +1) — kz elements belonging to the indexed set Ki that 
can be assigned to i. If the restricted indexed family < /C( >, 1 < i < n, 
contains more than one restricted set K.[, then the general requirements 
for restricting indexed family for the models representing choice bijections 
must hold.

We observe that the model (2.34) is very inconvenient for handling. 
Therefore, we will show now another modelling. Let the set of seats (s), 
52> sk> si> s2> ••■> 4 3 > •••> s i1» s2*> S/Tm} be wel1 ordered and being 
identified with the set of indexes, so I  = <  s], S2, ..., , sf, S2> sfc2>
..., s™, s21, ..., s% >, the index i — k\+ k%+ .... +kz- \  +t corresponds to 
the seat s£. Then, we split the set of indexes I  into subsets I \ , I 2, ...., Im 
that I  =< I\ + 12+ .... +  Im >, the operator +  means here concatenation. 
Then, each indexed set Si C {1, 2, ..., n} represents items of the given set 
A. The exact specification of the indexed sets Si is as follows:

Sj — {5 , q +  1, —, n — kz +  1}, q =  j — fci+ &2-t- — 1, /ti+ &2+ ■•••
+kz~ 1 < j  < k\ + k2 + .... +  k~, i.e., j  E I z. Then, we have the following 
specification of the requirements:

K j)  > K j  ~  !). where j  6 Iz and (j  -  1) € Iz (2.36)

K j)  h(p), where j  E I . ,p  E Iz- \  or p E I z- 2...or p E I\ (2.37)

The representation model is

< <  Si >, 1 < i < n; W  equals (2.36) A (2.37); {h}si > (2.38)

One can easily check that {/i}ss represents the set of all the decompo­
sitions of the set A with fixed cardinal of each block. Nevertheless, the 
requirement (2.37) is inconvenient for testing. Therefore, we will transform 
now the model (2.38) into the more convenient one for handling.

Let CDZ denote the codomain of the partial mapping h(l), h(2), •••> K K t  
..., h(fc-), where q =  j — (Aq+ &2+  •••• +^s-i)> j  € I z , 1 < z < m. Then, 
we investigate the indexed family < 7J >, 1 < i < n, where 7} C Uz =  {1, 
2, ..., n} -  C D 1 -  CD7-  ... -  C D '- \  (kx+ k7+ .... + * ,_  1) < j  < (kx + 
fc2 + .... +kz). The set Uz is increasingly ordered and can be specified as 
Kz =  {rci, X2 , a:p}, wherep =  n - ( k i +  k2 + .... +fc-_ 1). Then, Tj = {x q,
Xq+i, ..., xv-k z+q}, since we model increasing choice functions for indexes 
j  belonging to I z .

Observe, the construction of the indexed family < >, 1 < i < n, makes
assertion that the requirement (2.37) is automatically satisfied. Therefore, 
we have at last the model:
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< <  % >, 1 < i <  n\ W  given in (2.36); {h}-/; > (2.39)

The model (2.39) is reduced and the Q property holds.

Example 2.7.2 Let us represent the decomposition shown at the example
(2.7.1) using the models (2.38) and (2.39).

The model (2.38) is specified as follows:
S\ — {1,2,3,4,5} , ¿>2 =  {2,3,4,5,6} , S 3 =  {3,4,5,6,7} , S4 =

{1,2,3,4, 5 } , S 5 = {2,3,4,5,6} , S6 -  {3,4,5,6,7} , <S7 =  {1 ,2 ,3 ,4 ,5 ,6 ,7} ,
For constructing the model (2.39) we start with the subfamily < % >,

1 < i < 3.
7i =  {1,2,3,4,5} , T2 =  {2,3,4,5,6} , T3 =  {3,4,5,6,7} . Then, we select 

a partial choice mapping say h : 1 — > 3, 2 — > 6, 3 — » 7. So, the codomain 
C D 1 = {3, 6, 7}. Hence, U2 = {1, 2, ..., 7} -  {3, 6, 7} =  {1, 2, 4, 5} .

Then, % = {1,2} , % = {2,4} , % -  {4,5} .
We take the choice mapping h : 4 — > 1, 5 — > 4, 6 — » 5. Then, 

CD2 =  {1, 4, 5}. We have U3 = U 2 -  CD 2 =  {2}. Hence, T7 =  {2}.

□
Modeling subsets of the decompositions with fixed cardinal of each block 

is much easier by using the model (2.39). For modelling subsets of {h}%, we 
have to follow the general theory concerning modelling subsets of increasing 
choice functions and subsets of choice bijections.

2.8 Partitions with fixed cardinals of each block
If the set of partition is modeled basing on (2.34), then additional require­
ments (2.40) and (2.41) that represent the difference between decomposi­
tions and the corresponding partitions have to be satisfied.

h : i — > sf only if there exists i\ < i  
such that i\ — * s f-1 , where 2 < z < m

h : s\ — ► 1 (2.41)

The requirements 2.40 and 2.41 are hard for testing their satisfiability, 
that would make the model very inconvenient for handling. Therefore, we 
use the model (2.39) as the basis and add the requirement (2.42).
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Let K  C /  that K  — {1, k\ +1 , k\ + + 1, k\ +  A:2+ ...+kz—\ +  1}.
For each k G K, we form the following requirement IV.

h(k) > h ( k - l )  (2.42)
h( 1) =  1

The model

«  % >, 1 < i < n; W  equals (2.36) A (2.42); {h}Ti > (2.43)

is not reduced since only element 1 from T\ can be assigned to the index 1. 
The reduced model we get investigating indexed family < A/i >, 1 < i < n 
that N \ — {1} and Mt =  min(74) for each k € K, Afi =  % for i £ K. Then, 
we have the following reduced model that the Q property holds.

< <  Mi >, 1 < i < n; W  given in (2.36); { h } ^  > (2.44)

The set {/i}a4 of the model (2.44) represents the set of the partitions 
with fixed cardinal of each block. Observe, the requirement (2.42) does not 
need to be tested since construction of the subfamily < A4  >, for all k <E K  
makes assertion that (2.42) is satisfied automatically.

The model (2.44) is very convenient for representing distinct subsets of 
the set of all the partitions. For modelling such restricted sets of partitions, 
we use the indexed family < A/i >, 1 < i < n, where A/i C /Cj.

Example 2.8.1 The goal is to transform, the model given in (2.7.1), so 
that the partitions instead of decompositions would be represented.

We have the following indexed subfamily < A/i >, 1 < i < 3, A/"i =  {1} , 
A/2 =  {2,3 ,4 ,5 ,6} , A/3 =  {3,4,5,6,7} .

Selecting the partial mapping h : 1 — > 1, 2 — > 4, 3 — > 7, we have 
C D 1 =  {1, 4, 7}. Hence, U2 = {2, 3, 5, 6}. Then, the indexed subfamily 
< Afi >, 4 < i < 6 is as follows:

AU =  {2} , A/5 =  {3,5} , A/e =  {5,6} ,
Selecting-the partial mapping h : 4 — + 2, 5 — > 3, 6 — » 6, we have 

CD2 =  (2, 3, 6}. Hence, U3 =  {5}. Therefore, A/7 =  {5}. Obviously, 
h:  7 — »5.

Then, the choice function h represents the partition Bi =  {1, 4, 7}, 
B2 =  {2, 3, 6}, B3 =  {5}.

□
By uniform partition, we mean a partition of the set {1, 2, ..., n} into 

exactly m  blocks such that each one has n /m  elements. The uniform par­
tition can be treated as the special case of partitions with fixed cardinal of 
each block.
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2.9 Conclusions
In this chapter we have shown that arbitrary sets of combinatorial objects 
can be represented by the corresponding sets of choice functions. For the 
representation we have used mainly increasing choice functions, monotonie 
choice functions and choice bijections. In order to restrict the sets of the 
represented objects, we used additional requirements W\ to be satisfied by 
the corresponding choice functions. The sets of combinatorial objects can 
also be modeled by deforming the indexed sets of the corresponding indexed 
families. The restricted models are mostly reduced and the Q property 
holds. Selection and construction of the most convenient model is not trivial 
and requires many considerations as it was shown with construction of 
the most suitable model for representing sets of decompositions with fixed 
cardinal of each block. The next chapters extend possibilities of modelling 
a given set of combinatorial objects using different models Su-
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Structural numbers and tables D

3.1 The canonical forms

Given is Sv  = «  Qtmax >, 1 <  i < m, Qf** C U\ W\ {h}gr * > that 
is reduced and the Q property holds. The indexed family < Q™ax > , 1 < 
i < m  is the maximal indexed family for the requirement W, see Definition
1.1.1, on page 17. With denotation <u we mean a given order on the set 
U. The indexed sets (?,max are ordered with <u , respectively. The order of 
q € f/tmax, denoted by ord(q, Q™ax), we call the rank of q in Q™** according 
to <u . The order of q on U, we denote similarly by ord(q, U). Observe, 
for a given q we have ord(q, (?-nax) ^  ord(q, U), in general. For instance, 
if U = {1, 2, ...n}, Q™** — {¿, i + 1, ..., n — m  +  i} and if <u  means the 
increasing ordering U, then ord(i, Q¿nax) =  1, while ord(i, U) = i. Hence, 
ord(q, C/Piax) ^  ord(q, U) indeed. We treat ord(q, Q?'!lx) as an operation 
that assigns x  to the pair (q, Q™**). Then, with x(^-nax) =  q, we denote the 
inverse operation that assigns q € Q™** that ord(q, C/jnax) — x. Therefore, 
with denotation 1 (f?™ax), we mean the minimum element from the set 
while 2(C?fiax) means the next to the minimum element of the set f?'nax 
and so on. We emphasize that the operation z(f/™ax) has been investigated 
only for the maximal indexed families. The aim of the following part of this 
section is to extend the operation x(<5tmax) for arbitrary indexed families.

Let < Qi >, 1 < i < m, be an indexed family for the given model Su-

D efinition 3.1.1 The minimal non—deformed family < > , 1 < i <
m  for an arbitrary indexed family < Qi >, 1 < i < m, is defined as follows:
(i) U *—  Q1 UQ2 U ... U Qm.
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(ii) < f/f1111 >, 1 < i < m, is isomorphic to the maximal indexed family for 
given n  = | ¿7 |, m  and W,
(Hi) c g f n.

E xam ple 3.1.1 Given is the representation system Su that the indexed 
family and the requirement W  are specified as follows: Gi =  {2, 3, 4, 5}, 
Gi =  {3, 5, 6}, Qz =  {4, 7} and W:h(i) > h(i—l). Specify the corresponding 
maximal indexed family and the minimal non—deformed indexed family 
< G f n >, 1 < i < m.

We have U — G\ U G2 U Gs =  {2, 3, 4, 5, 6, 7}, so n = | U |=  6.
Therefore, the maximal indexed family is as follows: <5Jnax =  {1, 2, 3, 4},

G r x = {2, 3 , 4, 5}, G3max -  {3, 4, 5, 6}.
While G f a = {2, 3, 4, 5}, G f n =  {3, 4, 5, 6}, g3min =  {4, 5, 6, 7} is the

minimal non—deformed indexed family.

□
Observe, the minimal non-deformed family < G™"1 >, 1 < i < m, is 

simultaneously the maximal indexed family if max(¿7) = | U |=  n. Conse­
quently, if for a given system Su  the indexed family < Gi >, 1 < i < m is 
the maximal indexed family < Gf1̂  >, 1 < i < rn, then it is simultaneously 
the minimal non—deformed family < Gin,n >, 1 < i < m.

Evaluation of the minimal non—deformed indexed family for a given 
system Su  is performed in three steps:

1- U *—  G\ U G2 U ... U Gm-
2. For the given n —\U  \, m  and W  make the maximal indexed family

< Glnax >, 1 < i < m .
3. Make the minimal non—deformed indexed family < Gfim >, 1 < i < m  

that is isomorphic to < f/-nax >, 1 < i < m, and C?-nm C U.

Performance of the steps 2. and 3. is simple and can be explained basing 
on the above given example.

The operation ord(q, Gi) is specified only if q € Gi- We can determine 
whether operation x(Gi) is valid by testing whether x(G™in) belongs to Gi 
or not.

D efinition 3.1.2 We define the operations or d(q, Gi) andx(Gi) as follows: 
ord(q, Gi) =  ord(q, C/fin) and x(Gi) = x(Gi"n) only if x(G? ) € Gi-

E xam ple 3.1.2 Given is the representation system Su that the indexed 
family < Gi >, 1 < i < rn, is specified as follows: G\ — {2, 3, 4, 5}, 
Gi =  {3, 5, 6}, G3 — {4, 7}. Evaluate ord(7, £3) and 3 (^ )-

The corresponding minimal non-deformed indexed family evaluated in 
the previous example is as follows: G™'n — {2, 3, 4, 5}, G™m — {3, 4, 5,
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6}, g™n =  {4, 5, 6, 7}. Then, we have 7 G Qz. Hence, ord(7, g3) = ord{7, 
^ nm) =  4. Concerning evaluation 3 (^2) we observe that if the result exists, 
then it equals 3(^2lin). Since 3(£?2lin) =  5 and since 5 G Q2, so 3(0^) — 5.

□
We are concerned now with the basic forms of a choice function.

D efinition 3.1.3 The custom form of a choice function h, we call the 
string < h( 1), h(2, ..., h{m) > .

The custom form has been used till now, we investigate now another 
valid form of a choice function.

D efinition 3.1.4 By the canonical form of the function h G { h } g i t  we 
mean the mapping h : i — > Xi, so that Xi(Qi) — qj and gi G Gi, 1 < X{ <j
Gi\-

We identify the canonical form of each choice function h  with the follow­
ing ?7i—tuple < x\, X2, ..., xm >, so the function h  is represented by its 
ordered codomain.

If all the choice functions h  G { h } g i are specified by the canonical form, 
then we say that the set { h } g i is given in the canonical form. Similarly, 
with < x\,  a-2, ..., Xi >, 1 < i < m  — 1, we denote the canonical form of a 
partial mapping /i(l), h ( 2), .. . ,  h ( i ) .

We say that the requirement W  has the canonical specification if it is of 
the form XiRE{i, x \ ,  x 2, ..., £¿-1}, where E{i, x\, x%, ..., Xj_i} means 
an expression made of i , x j, xo, ..., x;_i. Usually, we have the following 
simple form E {x  1, x2, ..., x,_i} that corresponds to the simplified custom 
form of W. For instance, the canonical form of the requirement W  for the 
model < <  Ai > , 1 < i < 7n; W  given in (1.1); he  {/i}^ > is x* > Xj_i. 
The canonical form of the set { h } g t , we can get indirectly by making the 
transformation of the corresponding custom form of { h } g i or by the direct 
generation using the canonical specification of W.

E xam ple 3.1.3 Let < 2, 5, 7 >, < 2, 3, 4 >, < 2, 6, 7 > be the custom 
form of the choice functions h\, /i2, /13, respectively for Su specified in 
Example 3.1.2. The goal is to transform h\, h2 and /13 into the canonical 
form.

The canonical form of the choice function hi is as follows: < 1, 3, 4 > .
The function /12 given in the canonical form is as follows: < 1, 1, 1 > .
The function h3 given in the canonical form is as follows: < 1 , 4, 4 > .

□
If we have the canonical form of a choice function and the corresponding 

indexed family is known, then we can transform the canonical form into the 
custom form as follows: h( 1) =  2;(i?i), h{2) =  £2(£2)1 *•*> h{m) =  x m(Gm).
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The given relation between minimal non- deformed indexed family and 
the canonical form of a choice function is subjective for our following con­
siderations.

3.2 The tables D

With denotation N[xi(£?i), x 2(Q2), —, we mean the number of
extensions of a partial mapping < h( 1) =  x\(Qi), h(2) =  x2((?2), •••> 
h(i) =  Xi(Qi) > to the choice functions h( 1), h(2), h(m) that h € {h}^.

D efinition 3.2.1 The number IV[xi(f/i), X2(f?2), —, %i{Gi)\ is called the 
structural number for {/i}^.1.

For a given representation model the set of all the structural numbers 
represents the structure of the set {h}^.

Let < xf(£i), x\{G2), - ,  x\{Gi) > and < x f ^ j ) ,  xf(<?2), - ,  x f(£ )  > 
be the canonical forms of two partial mappings hi(2), ..., h\(i) and
/i2 ( 1 ), h2(2), ..., h2(i) that hi(i) — h2(i). That is equivalent to x j = xf.
By N[l(^i)] we denote the number of all those choice functions for which 
h( 1) = 1 (d/ 1 ). Similarly, with denotation N[x(£j)] we mean the number of 
all those choice functions h G {h}çi that h(i) = x{Gi) and /i(l), /i(2), ..., 
h(i — 1) are any values except they are fixed for all the concerned choice 
functions.

Let < xf, x2) ..., x j_1( Xj> and < xf, xf, ..., xf_j, Xi > be two choice 
partial mappings for a fixed value Xi(Gi)-

D efinition  3.2.2 The structure of the set {h}çi is symmetric if N\x\(G\),
^2(^2), - ,  Xi{Çi)} = fVjxf^i), xf((?2), - ,  Xi(Gi)}
for any possible x\, x \, ..., x f , xf, xf, ..., xf and i.

If the structure is symmetric, then we have N[xj(f?i), x\{G2) , ..., xf_1(^ _ i) , 
x \{Gi)\ ~  N[xf(Pi)] for every possible i. For the symmetric {h}g . , we have 
at most u.m  distinct structural numbers, where u =  max, | Qi |- Then, the
structure of the set {h}çi will be represented by a table D[uxm] whose

1 T he S tirling’s num bers are also covered as a case of the defined here struc tu ra l 
num bers, however the given defnition is much more general.
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entries D[f, j\ are as follows.

D [l,l] =  N[l(Si)] 
D[2,1] =  N[2(£?0]

D[z, 1] =  N[l(^i)] (3.1)
D [i,2 ]= N [l(& )]

D[i, j]=N[i(i?j)]

D[u, m] =  N[u(Ç/m)]

The tables D have very important meaning for representing the struc­
ture of the sets {h}gi and the structure of distinct subsets of {/;.}§.. The 
structure of the sets {h}Gi represented by the tables D we use for testing 
equivalence of the models and we can develop mutual transformations of 
the models basing on these tables. The tables D are also used as the basic 
data structures for developing different UN R A N K , R A N K , R A N G E  al­
gorithms, see Chapter 6. That makes a foundation for sequential, parallel 
and distributed generation of the sets of choice functions. Therefore, we 
are much concerned with the development of methodology for evaluation 
of tables D for different classes of choice functions. For certain valid classes 
of choice functions the tables D have interesting properties enabling their 
easy evaluation and usage.

3.2.1 The basic algorithms for table D evaluation
Given is the unranking model Su  that is reduced and the Q property holds. 
The set {h}g{ is symmetric, hence the table D represents the structure of
{h}Gi■

We observe, that a value h(l) € G\ is a prefix of any choice function 
h € {hjgj. Hence, the set (h(l)} of all the possible values h( 1) makes a 
partition on the set {h}Si. Consequently, | {h}Gi |=  N[l((?i)] + N[2((?i)]-t- 
... .+N[u(Ç?i)], where u(.Gi) = m a x ^ ) .

Since, D[x, 1] =  N[a:(C?;,)], so
U

(3-2)
X=1

where | {h}g. | is the cardinal of the set {h}g ., while u x rn is the size of 
the table D.

D efinition 3.2.3 With denotation G* we mean the subset of Gi for given 
values < /i(l), h{2), ..., h(i — 1) > . The set G* contains all the elements
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that could be assigned to i, in order to get enabled partial mapping < /i(l),
M2), h(i) > .

Suppose, we have given now a partial mapping < h(l), h(2), h(i) > .

D efinition 3.2.4 With denotation Qi we mean the subset of G* that is 
obtained for given partial mapping < h( 1), /i(2) , h(i) > and it contains 
all the elements of Q- that are not smaller than h(i).

We can evaluate the sets Q* and Q* by means of values x  specified as 
follows: x  =  ord(q, Gi)- Then, Q* = {(p : cp — x(Qi) can equal h(i) for 
making the possible extension of fixed < h(l), h(2), ..., h(i — 1) > to 
< /i(l), h(2), h(i - 1), h(i) >}, while Q* = {qi : qi =  x(Gi) that < h{ 1), 
h(2), ..., h{i — 1), qi > is enabled partial mapping, where qi >  h(i) for 
the fixed partial mapping < h(l), h(2), ..., h(i — 1), h(i) >}. The sets 
Q* and Gi are very convenient notions for explanation and description of 
numerous algorithms concerning the theory considered here, nevertheless, 
full presentation of the rutines for evaluation G* and Gi now would be a 
little bit cumbersome, so, we postpone it. Formal algorithms for evaluation 
G* and G{ are given in Chapter 6.

The partial mapping < h( 1), h(2), ..., h(i) > is a prefix of the partial 
mapping < h(l), h(2), ..., h(i), h(i +  1) >  and it is a prefix of a number 
of choice functions h € {/i}^. Since the system Su  is symmetric, so the 
number of extensions N[/i(i)] of each partial mapping < h(i), h(i), ..., 
h(i) >, to the full choice functions equals +1gg* N[g*+i], where qi+ 1

denotes those values of h(i +  1) that are enabled for the fixed h(i). Then, 
using the canonical form of the choice functions, we have N[<fr] =
S{x} N[x(5 j)], where x = ord(qi, G*) and {a;} denotes the set of all the 
possible values x  that x(Gi) £ G*■ We have D[x, i] =  N[/i(i)] and N[/i(i)] =  
S q ,+1e s -+1 Using the canonical form, we can rewrite the above
result as follows: N[/t(f)] =  £ { yj N[y(£/i+i)], where y =  ord{qi+u G'+i) 
and {,)/} denotes the set of all the possible values y that y(Gi+i) € G*+1-

Then,

D[x, f] =  [y,i +  1], i < n ,x  < u , y <  u (3.3)
fy}

Hence, each entry D[.r, ¿] of a table D can be evaluat ed by adding a subset 
of entries of the next column of the table D, where i < n . Moreover, we 
have D[.x, tu] =  1 if there is a choice function h € {/i}g. that h(m) — x(Gm) 
or D[x', m] =  0 if such function does not exist.

The formula (3.3) we call the sequential pattern for the entries of the 
table D since we can evaluate the entries of the i — th column after making 
evaluation of the entries of the i +  1 — th column.
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Basing on the above formula we present the general algorithm for eval­
uation of the table D for the given system Su-

Algorithm SEQTABD (general algorithm for SEQuential evaluation of 
the TABle D)

Input: The model Su = «  Gi >, 1 < i < m; IT; {h}Si >
Output: the table D
Method: We make the minimum non-deformed indexed family < C/-nin >, 

1 < i <  m for the given < Gi >, 1 < i < m. Then, we evaluate u — maxji3,{ 
x : x — ord{q, q £ G'™*1}- Determining whether D[x, z] =  1 or D[x,
i] — 0 depends on existence of h G {h}gi that h(i) = x. In particularly, 
D(x, 777.) =  1 if exists h G {h}g{ that h(m) = x. Evaluation of all the other 
entries D[x, z], 1 <  x <  u, 1 < i < m  is performed in the step 3. basing on 
the observation given in 3.3.

1. for i *—  1 to  m  do
1.1. if u((?” 'n) G Gi th e n  D[u, z] <■—  1 else D[u, z] +—  0
2. for x <—  1 to  u do
2.2. if x(G™n) € Gm th e n  D[x, m] <—  1 else D[x, m] <—  0
3. for x *—  u — 1 dow nto 1 do
3.1. for i *—  m  — 1 dow nto 1 do
3.1.1. D[x, t] ♦—  0
3.1.2. if x { G f n) G G- th en
3.2.1.1. for y <—  1 to  u do
3.1.2.1 1 . if j / ( ^ 7 ) G Gt+1 th e n  D[x, z] «— D[x, z]+D[y, i +  1]

The correctness of the presented algorithm is justified by the formula 
(3.3). Asymptotic complexity of the algorithm is 0 (u 2.m) under the as­
sumption that the minimal non—deformed indexed family < G{n,n >, 1 <
i < m  could be found in time 0 (u2.m).

If the given indexed family < Gi >, 1 < i < m  is simultaneously the 
minimal non-deformed indexed family < GiUn >, 1 < i < m, then the 
entries of the corresponding table D can be evaluated independently one 
from each other using general formulas of the form given in (3.4),

D[x,p] =  6(n,m ,p,x),  (3.4)

where <5(n, m, p , x) is a function that involves factorials or symbols (¿) 
and so on. Basing on the form (3.4), we have developed parallel algorithm 
for evaluation the entries of the tables D.

Algorithm PARTABD (general algorithm for PARallel evaluation of the 
TABle D)

Input: The model Su  = < <  Gi >, 1 < i < m; W; {h}gi > The number 
of the processors used equals u.m. Each processor is dedicated to an entry 
of the table D. Hence the processors P  are enumerated with (p, i).
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Output: the table D.
Method: Depending on the given model Su  we have a proper case of the 

general formula (3.4).
1. for p <—  u dow nto 1 do in parallel
1.1. for i <—  m  dow nto 1 do in parallel
1.1.1. evaluate D[p, z] using a proper formula (3.4).

Time complexity of the above algorithm equals the complexity of the 
formula (3.4) that is much lower than time complexity of the algorithm 
SEQTABD if the number of processors used equals u. m. Nevertheless, if the 
algorithm PARTABD where implemented using one processor, then its time 
complexity would be greater than in the case of the algorithm SEQTABD 
since for evaluation entries D[p, i] the algorithm SEQTABD requires at 
least one adding using earlier evaluated entries, while the formula (3.4) 
involves much more complicated operations.

The algorithms SEQTABD and PARTABD have very general meaning 
since they can be adopted for evaluation of the entries of the tables D for 
any given model Su- For special classes of the models used these algorithms 
are useless since they are too general and do not gain from specific proper­
ties of those models. On one side those algorithms are not very convenient 
on the other side they are too much complex. The next part of this chapter 
is devoted to methods of evaluation of the tables D for specific models. We 
study also equality of tables D for different models in order to extend appli­
cations of the specific algorithms and to extend the methods of modelling 
specific sets of the combinatorial objects as well.

3.3 Congruence and isomorphism

Given are the unranking models Sjj = < <  Gi >, i € /; W; {h}^ > and 
Sf; = <  {Gaj}', W a; {ha}g» >, where I, J  are the ordered sets of indexes, 
Qi C U, Gaj C Y  . The models are reduced. We have | I  |= | J  |, while the 
cardinals | U \ and | Y  | can differ.

Let h € {h}^ and ha € {ha}g*, while < xi, X2, ..., Xj > and < x“ , x^, 
..., x“ > being the canonical forms of h and ha, respectively.

D efinition  3.3.1 We say that the canonical forms of choice functions < 
Xi, x'2, ..., Xi >, i € /  and < x“ , x'2, ..., x“ > , j  6 J  are congruent if 
X\ =  x \ , X2 =  xSj, ..., Xi =  xf.

If | [h)Q{ |= | {ha}g° | and if for each h € {h}gi there is corresponding ha 
€ {ha}g° , then the canonical forms of the sets of choice functions {h}g{ and 
{ha}g« equal. Similarly, we say that the models Sy  and are congruent 
if the canonical forms of {h}Si and {/ia}ga equal.

We have immediately the following observation.
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• If the sets [h)gi and {h'}g^ are symmetric, and if the models Sy  and 
Sy  are congruent, then the same table D represents the structure of 
{h)Gi and {h')g-,.

Let ip be a one—to—one mapping that ip : I  — » J  and i\ >T i% implies 
<p(i\) >J <̂ (¿2), while ip being a one-to -one  mapping that ip : U ——> Y  
and u\ >u u-2 implies ip(u\) >Y ip(uf) for all the pairs (¿1, ¿2) and (tti, u^),
i.e., the mappings p  and ip are in accordance with the given orders < 7, < J , 
<u , < Y .

Definition 3.3.2 We say that the models Sy and S y  are isomorphic if 
for every h 6 {h}Gi exists ha £ {ha}g?, that ip(h(i)) — ha(p(i)) for every 
i £  I  and if | {h}^ |= | {ha}g. | .

Theorem  3.3.1 If the models Sy and Sy are isomorphic, then they are 
congruent.

Proof, (i) If Si; and Sy  are isomorphic, then the mapping <p and the 
order < 7 are in accordance with <J .

(ii) If S f  and Sy  are isomorphic, then the mapping ip and the order <u 
are in accordance with the order <Y .

The statement (i ) implies: if ha € {ha}g° is an image of h £ {h}Gi that 
ip(h(i)) — ha(p(i)) for every i £ I  and if h(i) = x{Qf), then ip{h{i)) = 

The statement (ii) implies that the rank of i according to <r 
equals the rank of p(i) according to <J . Hence, the canonical forms of h 
and ha are the same.

Since | {h}gi |= | {ha}g* | holds, so we have assertion that for each 
h £ [h}gi there is ha £ {ha}g° that their canonical forms are congruent. 
Therefore, the canonical forms of {h)gi and [ha}gj are the same. So, the 
models Sy  and S y  are congruent. That finishes the proof.

□
Corollary 3.3.1 I f  the models Sy and S y  are isomorphic and if the set 
{h}gi is symmetric, then there is a table D that represents the structure of 
{h}Gi and the structure of {ha}gj, simultaneously.

Proof. Symmetry of {h}Gi makes assertion that the table D exists for 
the model Sy.  Isomorphism of Sy  and Sy  makes assertion that if {h}Gi is 
symmetric, then {ha}g« is also symmetric and the table D represents the 
structure of Sy.

□
We emphasize that congruence and isomorphism defined are different 

notions. Isomorphism makes congruence, while congruence does not make 
isomorphism.
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E xam ple 3.3.1 Given are the following models Sy  = < <  Qi > , 1 <  i < 4, 
Qi = { i , i  + 1}; W  : h(i) > h{j); {/i}Ci > and S = < <  Qaj  > , 1 < j  < 4, 
Qai =  {1, 2}; W“ : h(j) > h(j -  1); {ha}Qf > .

The models are congruent and non—isomorphic.
We show it as follows:
We have U — {1, 2, 3, 4, 5} and Y  =  {1, 2} and the requirements W  

and W a differ. Therefore, Sy  and Sy  can not be isomorphic.
The custom forms of the choice functions {h}g{ and {ha}g°- are as follows: 
{h}Si =  {< 1, 2, 3, 4 >, < 1, 2, 3, 5 >, < 1, 2, 4, 5 >, < 1, 3, 4, 5 >,

< 2, 3, 4, 5 >};
{.h a } g » =  { <  1 , 1 , 1 , 1 > ,  <  1 , 1 , 1 , 2 > ,  <  1 , 1 , 2 , 2 > ,  <  1 , 2 , 2 , 2 > ,

< 2, 2, 2, 2 >}.
Then, we have the following canonical form of {hjgr. {< 1, 1, 1, 1 >, 

< 1, 1, 1, 2 >, < 1, 1, 2, 2 >, < 1, 2, 2, 2 >, < 2, 2, 2, 2 >}. The canonical 
form of =  {< 1, 1, 1 , 1 >, < 1, 1, 1 , 2 >, < 1, 1, 2, 2 >, < 1,
2, 2, 2 >, < 2, 2, 2, 2 >}. Since, the canonical forms equal, so the models 
Sy  and Sy  are congruent. Moreover, the sets of the choice functions are 
symmetric, so we have one common table D  for the models Sy  and Sy  as
fol ows:

4 3 2 1 
1 1 1 1

□
Let three representation models Sy,  Sy  and Sy  be given.

P rop o sitio n  3 .3 .1  I f  Sy and Sy are congruent and if Sy  and Sy  are 
isomorphic, then Sy and Sy are congruent.

Proof. Since S y  and Sy  are isomorphic, so Sy  and S y  are congruent. 
Hence, S y  and S y  are congruent.

□

3.4 The regularity of the tables D
Given are the representation models Su = «  Qi >, 1 < i < m, Qi =  {1, 
2, ..., n}; W ; {h}gi > and S au = <  < Qi >, 1 <  i < m  +  s, Q? =  {1, 2, 
..., n +  q}; W; {ha}g° > . The indexed families < Qi >, 1 < i < m, and 
< Qf >, 1 < i <  m +  s, are the maximal indexed families for the common 
requirement W. Suppose, the table D[n x m] represents the structure of 
the set of choice functions Then, we create the corresponding table
Da[(n +  q) X (m +  s)].

D efin ition  3.4.1 We say that the table D is regular if +q, i+s] =D\j, 
i\ for any integer s and q.
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Briefly speaking, if D is regular then it is the subtable of Da. It was shown 
that for the set of increasing choice functions the table D =  DCM and the 
table DCM is regular [19]. The regularity of the table D is a valid property 
of the models since it enables us to construct the table D regardless on 
parameters n  and m. The regular tables D for big enough n and m  can be 
stored and their proper subtables can be used for a particular model.

The regularity of the table D is not a trivial property and it does not 
hold for all types of choice functions possessing symmetric structure.

Exam ple 3.4.1 Let the unranking representation model «  Vi >, 1 < i < 
m, Vi =  {1, 2, ..., n}; {h}pi > be given, while the requirement W  being 
void. One can easily observe that the set of choice functions {h}p. possess 
the symmetric structure since N[x(<7i)] =  N[y(£_,■)] for any pair of indexes 
i, j  that 1 < i < m, 1 <  j  < m, and for any pair of values x, y, 1 <  x  < n, 
1 5= V < ft. Hence, there is a table D for the model. Nevertheless, the table 
D is not regular. One can note it observing the following two instances of 
the general model.

For n = m  = 3 we have the following table D:

D
6 3 1
6 3 1
6 3 1

For n =  m  =  4 we have the following table D:

64 16 4 1
64 16 4 1
64 16 4 1
64 16 4 1

The table D for n =  m  =  3 is not a subtable of the table D for n =  m  =  4. 
Hence, the table D that represents the structure of {h}pt is not regular.

3.5 The tables DCM for increasing functions
The table DCM [19] is the table D for the model Su=  < <  Ai > , 1 < 
i < m; W  given in (1.1); {h}^. > representing all the increasing choice 
functions of domain {1, 2, ..., m} and codomain {1, 2, ..., n}. So, the 
indexed family < Ai > , 1 < i < m; is the maximal indexed family for 
the given n  and m.The size of the table DCM is (n — m +  1) x m since
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merxi(| Ai |) =  n  — m  +  1. The entries DCM[n — m  +  1, j] = 1, DCM[i, 
m] =  1, 1 <  i < n — m +  1, 1 < j  < m. The table DCM can be evaluated 
using the algorithm SEQTABDCM.

Algorithm. SEQTABDCM (algorithm for SEQuential evaluation of the 
TABle DCM)

Input: 7i, m  for the model Su,
Output: the table DCM
Method:
1. for i <—  1 to 77i do
1.1. DCM[t1 — 771 +  1, i] <—  1
2. for p <—  1 to n — 77i +  1 do
2.2. DCM[p, m] <—  1
3. for p *—  71 — 771 downto 1 do
3.1. for i *—  771 — 1 downto 1 do
3.1.1. DCM[p, t] «— DCM Ip +  1, z]+DCM[p, i +  1]

Assuming that the step 3.1.1. can be performed in time 0(1), then the 
asymptotic complexity of the algorithm is 0(n.77i), since the size of the 
table DCM equals m.(n — r?i +  1).

The algorithm SEQTABDCM is an instance of the algorithm SEQTABD. 
The table DCM can also be evaluated using the parallel algorithm involving 
coefficients Q) of Newton’s binomial.

Algorithm PARTABDCM (algorithm for PARallel evaluation of the TABle 
DCM)

Input: 7i, 77i for the model S u ■ The number of the processors used equals 
(n — 77i +  1).77i. Each processor is dedicated to an entry of the table DCM. 
Hence, the processors P  are enumerated with (p , i).

Output: the table DCM.
Method:
1. for p <—  71 — 771 +  1 downto 1 do in parallel
1.1. for i *—  77i downto 1 do in parallel
1.1.1. DCM(p, *) -

The time complexity of the algorithm equals the time complexity of the 
step 1.1.1. The maximal number of the processors used equals (71—77i+l).77i

It has been observed that the entries of the table DCM are the entries 
of the Pascal’s triangle [19].

E xam ple 3.5.1 For the model S'v  and parameters m  =  4, ri =  10 there is 
the following table DCM.
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DCM=

84 28 7 1
56 21 6 1
35 15 5 1
20 10 4 1
10 6 3 1
4 3 2 1
1 1 1 1

□

3.5.1 The DDCM tables
Given is the model Su — «  Vi >, 1 < i < m ;W  in (1.1); h G {h}•*>< > 
defined in (1.2), where Vi C Ai, 1 <  i < m, max(Vi)  > max('Pi-i), 2 < 
i < m. So, for a given indexed family < Vi >, 1 < i < m; the corresponding 
indexed family < Vf™  >, 1 < i < m  is the minimal non—deformed indexed 
family.

The set of choice functions {h}pi is symmetric since for the canonical 
form of a given partial mapping h( 1), h(2), ..., h(t), t < m, we have

=  N[a:i(Pi), x 2(V2),..., x t (Vt )], where a;i(‘Pi) =  ft(l), x2(V2) = 
h(2), ..., x t (Vt ) = h(t). Moreover, N[a;m(7:,m)] =  1 and N(z('P£Ji")] =  0 
if x(V™,n) ^ Vm- The table D for the above model is denoted by DDCM 
(deformed DCM ). The algorithm SEQTABDDCM enables us to evaluate 
the table DDCM for each particular model Su-

Algorithm SEQTABDDCM (algorithm for SEQuential evaluation of the 
TABIe DDCM]

Input: the model Su  = < <  Vi > , 1 <  i < m\ W  in (1.1]; h G {h}-pt >
u — n -T O + 1, the corresponding minimal non-deformed indexed family 

< V f n > , 1 < i < m.
Output: the table DDCM that can possess 0 entries.
Method:
1. for i <—  1 to  m  do
1.1. if u(Vtmm) & Vi th en  DDCM[n — m  + 1, f] <—  1 else DDCM[n -  

m +  1, i] <—  0
2. for p <—  1 to  n - m  +  1 do
2.2. if p(V™n) G Vm th e n  DDCM[p, m) <—  1 else DDCM[p, m] 0
3. for p <—  n — m  dow nto 1 do
3.1. for i <—  m — 1 dow nto 1 do
3.1.1. if p ( v r n) e  V * th e n  DDCM[p, i] -  1 +  l ]

else DDCM[p, i] -  0.

The algorithm SEQTABDDCM is an instance of the general sequen­
tial algorithm for evaluation of the tables D. The test p(Ai)  G Vi and 
the similar ones can be performed in time 0(1). Asymptotic complexity is
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0 (u 2.m), i.e., the same as for the algorithm SEQTABD. Nevertheless, time 
complexity of the step 3.1.1. is lower than time complexity of the corre­
sponding step 3.1.2. of the algorithm SEQTABD since the sum 2 fc= ^+1 
contains less elements than u. Therefore, time complexity of the algorithm 
SEQTABDDCM is lower than of the algorithm SEQTABD.

E xam ple 3.5.2 Given is the following indexed family < Vi >, 1 < i < 4, 
V x = {2, 3}, V2 = {3, 4}, = {4, 5, 6}, V4 = {5, 7} for the model
specified in {1.2). We have to produce the corresponding table DDCM.

The indexed family < T3; >, 1 < i < 4 is a deformed indexed family. 
The corresponding minimal non—deformed family is < 'pjnm >, 1 < i < 4, 
where 7>Jnin =  {2, 3, 4}, V f n = {3, 4, 5}, V f n =  {4, 5, 6}, V f n = {5, 6, 
7}. So, n =  7 and m  =  4. We have u =  maxj(| 'p?n,n |) =  3. The size of the 
table DDCM is 3 x 4. Using the algorithm table DDCM, we have:

6 4 2 1 
DDCM= 2 2 1 0  

0 0 1 1

□

3.5.2 The tables DCM for non—void W\
We are concerned now with the model S u —«  Ai > , 1 < i < m; 
W  given in (1.1); W i ; hiE { h } ^  >, where W\ can be specified by the 
canonical form. If W\ is given in (1.3) or W\ is given in (1.4), then the 
model Su  and the model (1.2) are congruent. Hence, we have the DDCM 
table discussed in the previous section.

Suppose, now W\ is given in (1.5), i.e., for every z € Z  we have to have 
h{z) =  h{z — 1) +  1, where Z  is a set that Z  C {1, 2, ...m}. We observe 
that the corresponding set of choice functions {/i}^ is symmetric. The 
corresponding table D is denoted by W(1.5)DCM (requirement W\ given 
in (1.5 ) for DCM). The following algorithm SEQTABW(1.5)DCM can be 
used for evaluation of the table W(1.5)DCM.

Algorithm SEQTABW(1.5)DCM ( SEQuential evaluation of 
TABle W(1.5)DCM )
Input: the set Z
Output: the table W(1.5)DCM
Method:
1. for i <—  1 to  m  do

1.1. W(1.5)DCM[n -771+ 1, ¿] <—  1

2. for i <—  1 to  n — m  +  1 do

2.1. W(1.5)DCM[f, 771] 4—  1
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3. for i *—  m  -  1 dow nto 1 do

3.1. for j  <—  n - m  dow nto 1 do

3.1.1. if (i +  1) g Z th en  W(1.5)DCM[j, t] <— W(1.5)DCM[j, 
t+1] +W (1.5)DCM [j+l,i] else W(1.5)DCM[ji, i] <— W(1.5)DCM[j,
t +  1]

In order to observe the correctness of the algorithm, we note the following 
relations:

* if (i +  1) 6 Z, then N[j(Ai)] =N [(j(A +i)].
* * if (i +  1) i  Z, then N[ j(Ai))  =  £ £ l 7 +1N[fc(A+i)],
*** E - - + i N[fc(A+i)] =N \( j  +  l) (A )]+ N [j(A +1)],
for the canonical form of the choice functions h € .
Substituting N [j(A )] =W(1.5)DCM(i7, i) and so on, we see that the al­

gorithm is correct indeed. Complexity of the algorithm SEQTABW(1.5)DCM 
is determined by its size, i.e., it is m.(n — m). The entries of the table 
W( 1.5) DCM can also be evaluated by using the following 
algorithm PARTABW(1.5)DCM.

Algorithm PARTABW(1.5)DCM (PARallel evaluation of 
TABle W(1.5)DCM )

Input: the set Z
Output: the table W(1.5)DCM
Method:
1. for i <—  m  dow nto 1 do in parallel 
1.1. ef | {1,2, ..., i } - Z  |

1.2. for j  *—  n — m  + 1 dow nto 1 do in parallel

1.2.1. W(1.5)DCM\j, i] —

Correctness of the above algorithm one can prove noting :
(i) the columns of the table W(1.5)DCM equal to some columns 
of the corresponding DCM table,
(ii) for each z G Z  that z < i the i -  th column of the table 
W(1.5)DCM equals the i — th  column of this table.

E xam ple 3.5.3 For n  =  9, m  = 5, Z  = {3, 5} the corresponding table 
W(1.$)DCM is as follows:

W(1.5)DCM=

15 15 5 5 1
10 10 4 4 1
6 6 3 3 1
3 3 2 2 1
1 1 1 1 1



66 3. Structural numbers and tables D

□
The other classes of the models concerning increasing choice functions 

will be considered in the next sections by showing congruence of those mod­
els and the models representing sets of the non-decreasing choice functions.

3.6 T he tab les D CM  for m onotonic functions

The goal is to show that the tables D used for the sets of increasing choice 
functions represent also the structure of the sets of non-decreasing choice 
functions.

The tables D for monotonic choice functions are the same as the tables 
D for increasing choice functions. We will study now the structure of sets 
of the monotonic choice functions in more detail.

Let the unranking model Sy = «  7l i  >, 1 < i  < m; W 1 specified in
(1.10); h 6 {h}^  > be given, where 7^ C — {1, 2, ..., n -  m  + 1} 
and the requirement W f  can be expressed in the canonical form. The model 
Sy  is reduced and the Q property holds. We know that the model Sy  
represents a subset of non-decreasing choice functions.

The model Sy —«  Vi >, 1 < i < m; W 2 given in (1.1); W 2; h E 
{h}-p{ > represents a subset of increasing choice functions, where Vi C 
Ai — {¿, i +  1, ..., n — m  + i}, the requirement W 2 can be given in the 
canonical form. The model Sy  is reduced and the Q property holds.

T heorem  3.6.1 For every model Sy there exists a model Sy,  such that 
Sy  and S y  are congruent.

Proof. Consider now the model S y  = < <  £* >, 1 < z < m; W 1 given in
(1.10); h E {h}si > that represents the full set of non-decreasing choice 2
functions. The model S y  = «  Ai > , 1 <  i < m; W 2  =  (1.1); h E {h >
represents the full set of the increasing choice functions. 1  2

(i) We will prove now that the models S y  and S y  are congruent.
Let < x i(£ i), —j Xm(£m) > be the canonical form of a choice

function h E {h}^. Since \ £\ |=  n — m  +  1, so the range for changing 
the parameters Xi is as follows: l < X j < n  — m +  1. The requirement W 1 
specified in the canonical form is as follows: X{ > x*_i, 2 < i < m.

Similarly, < xj(.Ai), X2(A 2), x m(A m) > is the choice function h E 
{h}Ai- We have | |=  n — m  +  1, so we have also l < X j < n  — m +  1.
The requirements W 2  and W 1 specified using the canonical form equal.

Therefore, for each choice function < xi(£i), X2(^2), ..., x m(£m) > 
there is equal choice function < xi(.Ai), X2{A2), ■■■, x m(A m) > . More­
over, | {h}^ |= | | . Hence, the systems Sy  and Sy.  are congruent.
Therefore, the lemma (i) is proved.
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(ii) We prove now the congruence of the models Sy  and Sy  for the 
general case. Restriction of {h}si by deformation of sets Si is equivalent to 
restriction of {/i}.^ by the corresponding deformation of Ai.

Since for any additional requirement W} we can construct the additional 
requirement W 2 that their canonical forms equal, so for any restriction of 
the set {h}si we can made the corresponding restriction of the set {h }^r  
Then, the structural numbers for {/i}^ and {h}^. equal. Therefore, if there 
is a table D that represents a restricted model Sy, then there is a restricted 
model Sy  represented by the table D.

Therefore, we have proved (ii).
Hence, for every model S y  there exists a model Sy, that S y  and Sy  are 

congruent.

□
Therefore, any table D that represents the structure of a symmetric sub­

set of monotonie choice functions equals the table D that represents a 
corresponding subset of increasing choice functions.

We are concerned now with a collection of the models Sy = «  % >, 
1 <i< m ,Ti = { r .( i - l ) + l ,  r.(i—1)+2, ..., n —r.(m -i)} ; W  given in (1.17); 
{h}^  >, where r € {0, 1, 2, ..., m}, tv =integer(n/m). It was shown that 
the Q property holds for the model Sy.

Putting r — 0, the set {h}q\ given in the canonical form is the same as 
the full set of all non-decreasing choice functions for fixed n and m. If r — 1, 
then the corresponding set {h)r{ is the set of increasing choice functions. 
For r  > 1 we get a corresponding subset of non-decreasing choice functions. 
For r > 1 the canonical form of the set {h1} ^  is a subset of the canonical 
form of the corresponding set of increasing choice functions.

Let two models Sy  and Sy  be given that Sy  = < <  T f  >, 1 < i < m,
= {ri.(i — 1) +  1, r\.(i — 1) 4- 2, ..., n\ — r\.(m  -  i)}; W  given in (1.17); 
[hl }Ti >, S i  = «  T? >, 1 < i < m, T? =  {r2.(i -  1) +  1, r2.(i -  1) +  2, 
..., ri2 -  r 2.(m -  i)}; W  given in (1.17); {/r2}^ > •

T heorem  3.6.2 The systems Sy and Sy are congruent if and only i fn 2 — 
ni -  ( m -  l ) (n  -  r 2).

Proof. We have | T f  |=  ni — ri.(m  -  1) and | T? |=  n2 -  r 2.(m — 1), 
1 < i < m. The systems are congruent only if | "771 (= | | . That happens
if n\ — r\.(m  — 1) =  n2 — r 2.(m — 1). Therefore, we have shown that the 
systems S y  and Sy  are congruent only if n2 = n\ -  ( m -  l)(r j — r2).

We prove now the sufficient condition.
We have, Xi(Tf) = r\.(i — 1) +  (xj — 1).
Let < x i(T f) ,  x2(7^1), ..., X{(7^1) > be a corresponding partial mapping. 

The number of extensions of it to a partial mapping <  Xi(7^a), x2(7^1), ..., 
XiiTi1), Xi+iW+i) > equals [ni - r v ( m -  1)] -X ; +  1 .
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Similarly, the number of extensions of the corresponding partial mapping 
xfiT?), X2 (7?), •••, %i{T?) > to the partial mapping < x \(T f) ,  x2(7^), 
..., Xi{7,d), > equals [n2 -  r 2.(m -  1)] - x { +  1.

If n 2 =  ni -  (m -  l)(ri -  r 2), then [n2 -  r 2.(m -  1)] -X i  +  1 =  
it-1 —r \ ( m — 1) — Xi +  1, so it is the same as for the model Sy.  Since we can 

continue it changing i up to m, so N[a;i(7^)] =N[xi(7^2)]. Hence, the set of 
structural numbers for the model Sy  equals the set of structural numbers 
for the model Sy.  Therefore, the models Sy  and S y  are congruent. That 
finishes the proof.

□

C orollary 3.6.1 The table D that represents the structure of any model 
Sy  = < <  Ti >, 1 <i<m, % = {r.(z — 1) +  1, r.(i —1) +  2, ..., n - r .(m -z )} ;  
IV(i) given in (1.17); {/i}7; > is the DCM table.

Proof. The set {h}^  for r  =  1 is the full set of increasing choice functions. 
The structure of {h}^  is represented by the table DCM[(n — m +  1) x m]. 
Prom the above theorem we conclude that any model Sy  and the model 
< <  % >, 1 < i < m, Ti =  {r.(i -  1) +  1, r.(i -  1) +  2, ..., n -  r.(m — z)}; 
W  given in (1.17); {h}j-. > are congruent, where r — 1. Therefore, the 
structure of {h}ri is represented by the corresponding table DCM.

□

We have to emphasize that the models Sy  and Sy  are non—isomorphic. 
One can prove it observing that T.d C {1, 2, ..., ni} —U, while i f 2 C {1, 
2, ..., n2} =  y. Since n\ ^  n2, so | U |^ | Y  | . Then, there is not 
one—to—one mapping xf : U — > Y. Therefore, the models Sy  and S y  are 
non—isomorphic, indeed.

E xam ple 3.6.1 There are tables DCM that represent structures of ranked 
subsets of non-decreasing choice functions for the fixed values n = 12, m  = 
4 and for r = 0, r = 1, r  =  2 and r  =  3.
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DCM 
r  =  0

DCM 
r = 1

DCM 
r  =  2

DCM
r =  3

370 81 13 1
289 68 12 1
221 56 11 1
165 45 9 1
120 36 8 1
84 28 7 1
56 21 6 1
35 15 5 1
20 10 4 1
10 6 3 1
4 3 2 1
1 1 1 1

□
So, the collection of models Sy  = < <  % > ,  1 < i < m, % — {r.(i —1) +  1, 

r.(i — 1) +  2, n -  r.(m  — z)}; W  given in (1.17); {/i}t . > possess a 
hierarchical structure that is defined by subtables of the table DCM.

3.6.1 Tables D for monotonie choice functions with variable 
W

We are going to extend the result given in the previous section. Given is 
the system S y  = <  <  H i  >, 1 < i < m; W  given in (3.5); {h1} ^  >, where
T-i — { 1-1-02 +& 3 + . . . . + O i ,  1+02 +  a 3 + . . . .  +  fl» +1, ..., Il l  ~ a m ~ a m —1 — ---

n\ > ai +  02 +  ... +  am.

h(i) > h(i — 1) +  a;, a{ 6 {0,1,...}, where 2 < i < m (3.5)

Setting values Oj for each i we can model widely sets of non-decreasing 
choice functions { h } ^ .  Since (1 +  a2 +  a3 +  .... +  a*) > (1 +  a2 +  a3 +  
.... +  a^—r) and (ttj om_j a-m—l • ^¿+i) ™ (^i l —j ...
—ai+i — af), so the model is reduced and the Q property holds.

Let the representation model Sy —« %  >, 1 < i < m, % — {rs.(z -  
1) +  1, r 2.(i — 1) +  2, ..., n2 — r-2-(m — i)}; W  given in (1.17); {h2}ri > be 
given.

Proposition 3.6.1 The models S y  and Sy  are congruent i / n 2— r2.(m — 
1) n\ oni_i om_ i ... a2.

Proof. We have
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77. r= r?a -  an, -  O r , , - a ;_:  -  (1— an — 0-3 -  .... — a =
- '8 m -  Jbn~l ~  — —-«tefC — &■; —Oj_i — .... — .02— 1;
J ; j= Tin — tv.(to — . ' — rn — 1) — 1 =  7?n — rn.ijr. — 1)— 1;

We observe, the cardinals | 77, I .and j T ! are feed  for all indexed sets 
iRa and J .  1 <  7.< m.

If tiir models S} and 5? are congruent. then 77, =  71 .So.
f'.l On: On;-.’- — "C,._ O; Oj—X --- h2 - — X'; Om 8nt—'
—o:_ ; —n. — Cf_:; —....—m.—1  as th e  necessary condition far the congruence 
•of Sv and S f-. After obvious evaluations. we have-on— -m. to —1 - 7?.:  — o„. 
—on;- ; — —«3 is thsuecessary condition far the  congruence of the models.

Since < v  > . 3 <  i <  to. imd < 31 > .  H <  i < to are the minimal 
nan-deformed indexed families and since "S.. = . j 3} 1. .so for every x  that 

' V  £ 77;. we Shave £'U i.
Ler ,y he a partial duoice mappmg < cy '77 )̂. rmTTn)  oq-'TTb >.

while fo being the partial choice mapping < rr, "T 1. rg ( W •••• **(37) > - 
Easing oxi theirequfoemmt :3.n, the number afextensinns of J j  -toCcci (7Sb,)>
tasCRb)  ■*; '77.t’.. **4 : '77. ■ >  -equals 77: —s..  -while 'basing on the
Tequiraniein 7.17 th e ’number of extensions of. jo do <  x : (37). c g 'T ) .  ....

(J f) >  equals 31 : — ap. S y  induction on :1 we prove tha t the 
■number of exananrng; nff W to dull choice functions equals th e  :number - of 
extensions of ,/g to corresponding - full - choice functions. Hence, the entries 
of! the'tables ID for the model 3 |;  are trespeeti veiy equal to th e  entries of the 
tabic D  far the model 3f..

Therefore, the ¡systems S j r and Sj- are congruent iff and only iff tpt—
■75;(m—11) =  jxt — a„, -Q „^i —.... —an.

WfoimmiedMteiy get the following conclusion.
The structure of the -set p.-W if represented by the "table IDCMiu. m]. 

where v = -m— ttm —ftttn-n —ins■

Example 3;f>.2 -Jiaer. ¿situ model: 5; ■ = «  77,-- =  I.d.3-.  'ice —
io.M.b . 775== bbo.bl-. *57; = -f7.tg.lfi}.. 72-f,= S.S.I01 >? 1< r<5:~

W  : hyl > /ftfi —tt'i — -o5. 3 < f< 5. «2 — E, efc — 1. a ; =  3. 05 = 1; 
7-: si.. >

The tahieD for tins ease is as follows
; j UK ID c is a

DOM (3 x 5 =  5 41 3  2 a !..
¡j H a a. a  a  |
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3.6.2 The tables D for deformed families
Given is a model S f  =< < M i  > , 1 < i < m; IV given in (3.5); {h}Mi >, 
where A4j C  V i,  V i  =  { 1 +  a2 +  Q3 +  —  +  Oj, 1 ao + 0 3  +  — 
+°i +  1 , ni — am — am_i — ... — Qi+i}, n i > ai + 02+  ... +  am , 
max(A'ii) > max(yV(i_i) +  ai, min(.Mi) > min(A4i_i) +  ai, 2 <  i < m. 
One can show that the model is reduced and the Q property holds.

We are concerned with evaluation of the table D for the model S f .  
The models <  < V i >, 1 < i < m; W  given in (3.5); { h } ^  > and 
<< Ai > , 1 < i < m\ W  given in (1.1); { h } ^  > are congruent. Us­
ing this relation one can show that the models Sjj and S f  = < <  Vi >. 
1 £  i < m\ W  given in (1.1); {h}vx > are congruent, where V, C  A,.. 
max(Pi) > max(Pi_j) -f ai, min(7?i) > m i n ^ - i )  + ai, 2 < i < m.

It was shown that the table DDCM represents the structure of the set 
{h}pl . Hence, the table DDCM represents the structure of the set {/i},Mt . 
too.

Exam ple 3.6.3 Given is the representation model Su —< < M i  > . 
1 < i < m; W  given in (3.5); {h1} ,^  >» ‘where m =  5, M \  = {1, 2, 3}, 
M 2 = {3, 4, 5}, M 3 = {6, 7, 8, 9}, M 4 = {7, 8 , 9, 10, 11}, M 5 =  {10, 
11, 12, 13}, a2 = 2, a3 — 3, a4 =  1, 05 =  2. The task is to build the 
corresponding table D.

The models Su  and < <  Vi >, 1 < i < m ;W  given in (1.1);h € {hf-p, > 
are congruent, where Vi C A, =  {i, i 4-1, ■■■, n  — m +  1}, m =  5, n =  13. 
Vi = {1, 2, 3}, V2 =  {2, 3, 4}, V3 =  (3, 4, 5, 6}, V4 =  {4, 5, 6, 7, 8}, 
V3 — {6, 7, 8, 9}. The structure of the set {h}pi is represented by the 
following DDCM table.

51 33 14 4 0
28 19 10 4 1

DDCM[5 x 5] =  9 9 6 3 1
0 0 3 2 1
0 0 0 1 1

Hence, the structure of {hl }Mt is represented by the above DDCM table.

Similarly, we evaluate the tables D for the other models concerning mono­
tonic choice functions of deformed families.

3.6.3 Tables D for non-increasing choice functions
We used the term monotonie choice functions mainly in order to mean 
sets of non-decreasing choice functions. Nevertheless, we could also use 
sets of non-increasing choice functions. We will consider now' the relations
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between sets of non-decreasing choice functions and sets of non-increasing 
choice functions.

Given is the system Sy  —«  Ci >, 1 < i < m, Ci — {r.(m — i) +  1, 
r.(m  — i) +  2, n — r.(i — 1)}; W  given in (3.6); {h}^ > . The set { h } ^  
is the set of non-increasing choice functions.

h{i) < h(i — 1) +  r  (3.6)

The set {h}ri is the set of non-decreasing choice functions for the system 
Sy = «  % >, 1 < i < m, % — (r.(i —1) +  1, r . ( z - l ) + 2 , ..., n - r .( m - i ) } ;  
W  given in (1.17); {/i}^ > •

P ro p o sitio n  3.6.2 The systems Sy  and Sy  for fixed values n, r and m  
are isomorphic.

Proof. We have Ci  C  U  = {1, 2, ..., n}, % C Y  =  {1, 2, ..., n}, so 
U  =  Y.

Let ip : U  — > U  that ip(x) = n  — x  +  1, for every x  6 U,  while ip being 
identity mapping.

We observe that if{%) =  Ci.
We prove now that for every h\ G {h}cx, we have h? € {h}r( that 

ip(hx) = h2.
Observe, if h\ =< /ii(l), h i(2), ..., h\{m) >, then we have to have 

hi(i) < h\{i — 1) — r, 2 < i < m. Since ip(hi(i)) = h2{i) and \p(h\{i)) — 
n —h\(i) + l, so (h2(i—l)  =  n —/i i ( f - l )  +  l. Therefore, h2(i) > h2(i — l)+r,  
2 < i < m. Hence, the choice function h2 = ip(h\) belongs to {h}^ .  That 
finishes the proof.

□
C orollary  3.6.2 Every representation of a set of combinatorial objects 
by non-decreasing choice functions can also be transformed into the cor­
responding model concerning non-increasing choice functions.

Proof. Since for every model concerning a set of non-decreasing choice 
functions there is an isomorphic model concerning a set of non-increasing 
choice functions, so a set of combinatorial objects modeled by a set of non­
decreasing choice functions can also be modeled by a set of non-increasing 
choice functions.

□

3.7 The tables D for choice bijections

Given is the model Su —«  £i >, 1 <  i < m, Si = {1, 2, ..., n}; 
W  =  (1.19); {h}f\ >, so the set {h}ei is the set of choice bijections.
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T heorem  3.7.1 The table D corresponding to {h}ci is regular.

Proof. Let S'v  = «  £[ >, 1 < i < m  + s, £■ = {1, 2, ..., n + <?}; 
W  = (1.19); {h'}s'. >  be a related representation model.

We consider a partial mapping < h ( l ) , h(2), ...., h(k) > for the model 
Su- The number of extensions of this partial mapping to a choice function 
h £ {h}si equals (n — k).(n — k +  l)....(n — m  + 1).

Correspondingly, < h' (1), h'{2), ...., h'{k + s) > is a partial mapping 
for the model S'v . The number of extensions of this partial mapping to a 
choice function h' € equals ((n +  <?) — (k + s)).((n + q) — (k + s) + 1).
...((n 4- q) -  (m +  s) + 1).

We have (n — k).(n — k +  1).... (n — m +  1) =  ((n +  q) —(k + s)).((n +  q) 
—(k +  s) +1). ...((n +  q) — (m +  s) + 1) if and only if q = s. Then, D[j, 
i] + s , i  + s]- So, the table D that represents the structure of the set
{h}si is regular. That finishes the proof.

□
If n =  m, then {h}si represents the set of permutations. The correspond­

ing table D we denote by DP.
The entries DP[fc, i] can be evaluated by an instance of the parallel for­

mula (3.4) as follows: DP[fc, i] = (n — i)!, 1 < k < n. For development 
of the instance of the sequential formula (3.3), we observe that DP [A;, 
i] =  (n — f).DP[/c, i + 1] or DPffc, i\ — ¿ p(£,)£ i.DP[p, i +  1], where 
| Z* | = n - *  +  l.

For instance, if n = 6, we have the following DP table.

120 24 6 2 1 1
120 24 6 2 1 1
120 24 6 2 1 1
120 24 6 2 1 1
120 24 6 2 1 1
120 24 6 2 1 1

If m  < n, then {h}st represents the set of variations, the corresponding 
table D we denote by DV.

Let the table DCM[u x m] be given, where u = n — m + 1.
The table DV, we evaluate using the following formula

DV[z, j}= DCM[l, j].DP[*, j], (3.7)

where 1 < i < n, 1 < j  < m. Correctness of the formula (3.7) one can 
prove by considering the elementary properties of permutations.

Exam ple 3.7.1 For n =  9 and m  — 5, we have the table DV\9 x 5].
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1680 210 30 5 1
1680 210 30 5 1
1680 210 30 5 1
1680 210 30 5 1
1680 210 30 5 1
1680 210 30 5 1
1680 210 30 5 1
1680 210 30 5 1
1680 210 30 5 1

□
Another method for evaluating the entries of the table DV can be done 

using the following instance of the sequential formula (3.3):

DV[fc,i] =  DV[fc, i +  l].(n — f), 1 < i < m  — 1, k < n (3.8)

The formula (3.8) is simpler than the formula (3.7). Nevertheless, the 
formula (3.7) is an instance of the parallel formula (3.4).

3.7.1 Symmetric subsets of bijections
Given is the representation model Su = < <  Ci >, 1 < i < m, Ci C {1, 
2, ..., n}-,W given in (1.19); {h}ct > that is reduced and the Q property 
holds. For the model Su  the symmetry of the set {/i}c; depends on the 
indexed family < C¿ >, 1 <i<m. Therefore, the table D for representing 
the structure of {/i}c, does not exist for all the models Su  satisfying the 
general formula.

E xam ple 3.7.2 For the following family < Ci >, 1 < i < m, the set {h}c{ 
is symmetric.

C\ =  {1,2} , C2 =  {3,4} , C3 =  {5} , C\ — {1,2,3,4} , C5 =  {1, 2,3,4} .

We list the choice functions as permutations, so the set {h}<r is repre­
sented by the following set of permutations {13524, 13542, 14523, 14532, 
23514, 23541, 24513, 24531}. Observe if hx : 1 — * 1 and h2 : 1 — »2, 
then the number of their extensions equals four. For partial mappings 
h\ : 1 — ► 1, 2 — v 3; h2 : 1 — * 1, 2 — * 4; h3 : 1 — >• 2, 2 — ► 3; 
/14 : 1 — * 2, 2 — > 4 the numbers of their extensions equal 2. For each
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partial mapping h of the subfamily < Ci >, 1 < z < 3 the number of its 
extensions equals two. For each partial mapping of the subfamily < Ci >, 
1 < i < 4 the number of its extensions is one. Therefore, the set of choice 
functions {h}c; is symmetric.

□
E xam ple 3.7.3 For the following deformed indexed family < Ci>,  1 < 
i < 5, the set {h}c4 is not symmetric.

C\ — {1,2} , C2  =  { 3 , 4 } ,  C3 =  { 5}, C4 =  {1,2,3} , C5 =  {1,2,3,4>

{h}Ci = {13524, 14523, 14532, 23514, 24513, 24531}. One can observe 
asymmetry of this set noting that for f \  : 1 — > 1, 2 — > 4, 3 — » 5 we have 
two extensions 14523 and 14532, while for f 2 : 1 — ► 1, 2 — > 3, 3 — *■ 5 
there is only one extension 13524.

□
T heorem  3.7.2 The set of choice bijections {h}ci of the model Su is sym­
metric if  and only if, for each two indexed sets Ci, Cj there is CiH Cj =  Cj 
or CiO Cj = Ci or Cif) Cj = 0.

Proof. Let < Ck >, 1 < k < i — 1, be any subfamily of the indexed family 
< Ci >, I < i < m  that the assumption holds.

Suppose, f \ ,  f 2 are two partial mappings of the subfamily < Ck >, 1 < 
k < i — 1, such that f \ (k )  = f 2{k) for k ^  j  and f i{k) ^  f 2(k) for k = j. 
Let /  denote the partial mapping which is the common part of f i  and f 2, 
while C D f  being the codomain of / .  We denote by p\ and p2 extensions 
°f f i ,  h  f°r the subfamily < Ck >, 1 < k < i, respectively. If ¿¿fl Cj = 
Cj, then the number of extensions pi equals | Ci — C D f — { /i(j)}  |, while 
the number of extensions p2 equals | Ci -  C D f — { f2{j)} \ . If Cifl Cj =  0, 
then the number of extensions p\ equals | Ci — CD f  |, while the number of 
extensions p2 equals | Ci — CD f  | . Therefore, the number of extensions 
Pi equals the number of extensions p2. If it is satisfied for every par j, i 
of indices such that j  < i and i < m, then the numbers of extensions of 
/land  f 2 onto choice functions h € {h}Ci of the indexed family < Ci >, 
1 < i < m, equal. That proves sufficient condition.

For proving necessary condition, we take two choice bijections li\, h2 G 
{h}cfc) 1 < k < m, such that /ii(fc) =  h2(k) for k ^  i and k ^  j  and 
h\(k) ^  h2(k) for k = i or k — j. Let /  denote the common part of h\ and 
h2, i.e., the partial mapping, where hi(k) =  h2(k). Then, the number of 
possible extensions of /  to choice functions h G {h}ck equals | Cj — C D f  — 
{h\(i)} | or it is equal to | Cj  — . C D f  — {h2(i)} |, respectively. We have
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I Cj -  C D f  -  {M*)} I =  I Cj -  C D t  -  {/i2(i)} I only if {{hx{i) € Cj -  C D f)  
and (h2(i) G Cj -  CD /))  or ((/ii(i) g Cj -  CD f)  and (,h2(i) £ Cj -  CD*)). 
That happens if C,fl Cj =  Cj or C,-n Cj = Ci or C,n Cj =  0. Hence, the 
necessary condition is proved.

□
Consider now the table DS that represents the structure of symmetric 

subsets of bijections. The indexed family < Cj > satisfies conditions speci­
fied in Theorem 3.7.2. We denote by d, the number of indexed sets Cj such 
that Cj Ç Ci, 1 <  j  <  i — 1. If assumption of Theorem 3.7.2 holds, then 
Cn =  {1, 2, ..., n}. For each value k < n, we have DS[fc, n] =  1. The entries 
DS[fc,i], 1 < i < m  — 1, can be evaluated by (3.9) starting from m — 1 
downto 1.

DS[fc,t] =  DS[fc,i + l] .( j  Ci.fi | — di+i), l < i < m  —l , f c <n  (3.9)

E xam ple 3.7.4 For the following indewed family C\ =  {1,2}, Co — {3,4}, 
C3 =  {5,6}, C4 =  C5 =  {1,2,3,4,5,6}, we have the corresponding table DS.

24 0 0 2 1
24 0 0 2 1
0 12 0 2 1
0 12 0 2 1
0 0 6 2 1
0 0 6 2 1

□
If we have the table DS, then specification of the indexed family is not 

needed since the table DS alone represents the full model.
If Theorem 3.7.2 were used for testing symmetry of a given indexed family 

and if we assume that the operations on a set have asymptotic complexity 
0 (1), then the complexity of the corresponding algorithm would be 0 (m2).

3.7.2 Bijections piecewise non-decreasing
There are given numbers k \y ko, ..., km that k\ + ho + km = n. The 
set of indices {1 , 2, .... n} is distributed into rn blocks I\, D, such 
that I.  — {&i -p ko ~r ... -p kz—\ “h 1, k\ ~r ko 4“ ... -r kz~\ 4- 2. ..., 
ki 4- ko 4- ... 4- kz—1 4- k . }. We use the following requirement IV.
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h(i) > h(i -  1) +  r  for every i , i  — 1 G Iz , 1 < 2 < m, r > 0 (3.10)

We are concerned with the model Su  =

«  % > ,1  < i < n,Ti Ç {1,2, ...,n}; W  see (1.19); W\ see (3.10); {h}Ti >,
(3.11)

see (2.39).
We remind here that satisfiability 1.19 means that h e  {h}ri is the choice 

bijection.

P roposition  3.7.1 The set of choice functions is symmetric for
each enabled value r.

Proof. Suppose, r  =  0.
Then, for each set of indexes Iz we have to represent the set of monotonie 

partial mappings hz : I z — > {1, 2, ..., n} -  C D 1 -  CD2 -  ... -  CDZ~*}, 
where C D 1 is the codomain of the partial mapping h\ and so on. Since, the 
cardinal | {1, 2, ..., n} — C D 1 — CD2 — ... — CD Z~1} | is fixed, so the set 
of partial mappings { h.}  is symmetric. Then, the partial mapping h(l), 
h{2), ..., h{k\ +&2 +  ... + kz) is concatenation of the partial mappings < hi, 
h-2, ..., hz >. The number of extensions of the partial mapping < hi, h^, 
..., hz >  to the partial mapping < h\, /i2, ..., hz+ï > depends only on 
values I {l, 2, ..., n} — C D 1 — CD2 — ... — CDZ} \ and m. That holds for 
each z : 1 < z < m  — 1. Therefore, the set {h}-^ is symmetric for r =  0. 

Let now r  ^  0.
We conclude basing on Proposition 3.6.1 that for each model S f  = «  

T i > , i e  Iz - W  given in (3.10), where r  =  0; {/{r, > there is a congruent 
model Sfj = < <  % >,i e Iz ; W  given in (3.10), where r  > 0; {/}r, > • 
Hence, symmetry of the model Su  with r = 0 implies symmetry of a model 
with r ÿi 0, Therefore, the given model Su possess symmetric set {h}?, for 
the enabled values of parameters n, m  and r. That finishes the proof.

□

3.7.3 Table DBM

The structure of the sets of choice functions {/i} j-. is represented by the 
tables DBM[n x n],

m, be
a subfamily of the family < 7 ) > ,  1 < i < n, while / 2_ 1 denotes a partial 
mapping for this subfamily. Then, each choice function h G {h }^  can be 
seen as concatenation of the partial mappings < f i  , / 2 , ..., /*_ 1 > .
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Each codomain of f z- \  is denoted by CDZ~1. Since f z : / ,  — > {1, 2, 
n}— C D 1-  CD2-  ... — CDZ~X}, so for the fixed < f i  , fo , ■■■, f z -1 > 
the structure of the set of all the choice functions { f z} is represented by 
the table DCM[u- x kz], where u = | {1, 2, ..., n}— C D 1— CD2— ... — 
CD Z~1} | —k~ +  1. One observe it by noting that f z is the increasing 
choice function for the subfamily < % >, {k\ +  fc2 +  ... +  /c-—i +  1) < i < 
(fcj +  fc2 +  ... +  k~). Since each partial mapping < f \  , h  , ..., f z > has to 
be extended to the full choice function < f \  , f i  , fm  > of the indexed 
family < % >, 1 < i < n, so instead of table DCM[u~ x kz] we have to have 
a table DBM1 [uz x kz] that represents the numbers of extensions of each 
partial mapping < , / 2 ,..., /~_i , f z {k\+k2+ ...+kz_1+l), f z(kx+ k2 +
... +  kz-1 +2 >, ... f~(i) > to the choice functions < h(l), h(2), ..., /i(n) > . 
That number is DBIVI~+1 [Z, ki + k2 + ... + kz+i + l] times greater than 
the entry DCM[x, x ¿]. Hence, in order to get the table DBM'[w; x Aa] we 
have to multiply the table DCM[u- x kz} by 'DBM~+1 [i, ki +  fc2 +  ... 
+Aa+i +  1].

Basing on this observation, we evaluate the table DBM starting from 
DBMm down to 1. The table DBM[(n — k\ +  1) xn] =  | DBM1 [(n — ki +  1) x 
k\], DBM2[(n-A;i-A:2+l)xA:2] , ..., DBMm[(n -fc j-fc2- .. .  -  km+ l ) x k m] |. 
Observe, that table DBMm[(n — k i— A-2 — ... — km +  1) x fcm] |=  DCM 
[(n —k \— ko — ... — k„j +  1) x km] | . If a subsets represented by tables 
DDCM or W(1.5)DCM or any other table are concerned, then the general 
procedure for evaluation of the table DBM requires only replacement of the 
table DCM by the proper one.

We have the algorithm TABDBM for making the table DBM[n x n].

Algorithm TABDBM( TABle D for Bijections piecewise Monotonic) 
Input: the model Su = (2.39), n, m, kx, fc2, ..., km 
Output: the table DBM'[n x kz]2
Method: The table D~[u- x kz] is the table DCM~ [uz x kz] or the table 

DDCM'fiij x kz] or the table W(1.5)DCMi:[u- x kz] or any other table for 
increasing choice functions.

1. Make the table D '[n x kz] for each set of indices Iz , 1 < z < m, .
2. DBMm[um x km] <—  Dm'[um x krn]
3. for 2 •!—  m  — 1 dow nto 1 do
3.1. dz+ l ^ j D B M - ' f / ,  1]
3.2. DBM-'[u_- x kz] *—  dz+1.Dz[uz x kz]
4. DBM[n x n] <— < DBM1 [u! x ki], DBM2[ui x fc2], ..., DBMm[um x 

km] k'
5. re tu rn  DBM[n x n]

■’T he size n  x  n  is m axim al for the tab le  DBM . We get it if m  =  n , so fcj =  fc2 =  •• =  
kn — 1*
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The table DBM can be computed in time 0 (n 2). The size of table DBM 
can be reduced at least to DBM[uj x n] for non—deformed families < 7} >, 
1 <i<n, where ui = n —ki+1. If we use a deformed family < T /  >,1 <i<n, 
instead, then the size of DBM can be even more reduced. Therefore, the 
table DBM can be computed in time 0(ui.n).

Exam ple 3.7.5 The set {1, 2, ..., 10} is to be divided into 4 blocks whose 
cardinals are as follows \Bi |=  4, \B2 |=  2, \B3 |=  3, \BA j= 1. Compute the 
table DBM for representing the full set of the corresponding decompositions.

The tables D~ are the corresponding tables DCM* \uz x n]. Since the 
table D1 has 7 non 0-rows, therefore the size of the table DBM can be 
reduced to 7 x 4.

DJ[7 x 4] =

84 28 7 1 5 1
56 21 6 1 4 1
35 15 5 1 3 1
20 10 4 1 , D2[7 x 2] = 2 1
10 6 3 1 1 1
4 3 2 1 0 0
1 1 1 1 0 0

D4[7 x 1]

D3[7 x 3]

£¿3 =  3 +  1 =  4, d2 = 20 +  16 + 12 +  8 +  4 =  60 
DBM[7 x 10] <=DBM 1[7 x 1], DBM2[7 x 2], DBM3[7 x 3], DBM4[7 x 1] =

4880 1680 420 60 20 4 3 2 1 1
3360 1260 360 60 16 4 1 1 1 0
2100 900 300 60 12 4 0 0 0 0
1200 600 240 60 8 4 0 0 0 0
600 360 180 60 4 4 0 0 0 0
240 180 120 60 0 0 0 0 0 0
60 60 60 60 0 0 0 0 0 0

□
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3.7.4 Table DPM
Let K  C I  that K  — {1, k\ +  1, k\ +  A;2 H- 1, k\ -f- A;2-|- ...+Arm_i -f- 1}.

Given is the model Su = «  M  >, 1 < i < n\ W  given in 2.36; {h}//i > 
as specified in 2.44, i.e., A/j =  % for i £ K , and A4 — min(l4) for k € K, 
where Uk - { 1 ,2 ,  ..., n} -  CD 1 -  CD2-  . . . -  CDk~K

The set { /i}^ is the set of bijections piecewise non-decreasing except we 
have assertion that the choice partial mappings for the subfamily < A4 >, 
k £ K  are the increasing choice functions. The table D that represents 
the structure of {/i}^ is a case of the table DBM. Because the considered 
model represents a class of set partitions, we denote this table with separate 
symbol DPM. Since A4 =  min(t4) for k 6 K, so each k—th column contains 
only one entry D[l, A:] different from zero, while the other entries D[j, k} =  0, 
j  ^  1. The following algorithm TABDPM produces the table DPM.

Algorithm TABDPM( TABle D for representing Partitions by piecewise 
Monotonic choice functions )

Input: the model Su  given in (2.39), n, m, ki, k-2, ..., km
Output: the table DPMs[n x A:.]
Method: We use the tables DDCM5[u, x Ax] for each partial mapping 

hz.
1. Make the table DDCMr [n x A:-] for each set of indices I. ,  1 < 2 < m,

2. DPMm[um x km\ DDCMm[um x km)
3. for 2 *—  m  — 1 dow nto 1 do
3.1. DPM*[uz x kz\ DPMI+1[1, l].DDCM~[uz x kz)
4. DPM[n x n] <—  < DPM1 [ui x kx], DPM2[k! x A:2], ..., DPMm[um x 

km] ^
5. re tu rn  DPM[n x n]

Since we do not need to evaluate the sums of entries dz+1 =  1^(41 DBM" [I,
1], so time complexity is slightly lower than for the algorithm TABDBM.

E xam ple 3.7.6 Given are n = 10, k\ — 4, AC2 =  2, A;3 =  3, k4 =  1. Make 
the table DPM that represents the corresponding set of partitions.

We have the following tables DDGMs [uz x Ac*].

DDCM1 [7 x 4]=

84 28 7 1 5 1
0 21 6 1 0 1
0 15 5 1 0 1
0 10 4 1 , DDCM2 [7 x2] = 0 1
0 6 3 1 0 1
0 3 2 1 0 0
0 1 1 1 0 0
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3 2 1 1
0 1 1 0
0 0 0 0
0 0 0 , DDCM4[7 x 1] = 0
0 0 0 0
0 0 0 0
0 0 0 0

DDCM3[7 x 3]

d4 — 1, d3 =  3, d2 = 5 
The maximal size has the table DDCM1^  x 4], so the size of the table 

DBM is [7 x 10].
Then,

1
0 
0 
0 
0 
0 
0

DPM4[7 x 1] =  l.DDCM4[7 x 1] = ,DBM3[7 x 3] =  l.DDCM3[7 x

3] =

DPM

3 2 1 5 1 15 3
0 1 1 0 1 0 3
0 0 0 0 1 0 3
0 0 0 , DPM2[7x2] =3.DDCM2[7x2] =  3. 0 1 = 0 3
0 0 0 0 1 0 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0

M7 x 4] =  15.DDCM1[7x 2] =
84 28 7 1 1260 420 105 15
0 21 6 1 0 315 90 15
0 15 5 1 0 225 75 15

15. 0 10 4 1 = 0 150 60 15
0 6 3 1 0 90 45 15
0 3 2 1 0 45 30 15
0 1 1 1 0 15 15 15

DPM[7xl0] =<D PM 4 7x1], DPM2[7x 2], DPM3[7
1260 420 105 15 15 3 3 2 1 1
0 315 90 15 0 3 0 1 1 0
0 225 75 15 0 3 0 0 0 0

= 0 150 60 15 0 3 0 0 0 0
0 90 45 15 0 3 0 0 0 0
0 45 30 15 0 0 0 0 0 0
0 15 15 15 0 0 0. 0 0 0

□
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3.8 Conclusions
We have shown that the structure of the sets of choice functions can be 
specified by the tables D. The methodology developed here makes new 
contribution to understanding the structural numbers and especially the 
Stirling’s numbers. We have shown that the class of sets of combinatorial 
objects that can be represented by Stirling’s like tables is much wider than it 
was classically investigated. We have shown relations between the tables D 
of distinct classes of the representation models. The concept of congruence 
of models developed on the basis of the canonical form of choice functions 
has valid applications as to development of the representations of a given 
set of combinatorial objects by distinct classes of unranking models. The 
most important applications of the tables D will be studied in next chapters 
for development of ranking representation methodology.



4
Ranking representation models

4.1 The rank and rank range

Given is unranking representation model Sy = < <  Gi >, i € I, Gi C U\ 
W] {h}gi > . The sets I  C  {1, 2, ..., m} and U are ordered increasingly 
with <: and < w, respectively. The pair of orders (<u , < r) generates the 
lexical order of the codomains of the choice functions. Since each choice 
function is uniquely assigned to its codomain, so the pair of orders (<u , 
< r ) generates the lexical order of the choice functions {h}gi as well. The 
lexical order of the choice functions is denoted by <h or simply by < . 
Replacing the increasing order <u by the decreasing order >u , we generate 
the anti—lexical ordering the choice functions {h}gi that is denoted by ’>h' 
or simply by ’> ’. The orders '<h ’or ’> h’ or other linear orders determine 
the ran k  of each choice function R(h), i.e., the number corresponding to 
the position of a given choice function h G {h}g . in the string of all the 
choice functions {h]gi ordered, respectively. For the following part of this 
text we use the lexical ran k  according to the lexical order '<h\  however, 
the a n ti—lexical ran k  ’>h’ could also be used.

We are concerned now with the pair M  = <  Sy, '<h,> .With denotation 
’R({/i}) in R(h)' or if it does not make ambiguity with /?({/i}), we mean 
the set of all the ranks of the set {h}g.. We call /?({h}) the ran k  range 
in R(h) or simply the rank range R({h}). Let {h1} be a subset of {h}gx.

D efinition 4.1.1 The rank range of a subset {h'} C {h}gi in R(h), de­
noted by ’i?({/F}) in R(h) is the set of the ranks of all the choice functions 
h! G {/i'} in R{h).
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D efinition  4.1.2 We say that a given rank range i?({/i'}) is continuous in 
R(h), i f  R(h') G [R(h^ in), R{h'max)], where R(h'min) denotes the minimum 
rank of a choice function h' G {/i'}, while R(h'max) denotes the maximal 
rank of a choice function h' G {h'}.

Observe, the continuity of the rank range ’R({h'}) in R(h)' is a relative 
notion dependent on the model Sjj. If the model S'v  —«  G'i >, i G / ,  
G'i C U\ W\ {h'}g', > were chosen that {h1} =  {h'}g>., then the rank 
range 'R({h'}) in R(h'Y would equal {1, 2, | {/i'} |}. So, the rank range
’jR({/i'}) in R(h')' would be continuous, independently from discontinuity of 
the given rank range ’R({h'}) in R (h)\  For a more general case a continuous 
rank range can be specified with R({h'}) = {R{h'm]n), e), where e is the 
cardinal | {/i'} | .

If a given subset {/i'} is not continuous in R(h), then it can always 
be split into a number of disjoint subsets {/ij}, {h2}, ..., {h'z} that the 
corresponding rank ranges R{{h[}), R{{h'2}, ..., R({h'z} are continuous 
in R(h). Then, the rank range R({h'}) can be specified with R({h'}) = <  
W ' m i J i .  ei). {R {h m \n h , e2), {R{h'min)z , ez) > . The continuous 
subrange (R(h 'min)p, ep) we denote also with R({h'p}), 1 < p < z.

D efinition  4.1.3 The rank range i?({/i'}) is e— continuous in R(h) if
R({h'}) =  <  ( R i h ^ h ,  ei), ( R V C i n h ,  c2), (R(h'mi„)z, ez) >  that ea
=  e2 — ..., — ez — e.

D efinition 4.1.4 The rank range /?({h'}) is z —tuple in R(h) if R({h'}) = 
<  Wmin)i> ei)> (R(h'mi„)2, e2) , ..., (R{h'm- J Z) ez) > and if each subrange 
-R({/lp})> 1 < P < z ,  is isolated, i.e., R{h'min)p > R(h'max)p- i  + 1.

If the rank range R({h'}) is e—continuous in R(h), then

R({h'}) - <  (R(tim. J u e),(R(h'mJ 2, e ) ,..., (R(h'min)z , e) > . (4.1)

Given is the following hierarchical unranking representation model
f J  =  {1,2, t < m,
{ «  Gj >, j  € J; Wj; { / } s, >, see (1.23).
[ < <  Gi >, 1 < i < m ; W ; h G {h}gi >,

The requirement Wj  is a restriction of the requirement W, while the 
indexed family <  Gj > ,  j  G J; is a subfamily of the family <  Gi > ,  
1 <  i < m, that Gi — Gj for every j  — i. Then, ’<R  is the lexical order of 
the partial mappings /  that is generated by the pair of orders (< J , <u ), 
i.e., ’< / ’ is a restriction of '<h\  With denotation R (f)  we mean the rank 
of /  according to <J, while the rank range of the set { f}g  is denoted with 
’* ({ /} ) in R ( f ) \

Let { / '}  C { f} g j , while {h'} being the set of all the extensions of { f } g j  ■ 
With denotation h[ we mean an extension of f i , while h'2 being an extension 
of / 2. Since all the partial mappings {f}g,  are the choice functions of one 
indexed subfamily < Gj >, i G J  of the family < Gi > , i G / ,  so for any
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pair {fa, fa) the sets of their corresponding extensions {h[ } and {hr,} are 
disjoint.

Lem m a 4.1.1 For the hierarchical system defined in {1.23), we have R (f i)  
<f R{fa) implies R(hfa <h ii(/i2).

Proof. The choice functions f \  and fa are prefixes of the choice functions 
hi and fa. For the lexical order <h of the choice functions the greater rank 
of the fixed length prefix implies the greater rank of the corresponding 
choice function h.

□
We observe that if the assumptions given in (1.23) do not hold, then 

”R{fi) R{fa) does not imply R(hi) <h R{fa)'\ in general.

Lem m a 4.1.2 For the hierarchical system given in {1.23) the rank range 
R{{h'}) is continuous in R{h) i f  and only if the rank range R {{ f '} )  is 
continuous in R{f).

Proof. We are concerned now with the sufficient condition.
if)
Suppose, | { / '}  |=  1. Then, the set of choice functions {h'} is a subset 

of {h} possessing the common prefix / ' .  Therefore, the rank range R{{h'}) 
is continuous in R{h) .

{ii)
Suppose, now | { / '}  |>  1. Then, for each / '  G { / '}  the set of the 

corresponding extensions possess the continuous rank subrange R{{h'}) in 
R{h).

Since R {{ f '} )  is continuous in R{f),  so for every f {  G { / '}  there is 
fa' G {fa} that R(fa) =  R(fa) +  1.

With denotation h[ max, we mean the choice function being the extension 
of fa  that R{h'imax) is a maximum in R{h), while h'2 min is an extension 
of fa  that R{h2min) is a minimum in R{h). Then, we have R{h2min) = 

max) +  1.
Since R{fa) = R{fa ) + 1 holds for every f  G { / '}  but f a &x! so R{{h'}) 

is continuous in R{h) , where f f ,RX € { / '}  and R{ is maximum. So,
the sufficient condition is proved.

We are concerned now with the necessary condition.
If the rank range R {{ f '} )  is not continuous in R{f), then there exists a 

pair ( / / ,  fa) of the partial mappings belonging to { / '}  that R{ fa) < R{fa) 
and for any other fa  G {fa} we have {R{fa) < R{ fa) and /? ( / ')  < R{ fa)) 
or {R{fa) > R{ fa) and R{fa) > R{ fa)). Therefore, R{fa) > R{f[) + 1. 
Hence, R{h'2m\n) > R {h\max) +  1. Then, the rank range l?({/i'}) is not 
continuous in R{h). So, discontinuity of the rank range /? ({ /'} ) in R{f)  
implies discontinuity of the rank range R{{h'}) in R{h). That finishes the 
proof of necessary condition.
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□
Given are indexed families < Q'i >, i € /  and < Qi > , i G I.

D efinition  4.1.5 The indexed set Q'i, is a compact subset of the set Qi if 
Q 'i =  {xmin(^n)^' J:max(^!i)} ^ a t  xg in > xmin and x(nax < xmax, i G I,
i.e., the indexed set Q'i1 contains a number of consecutive elements of Qi.

If every set Q'i is a compact subset of Qi, then the indexed family < Q'i >, 
i € I  is a compact subfamily of the family < Qi > , i € I. We say that the 
indexed family < Q'i > , i € I  is a compact subfamily of the family < Qi >, 
i € /  for a single j  € I  if x'min > xmin or x(nax < xmax, while for every i ±  j  
we have Q'i = Qi.

Lem m a 4.1.3 I f  < Q\ >, i € I  is a compact subfamily of the family 
< Qi >, i G I  for a single index j, then the rank range R({h'}) is continuous 
in R(h).

Proof. The model < <  QI >, i £ I ; W; {h}gi > is equivalent to the hier­
archical model given in (1.23) that j  — t. Then, the rank range R ( { f  
is continuous in R(f).

Therefore, basing on the previous lemma we have the rank range R({h'}) 
is continuous in R(h).

□

4.2 The ranking model
If for a given unranking representation model Su  exists the table D, then we 
can develop very special methods concerning evaluation and the generation 
of the choice functions and their ranks. That happens since the table D 
contains important information concerning the rank and the rank range. 
In order to emphasize that our concern is related to the models Su  for 
which the table D exist, we investigate a ranking representation model as 
follows:

D efinition  4.2.1 The ranking representation model S r for symmetric sets 
{h}gi is the following object < Su', ’<h table D, > .

The order '<h' determines the rank R(h), so the rank R(h) and the 
rank range f?({/i'}) are components of the ranking representation model, 
however they are not the independent components, therefore we do not 
specify them in the above definition.

Given is the ranking representation model S r  =  <  Su', table D, 
>, where Su  =  < <  Q'i >, * € I  ; W; {h}gi > . Let {h'} be a subset of 
choice functions of the set {h}gi such that {/i'} =  {h'}g>, where {h'}g’
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is the set of choice functions for the model S'v  — «  Q[ >, i E I  ; W ; 
{h'}g>. > . The indexed family < Q[ >, i E /  , is a subfamily of the indexed 
family < Gi >, i E I  such that for the set of indexes J  =  {¿1, i2, 
iq], J  C I  we have Cq C Gip, iP E J  and Q[ is a compact subset of 
Giq, i.e., x ‘ {g iq) E Q'iq, where < lin < x' < x'max, w h i l e . f o r  
Zmin < X < z max; x'min > xmin or x'max < x max. With denotation ]CyD b. 
iq] we mean the sum of entries of the table D that y{Giq) € G[q and the 
value h'{iq) = y{G'iq) is enabled for the choice functions possessing a fixed 
prefix h'(l), h!{2), h'(iq — 1). Since the enabled values h'{iq) = y{G[ ) 
can differ for each valid prefix h'{ 1), li'{2), h'{iq -  1), so we denote by 
X)yfcD[?/fc, iq] the sum of the enabled entries for the k — th valid prefix. Let 
Sy be the unranking representation model for all the prefixes li'{ 1), h'{2), 

h'(iq -  1), i.e., S'{j — «  Q" >, i E I '  ; W; {h"}g» >, where / '  =  {1, 
2, ¿<7- 1} and Q" — Q[ for each i E J  while Q" =  Qi for each i E I'  and
i £ J.

P roposition  4.2.1 I f  the above given assumptions hold, then the rank 
range R{{h'}) = < (R(h'min)u  ej), (R{h'min)2, e2), ..., (R{h'min)z , ez) >, 
where ek = Y fykD[yk, iq] and z = | {ti '}g» \ .

Proof. We observe that for the k — th  prefix /i'(l), h'{2), ..., h'{iq -  1), 
we have a set of choice functions {h'}k that take values h'(iq) E Giq and the 
corresponding rank range is continuous in R(h). Therefore, for the set of 
choice functions {h'}k , we have the corresponding component (R{h'min)k, 
ek) of the rank range. The set of choice functions {h'} can be given by 
the form {h'} = {/i'}i U {h' } 2 U ... U {h'}z, hence, ek = | {li'}k \ . Basing 
on the definition of the table D we can write ek — J2yk{D(yk, iq)), where 
Vk(Giq) € Q\ and the value h'(iq) = yk{G[ ) is enabled for the given prefix 
h'( 1), h'(2),9..., h'(iq -  1).

We observe that the choice functions for each prefix h'( 1), h'(2), ..., 
h'{iq — 1) are represented by isolated continuous rank range {R{h'min)k, 
ek). Hence, the number 2 equals the number of all the prefixes h (2), 
..., h (fg—1). The number of all the prefixes h'(l), h'{2) , ..., h (z9 — l) equals 
the number of choice functions {h' )gg for the model Sy.  That finishes the 
proof.

□
If the set of choice functions is symmetric for the model Sy,  then

we can create the ranking representation model S'f = < Sy, <h, table 
D”> . Then, 2 =  ]̂> *-e-! 2 equals to the sum of all the entries
of the first column. Depending on the type of choice functions modeled 
the general formula ek = 'ffjykR>[yh, iq) takes a form more suitable for 
evaluation. For instance, if the increasing choice functions are concerned,
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then we can use the form T '*"“, D[x, zJ, where ^ ¡„ ({^  ) is the minimum
min ^

value for h'(iq) that can be taken for a prefix h'(2), h (iq — 1).

E xam ple 4.2.1 Given is the model Su = «  Ai for n  =  8 >, 1 <  i <  4, 
; W  given in (1.1) ; {h}gi > and the unranking model S'v  —«  Vi >, 
1 < i <  4, ; W  given in (1.1) ; {h'}pi >, where V\ — {1, 2, 3}, Vi — {2, 3, 
4, 5}, Vs =  {3, 4, 5, 6, 7}, V{ =  {4, 5, 6, 7, 8}. The task is to specify the 
rank range R({h'}) in R(h).

We observe that the indexed family <Vi >, 1< i < 4, is a subfam­
ily of the family <  Ai >, 1< i < 4, where J  — {1, 2}. Then, the set

table D”>  as 
1

{/)'} is symmetric. We have the model S'f = < S'fj, <

follows: Sy  = « V i  >, i — 1, W, {h"}pi >, table DCM” —

z =DCM” [1, 1] DCM” [2, 1] +  DCM” [3, 1] = 
' 35 15

. Then,

have the following DCM table DCM=

3. For the model Su  we 
5 1

20
10
4
1

10
6
3
1

Then, the concerned rank range is as follows 
R({h'}) =  < (H(/iTn) 1; ca), (R(h'minh ,  e2), W h 'min)3, e3) > - The 

ranks R(h'min)i, R(h 'min)2, R[h 'mia)3 are the ranks of the choice functions 
< 1, 2, 3, 4, 5 >, <  2, 3, 4, 5, 6 >, < 3, 4, 5, 6, 7 > , correspondingly. We 
evaluate e1: e2, c3 basing on the entries of the DCM table: 

ei =  Dfz, 2] -  Ex=iD[x, 2] -  DCM[1, 2] +  DCM[2, 2] +
min

DCM[3, 2] +  DCM[4, 2] =  15 +  10 +  6 +  3 =  34. 

=  E x b  T>[m, 2] =  E*=2D [z> 21 =  DCMi2, 2] +  DCMt3> 2] +min
DCM[4, 2] =  10 +  6 +  3 =  19. 

es =  E x b  D [*> 21 =  Ex=3D[*> 2] =  DCM[3- 2] +  DCM[4, 2] =min
6 +  3 - 9 .

The ranks R{h'm-m)1 =  1, R{h'min)2 = 36, R(h 'min)3 =  57. Then, 
R{{h'}Si) =  < (R{h'miJ i ,  e i), (Jl(h'min)2, e2), (R (h T nh ,  e3) > = <  (1, 

34), (36, 19), (57, 9) >

□
If ! Qiq l=  T then the rank range R({h'}) is e—continuous in R(h) , 

where e — D ja^, iq].
The existential consequences of the above propositions for modelling are 

developed in the next section.
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4.3 Ranking Theorem

We are concerned with two ranking models S r  = <  Sy\ ’<hK, table D > and 
S'R = <  Sy] ’<h D’ table> that a given set of choice functions {/;/} C {h}gi 
and simultaneously {h1} C , where {h}gi is the component of Su
and {h!}g', is the component of Sy,  while {h'} is a subset of {h}g,. We 
emphasize that the models Su  and Sy  can have different indexed families 
and/or the requirements W  can be constructed in different ways.

L em m a 4.3.1 I f  the set of choice functions {h1} is symmetric, then there 
exists ranking model S'r  that the rank range R({h'}) is continuous in R(h').

Proof. We know that for any given set {h'} there is unranking model Sy  
that {h'} =  Since the set {h'}g> is symmetric, so there is a table D’
that represents the structure of {h'}g/. Therefore, we can build the model 
S'R that represents {h'}g> . Since {/i'| — {h'jgf, so R({h'}) is continuous 
in R(h').

□
If the set {h'}gi is symmetric and the rank range i?({/z'}) is z—tuple in 

R{h), then we can always build a model S'R that R({h'}) is continuous in 
R(h'). In fact there is a game of models SR that R({h'}) is z" —tuple in 
R(h") but z"  < z. Then, we have a hierarchy of models with respect to 
the value of z. That hierarchy is isomorphic with the hierarchy of indexed 
families <  Q\ = > , 1 < i < m\ < Qf >, 1 < i < m ;...; < Q f — Q\ >,
1 < i < m\ that Q[+1 C Q\ ; 1 < r  < w.

Assumptions:
(z) Given is a model Sr = <  S u ’, ’<h'\ table D > and the subset of choice 

functions h' that h' C hg^.
(ii) The rank range /?({/z'}) in R(h) is specified with I?({/i'}) = <  {R{h'min)i , 

Cl), ( ^ /min)2, e2), (R(h'min)z , ez) > .
(iii) The k components (/?(/i'min)p, ep) represent non-symmetric subsets 

of choice functions.
We conclude basing on the above assumptions, if k components {R{h'min)p, 

ep) were removed from R({h'}), then the obtained rank range HR/i'}*) in 
R(h) would represent a symmetric subset {/i'}* of {/z'}. Then, the following 
theorem holds.

T heorem  4.3.1 (R anking  T heorem ) I f  the above assumptions hold, then 
there is representation model S'R that {h! } — {h'}g' and the rank range 
R({h'}) is z '—tuple in R(h), where z' < 2.k +  1.

Proof. Let (i?(/z(nin)p_i, ep_i) and (R{h'min)p, ep) be two neighboring 
subranges, i.e., the rank range (R(h'min)p- i ,  ep_j) predeceases the rank 
range (R(h 'min)p, ep) following the order <h . Suppose, (R(/z'min)p_i, ep_i) 
and {R{h'min)p, ep) do not contradict the symmetry of {h'}. Then, basing



on Lemma 4.3.1. we can. modify the representation model that the neigh­
boring subranges {R[h'rnia) p- 1 , eP_:) and (R(fC,;„}v . ep) became replaced 
by one rank subrange 1 - e?-i — eP). Therefore,, we can have a
representation model that the symmetric and neighboring subranges con­
catenate.

Suppose, now- the subset (A'} is non—syrr;metric. Then, there is a cor­
responding symmetric subset {A}“  of {h}çt that {A'} C {A}“  and the 
cardinal {A}“  : is mfmmnm.

Since (A}’r ! is minimum, so each rank subrange (R (A.T„ )g. ep) cor­
responds to the rank subrange (RjfÇ-.J^.eÇ,) that eÇ > ep if (R(â^ )g. 
eri corresponds to a non.—symmetric subset or ef =  e- if R  T. ep) 
corresponds to a symmetric subset.

Since {a}" is symmetric, so basing on Lemma 4.3.1 there is a ranking 
representation model S'H that the rank range Ri { k \~  is continuous- in

We observe that insertion of one subrange jivAL;- }p. e~ ■ that makes the 
set .r.’} asymmetric into a string of subranges, effects existence of at most 
two additional subranges that can not concatenate. One can note it ob­
serving that ri, >  e- but transformation of R  _ tl.;. u into ri. ti J  is not
denned. Therefore, the total number r  of subranges that can not concate­
nate is not greater than 2.k — 1. Hence, for each set of choice functions, vre 
can built the representation model e-u that the corresponding rank range 
K ■'t is at most 2.k — 1—tuple in R  h \  That rushes the proof.

90 4. Ranking representation models

The above given, theorem has fundamental meaning, ire construction o: 
the ranking representation models that the number r is kept as small as 
possible. Keeping r as small as possible is- the main request of modelling in 
order to- presence greatest errl-riency of the generation.

Example 4.3.1 Thz sulse* {A } is defued to re the set of bif&ariocs a f  the 
■ -:rrZyi < G. > . I  < i  <  4. &  =  (1 4-4' -
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Then, the rank range R({h'}) in R(h) is as follows: < (1, 2), (5. 2), (15,
2), (18, 1) > , therefore it is 4—tuple. The set |/i'}  is non—symmetric.

Consider the model as follows O'°UN =  < <  G'i >, 1 <  i <  4, where 
G[ =  {1, 3}, 0'2 = {2, 4}, G's = G'a =  {1 d-4}; W  given in (1.19): Wi; 
{h'}g. >; 5/} — < Sy, <h, table D’=DS, > .

1

table DS=

Then, the set {h}* is specified in the following table
R{h)* h R ( h f h

1 1234 5 3214
2 1243 6 3241
3 1423 7 3423
4 1432 8 3432

The rank range 7?({/i'}) in R(h') is as follows: < (1, 6), (8, 1) >, therefore 
it is a pair (2—tuple).

□

4.4 Conclusion

We have shown how subsets of choice functions can be represented by rank. 
The rank of basic combinatorial objects was investigated in the classical 
theory but it was investigated only for full sets of combinations or per­
mutations or partitions and so on. Consequently, the classical theory gives 
only one possibility of representing a set of combinatorial objects by rank. 
The given here approach is essentially different. We have in advance a set 
of choice functions to be represented by rank and we look for a model 
for which ranking representation of the given set would be the most suit­
able. Suitability of the representation is measured by compactness of the 
corresponding rank range. If more compact the rank range representing a 
given set of choice function, then the representation is better. The next 
chapters of this text justify the accepted criterion of optimization of the 
representation. We will show that if more compact rank range, then the 
representation is more suitable for the generation. Ranking Theorem says 
what we can expect as the best solution of our modelling problem since 
we specify individually how much compact the rank range can be for the 
best model. The next chapter brings also the methodology for making the 
suitable ranking representation.
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5
Modeling sets of combinatorial 
objects

5.1 The goals of modelling

A given set of combinatorial objects can be represented in a number of 
ways using the presented general approach. We can ask what a model is 
the most suitable one. Unfortunately, a detailed response to this question 
is rather composed and we do not think that specification of a linear hier­
archy of models concerning their suitability would be possible for a general 
case. For selection of the most suitable model, we have to take a number of 
circumstances into account. These circumstances can be examined only if a 
model is fully specified. So, we can rather select a most suitable representa­
tion among a number of proposals instead of saying in advance what type 
of model is the most suitable one. Nevertheless, certain general principles 
concerning suitability of the models can be specified in advance.

(i) Generally a model Sr is more flexible than the model Su, since for 
the model S r  we can use methodology both for ranking and unranking 
generation.

(ii) The Sr  models that the given set {h'} possess the rank range /?({/i'}) 
in R(h) compact or 2 -  tuple with as small 2: as possible and with greatest 
possible parameters e* are more suitable.

(iii) The models Su  reduced and possessing Q property are much more 
suitable than models that the Q property does not hold.

{iv) If simpler and easier for testing there are requirements W  and W\, 
then more suitable models.

{v) Compact indexed families are better than random ones.
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(vi) If the representation contains a smaller number of the partial models 
Su  or S r  , then it is more suitable.

The specified criteria of suitability can be mutually contradictory for 
given instances of the general problem. Therefore, making a most suitable 
model is a matter of a compromise.

The process of searching for a suitable model can be organized as follows:

1. Make set(s) of choice functions {h} or {hi}, {h2}, .., {hg} that each 
combinatorial object to be represented corresponds uniquely to one choice 
function h € {h} or to each possible collection of choice functions < hi, ho, 
... hq > that hp £ {hp}, 1 < p < q.

2. Find an unranking representation for each hp £ {hp}. If it is possible, 
then use one Sy  model else use as small as possible number of models S y , 
Sy,  ..., Sy  that cover {h} or {hi}, {ho}, {hq}.

3. Examine suitability of each model Sy, Sy, ..., Sy  as criteria use 
concepts of reducibility and satisfiability of the Q property, then try to 
reduce the requirements IT and W\ as much as possible.

4. If it is needed and if it is possible, then produce the corresponding 
tables D making the formal models Sr .

5. If the models obtained in step 3 and/or 4 are not suitable, then 
{h},} *—  {hp} and produce new set(s) {h} or {hi}, {ho}, .., {hq} that 
{h'D} C {hp}. Go to step 2.

6. Specify the set(s) {h'p} by rank, if any.

The given scheme of the general methodology can be realized in many 
different ways especially each step can be performed using several different 
techniques. In the following sections of this chapter, we will specify these 
techniques in more detail.

5.2 Basic unranking modelling
In the course of the basic unranking modelling the first problem we have 
is specification of the requested collection of combinatorial objects by a set 
{h} or by sets {hi}, {ho},... {hj.-} of functions. Formally the problem can be 
stated as follows. Given is a  structure S  = <  A\,  .4o, .... .4U >  , where the
sets Ai,  .4o , 4U represent the specified objects, i.e., numbers, vertices,
edges, columns, rows, matrices and so on. Formally A  = < a (l), a(2), ..., 
a(n) >, i.e., .4 is an indexed collection of elements. A combinatorial object 
to be represented is denoted by S' — < .4{, A'2. .... .4', > , where each 
component A' equals A  or it is obtained from .4 in a  specified manner. The 
specified manner means .4' is a certain subset of .4 or A* can be obtained 
from .4 by permuting its elements in a specified way or by partitioning Its 
elements and so on. The goal is to represent, a collection of substructures
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< S' > = «  A \ , A'2, ..., A'u » .  The most obvious representation of the 
requested collection of subsets < <  S' »  is by assigning one function h G 
{/i} into desired A!. Then, each choice function h G {h} represents uniquely 
a combinatorial object desired. Valid goal in searching for a most suitable 
representation is minimization of substitution instructions contained in the 
whole model, that reduces the generation process. We have three direct 
ways of assigning function h = <  h{ 1), h{2), ..., h(m) > into corresponding 
A'\

* A' =< a(h(l)), a(h(2)), ..., a(h(m)) >,
** A' = <  a(l) G Bh{i), a(2) G B h{2), a(m) G Bh{m) >,
* * * A! = <  a(/i(l)) G Bi, a(h(2)) G B 2, ..., a(h(m)) G B m > .
The assignment * is usually used if A! is to be created by means of per­

mutations or combinations or variations. The assignments ** or * * * are 
used if A! is to be created by means of partitions or decompositions. Then, 
we usually make the representation as given in * for each block of partition 
or decomposition. Apart of the direct assignment we can use an indirect 
assignment of h into A '. Then, we make another auxiliary one—to—one 
mapping rj in order to assign each possible A' into h. The mapping 77 takes 
usually values h(i) and h(i — 1) and determines an element a(i) as the 
component of A '. We can have numerous different mappings 77 and nu­
merous different determinations of structures but the most simple and the 
most common method is given for the unranking representations of num­
ber partitions and compositions, see formula (2.2), page 30. Using k  sets 
{hi}, {h2}, {hk} we can transform k  sets A\, A'2, ..., A'k for getting 
S' G< S' > . For certain structures a modification of a set Ap, 1 < p < k, 
makes also an automatic modification of some other sets. Then, the number 
of sets {hi}, {h2}, .., {hk} is smaller than the number of the modified sets 
A. For instance, if the structure S  is a graph < V, E  >, then selecting a 
subset of vertices V ' , we create simultaneously a subset of edges E ’ for the 
corresponding subgraph S'.

After specifying the set {/i} or the sets {hj}, {h2}, {hk}, we make
formal unranking representation model(s) Su  or < S¡j, S >, that 
{h} =  {h}gi or {/ii} =  {h}gi and {h2} =  {h} g2 and , and {hk} =  {h}efc, 
respectively. For a given set {h}, we can make several different Su  models. 
The reminder of this section demonstrates examples of the basic unranking 
modelling.

Exam ple 5.2.1 For the graph G — (V, E) given in Figure 5.1 let us rep­
resent the group of authomorphism, i.e., all the graphs that are isomorphic 
with G.

The group of authomorphism of the graph G corresponds to the set of 
choice bijections of the following indexed family <Si =  {1.3,4,6}, S2 = 
{2,5} , S 3  = {1,3,4,6 }  , S4  — {1 ,3 ,4 ,6} , S5 =  {2,5} , 5 6 =  {1,3 ,4 ,6} .
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3 4

FIGURE 5.1.

For explanation of the method, we observe that the set of vertices V  is 
partitioned into the blocks containing equivalent nodes. Then, the blocks 
are indexed with the numbers of nodes included in them getting the indexed 
sets. Ordering the indexed sets finishes production of the indexed family. 
We observe that such indexed families obtained are reduced and the Q 
property holds since the assumptions of Proposition 1.2.2 hold.

Specification of the whole model Su  is enough obvious.

□
It is known that for testing whether two given graphs are isomorphic 

it is enough to generate the group of authomorphism A(G ) for one graph 
and then to test whether there is a permutation belonging to A(G) that 
represents the second graph. So, the set of choice functions {h}s{ corre­
sponds to the maximal number of tests needed in order to state existence 
of isomorphism or its lack. In the similar way we can make the sets of tests 
for solving other isomorphic complete problems, i.e., for the problems that 
are polonomially transformed into the graph isomorphism [17], [22].

E xam ple 5.2.2 At a port there are n people and n boats enumerated. Tak­
ing consecutive boats a number of consecutive people has to get into the boat 
and the boat leaves the port. Then, a number of consecutive people has to 
get on the next boat. Procedure is to be continued until all the people leave 
the port. Each boat can take at most n and at least two people. The task is 
to represent all the possible distributions of the people on boats.

Formally, we have the structure 5  — < P, B  >, where P =< P\, P2, -, 
pn > is the collection of all the people, while B  = <  b\, bo, bm > is the 
collection of all the boats, m =  n/2. Each substructure S' corresponding to 
a possible distribution of the people onto the boats is as follows S' =< pi,
P2, ••■! Pr\ >1 <  P n  + li Pri+2, •-,  P rj+ rj >  > <  Pn — rk + 1, Pn — rk + 2, •••>
Pn » ,  where k  is the number of the used boats, while ry is a number of 
people on the i — th  boat; 1 <  k <  m.

(i) The first possible representation.
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Each S' corresponds to an assignment rjk : i — > r,, where 1 < i < k; 
2 < U < m. For each k , we assign the set {/ifc} that each h € {hk} 
corresponds to an assignment of the numbers of people into k boats used, 
so that rjk(i) =  /ifc(-i) — hk{i — 1). Therefore, all the possible distributions 
of the people into a number of boats used correspond to the collection of 
sets of choice functions {hi}, {/12}, {hm}.

Now the goal is to built the models Sjf = «  Q* >, 1 < i < k; W\ 
{h}gi< >, 1 < k < m, that {/ifc} =  {h}g<=. Using similar approach as given 
for the representation of compositions, we have Qjf =  {2.i, 2A +  1, ..., 
n — 2.(k — i)}, 1 < i < k. The requirement W  has to make assertion that 
2 < Vki’’-) ^  m, so W  : hk(i) > hk{i — 1) +  1. So, we have the collection 
of the unranking models Sjj, Sy,  ..., Stf  for representing {hi}, {ho}, 
{hm}, correspondingly. Then, all the possible distributions of the people 
into possible numbers of boats used correspond to {h} =  {/i}^ u{h}e2U ...U 
{h}gm. It is worthwhile to mention that evaluations on P  are represented 
by the unranking models, while evaluations on B  are represented by the 
number of models used.

(ii) The second possible representation.
Let h € {h} be a choice function of an indexed family < Qi >, 1 < 

i < m, that h(i) € {h(i -  1) +  2, h(i -  1) +  3, ..., ?i}, h(0) =  0. Then, 
rji =  h(i) — h{i — 1) corresponds to a number of consecutively enumerated 
people that get onto the i — th boat. Therefore, it must hold 2 < rjl < m 
or 7̂  =  0 and if rji — 0, then r?i+1 =  0. We built the model Su  as follows 
Qi =  {2.z, 2.Z+1, n}, 1 < i < m; the requirement W  : h(i) >  h(i —1) +  1
and i f  h(i — 1) =  n — 3, then h(i) = n and i f  h(i — 1) =  n, then h(i) — n. 
For the corresponding unranking model Su, we have {h} =  {h}^.

□
We will present now a case of modelling classes of planar figures using the 

image and the shortest path transforms [22], [21], These representations are 
very convenient for massively parallel or massively distributed processing 
in real or virtual depth search machines [22],

Exam ple 5.2.3 With denotation GfF1] =  < rq, no, ..., n„, fi, f2, , ..., 
fn > we mean the Q — transform of a planar figure F  . The figure F  
is a polygon if  < n i, n 2, n n, fi, f2, , fn > can be partitioned 
into a number k of blocks < B\, B 2 , ..., Bk > each one containing a 
string of consecutive elements that equal. By two consecutive elements, we 
understand one of the following pairs (ni, n i+i), (fj, £¡+1)) (n n, fX), (fn, 
ni). Therefore, a block of consecutive elements can be stated as follows 
Bj = <  nq , nq.+i, ..., n ii+r< >, or Bj = <  fq, fij+1, ..., iij+r. >, or 
Bj  ^  n q , nii+1, ..., n n, fj, f2, ..., fn_î .̂ _ri or B j  —<C fq , 1,

fn , r q , n 2, ..., n n_q.+r. >, where rj is the cardinal of the block B j.  
Moreover, s < rj < n — 1 and d < k < m, where n and m  are given. The



98 5. Modeling sets of combinatorial objects

task is to represent all the classes of the similar and mutually non—rotated 
polygons, i.e., all the possible distributions o /9[F ] into blocks Bj.

The concept of an empty block Bj  enables us to represent always m  
blocks < B i, Bo, ..., Bm >. Among them the first k blocks are non—void, 
while the last m  — k blocks are empty. Each block is specified uniquely if we 
give its first and its last elements. For empty blocks the first and the last 
elements equal. With oq we denote both the elements rq and f; that q — i 
for nf, while q — n + i for representing fy Then, Qf[F] = <  oi, 02, ..., on, 
on-t_i, ..., o^n > • Let h be a function h : j  —> h(j), so that li(j) represents 
the last element oh^  of the block Bj.  Then, we assign the mapping ip.Bj — 

i)+i ~   ̂ — J — ^  L — 0^ 1)}, i.e., B m —
{o/i(m)+ 1 ~*->2ni 01 “ O/qi)} if h(m) > h(l) and B m — Oh(7n)+2> •••>
°/i(i)} if h(m) < h( 1) . Now, we have to specify the model Su = «  Qj >,
1 < j  < m; W; {h}Qj > that {/i} =  {h}^..

We have the following formulas specifying the indexed sets Qj.
(!) Qj =  {1 + s(j -  1) - r 2 n -  { d -  j ) .s } ,l  <  j  < d -  1;
(2) Qj =  {1 +  s.d-b 2n }, d < j  < m  — 1;

(3) Qm =  {1-b 2n, }, j  =  m.
Correspondingly, the requirement W  possess the following specifications:
(1) W  : h(j) > h(j -  1) +  s, 1 < j  < d -  1;
(2) W  : h ( j ) > h(j  — 1) +  s or if 2n — h(j — 1) +  /i(l) < r m, then

h(j) = h(j — 1), d < j  < m;
(3) W  : [h(l) — h(m) < rm for h(m) < h(l)] or [(2rz — h(m )) +  /i(l) < rm 

and h(m ) — h(m  — 1) < rm ] for h(m) > h( 1).
One can show that the model is reduced and the Q property holds.
Using similar approach as the given in the previous example, we can 

make the unranking representation by means of a number of the unranking 
models Sfj, S f ^ 1, ..., S™ that correspond into the possible number of 
vertices of the classified polygons.

□

Very similar thinking can be used for classifications of the shortest paths 
within planar polygon following the approach given in [21].

The next example shows that we can make only one model Su  for rep­
resenting wanted collection of substructures S', while using the classical 
approach making such a single model is really a difficult task.

Example 5.2.4 Given is a graph G =< V, E  >, where V = {iq, Vi, ..., 
tqo} and each pair (rq, tq+i) € E  . The task is to represent a collection 
of subgraphs G' = <  V , E' > that | V' |=  4 and each subgraph contains 
exactly two vertices from the set {iq v$}, moreover for each edge (vp, 
vg) E E', we have to have q ^  p ±  1. The set E'  is created by restriction of 
the set E  into the set of edges containing pairs (vp, vq) G V '.
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The first task is to determine the set of the choice functions that represent 
the requested collection of the subgraphs. We observe that each subgraph 
G' is created by selecting a subset of four vertices that no neighboring 
vertices belong to V'  and V'  =  {up, vq, vs , vt}, where p < 5, q < 5, s > 5, 
t > 5. Then, each subset V'  can be represented by a choice function h( 1), 
h(2), /i(4), h{5) whose values correspond to the indexes p, q, s and t. We
will model the requested set of choice functions {h} as the set {h that
W  : h{i) >  h(i -  1) +  2. Then, the indexed family < 7 Zi >, 1 < i < 4 is as 
follows:

Ki = { 1,2,3} , U 2 =  {3,4,5} , 7ls = {6,7,8} , U ,  = {8,9,10} .
The set of choice functions {h}ni for the unranking model Su  = < <  

>, 1 <  i <  4; W  : h(i) > h(i -  1) +  2; {h > is symmetric. Then,
10 6 3 1

the table D for this model is the table DCM[3 x 4] =  4 3 2 1 .So,
1 1 1 1

the ranking representation model is Sr  =< Su, <h, table DCM[3 x 4] > . 
Observe that the task is very simple for modelling when using the choice 
functions approach. Simultaneously this problem becomes very difficult for 
modelling, when using the classical concept of combination. Moreover, when 
we use the classical concept of combination then after generation of each 
combination, we have to use four substitution instructions in order to rep­
resent the corresponding subgraph G'.

□
We are concerned now with modelling sets of combinatorial objects that 

are specified by a number of the objects that belong to that set of the 
combinatorial objects. That problems comes from an implementation of 
genetic or evolutionary algorithms [48]. Frankly speaking the problem can 
be specified as follows. In advance, we have a set of choice functions {h} 
representing a given set of combinatorial objects A. Then, a random subset 
of choice functions {p} C {h} is selected that the choice functions {p} 
satisfy in a best way a given in advance criterion. The goal is to make 
a model Su  corresponding to a set of choice functions {h!} C {h} that 
{p} C {h'} and | {/i} |> > | {h'} | . The method of making the set {h'} must 
also be exactly precessed for a given task. For instance, we can request that 
each feature of h! 6 {h'} is a corresponding feature of a t least one p € {p} 
or we can request that each feature of each h' G {h'} is the corresponding 
common feature of the set {p} or if the feature is not common for {p}, then 
a corresponding feature of {h} is to be selected. The following example 
explains methods of making the models Su  desired.

Exam ple 5.2.5 Suppose, three permutations, for instance < 1, 7, 3, 2, 
4, 5, 6 >, < 2, 3, 5, 4, 6, 7, 1 > and < 3, 2, 5, 1, 7, 6, 4 > have been 
selected from the full set of permutations for n — 7, i.e., from the group 
of symmetry Sym (7). The goal is to model a set {h}g. that is a subset
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of Sym (7) obtained by ”crossing” the given three permutations, i.e., each 
permutation h € {h}gi possess every pair of consecutive elements that is 
representative at least for one given permutation. Additionally the set {h}g{ 
has to be isomorph-free.

The permutation < 1, 7 ,3 ,2 ,4 ,5 ,6  > defines the following pairs of con­
secutive elements: after the element 1, we can have the element 6 or 7, so 
there are the pairs (!, 6) or (1,7). Similarly, we have (7,1) or (7,3); (2,4) 
or (2,3); (4, 5) or (4,2); (5,6) or (5,4); (6,1) or (6,5).

The permutation < 2 ,3 ,5 ,4 ,6 ,7 ,1  > defines the following pairs of the 
consecutive elements: (2,3) or (2,1); (3,5) or (3,2); (5,4) or (5,3); (4,6) 
or (4,5); (6,7) or (6,4); (7,1) or (7,6); (1,2) or (1,7).

The permutation < 3 ,2 ,5 ,1 ,7 ,6 ,4  > defines the following pairs of the 
consecutive elements: (3,2) or (3,4); (2,5) or (2,3); (5,1) or (5,2); (1,7) 
or (1,5); (7,6) or (7,1); (6,4) or (6,7); (4,3) or (4,6).

The specified pairs of the consecutive points are the basic data to be 
used for producing the needed unranking model 5(7 =  < < ^ i > , l < f < 7 ;  
W] Wi\ {h}gi > . Since the goal is to produce permutations, so we have 
to model a set of bijections, hence the requirement W  is to be selected as 
specified in 1.19. The produced pairs of the consecutive elements are to be 
used for defining the indexed family < Qi >, 1 < i < 7, and the requirement 
W\.  For designing the model S u , we have also to make assertion that the 
set {h}gi must contain isomorph-free permutations. The term isomorph- 
free is generally ambiguous, since that means the modeled set {h}^ should 
not contain any subset of permutations that could be obtained one from 
another by using a selected operation or selected operations. Such opera­
tions that could be applied for the subset of {h}gi are selected basing on 
the application of the requested modeling. Suppose, the requested set {h}gi 
is to be tested for containing possibly the best solutions of TS (travelling 
salesman) problem (48).1

Then, the operations producing isomorphic solutions are:
(i ) cyclic shifting — > that is specified as follows: — ( <1, 7 ,  3, 2, 4, 5,

6 >) — < 7, 3, 2, 4, 5, 6, 1 >, while (< 1, 7, 3, 2, 4, 5, 6 >) =  < 2, 4,
5, 6, 1, 7, 3 > and so on.

(ii) rotation that is here denoted and defined as follows: < 1, 7, 3, 2, 4, 
5, 6 > _1 =  < 1, 6, 5, 4, 2, 3, 7 > .

In order to make the set {h}gi being a kernel, i.e., no two hi and hi can
be obtained one from the other by using rotation or cyclic shifting. In order 
to make assertion that cyclic shifting is eliminated it is enough to assign 
a fixed value h( 1) for each h € {/i}q,. Asserting that we have eliminated 
rotation is much more difficult to get for the general case. Nevertheless, for

1 We selct TS problem since it is widely known and understand ing  the term  ’’isomorph- 
free” can be supported  intuitively bu t we do not claim th a t such approach to  TS is the 
best possible.
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our example, if we assume that h( 1) =  1 and we enable only one pair of the 
consecutive elements for each permutation that is additionally common for 
all of them, i.e., the pair (1,7), then we make assertion that {h}gi would 
be the kernel.

Prom our considerations, we conclude that the indexed family < Qi >, 
1 < i < 7, should be as follows:

Gi =  {1}; G2 — {2}; Gz -r Gi are subsets of {2, 3, 4, 5, 6}, more accurate 
specification requires examination of the pairs of the consecutive points. 
Since h{2) =  7, so Gz =  {3,6}, £4 =  {2,4,5}, Gz =  Ge = Gi = {2,3,4,5,6}. 
Moreover, the pairs of the consecutive points are used for the formulation 
of the requirement W \ .

Then, we have the following specification of W\  : 
if h(i — 1) = 2, then h(i) =  3 or h(i) =  4 or h(i) =  5; 
if h(i — 1) — 3, then h{i) =  2 or h(i) — 4 or h(i) =  5; 
if h(i — 1) =  4, then h(i) — 2 or h(i) =  3 or h(i) =  5 or h(i) =  6; 
if h(i — 1) =  5, then h(i) — 2 or h(i) =  3 or h(i) =  4 or h(i) — 6; 
if h(i — 1) =  6, then h(i) =  4 or h(i) = 5; 
if h(i — 1) — 7, then h(i) = 3 or h(i) = 6. .
Accidently the obtained model is reduced and the Q property holds. For 

instance, the permutation h =< 1, 7, 6, 4, 5, 2, 3 > belongs to {h}g{ and 
it is not isomorphic to any given input.

The given two methods of making the requirement W\ are not the only 
possible ones. We can much extend the logic formulas for construction of the 
requirement W \ . For instance, a threshold enabling usage of an elementary 
request can be investigated. Suppose, we say that the requirement is valid if 
it comes at least from two permutations. Then, we would have if h(i — 1) = 
2, then h(i) =  3 or h(i) =  4, since 3 comes from all three permutations, 
while 4 comes from the first and from the third permutation.

□

The similar problem was considered earlier in [45] but the approach pre­
sented here enables us to specify the set of objects to be generated at the 
level of modeling. We also observe that a number of ways for making the 
model Su  can be developed depending on the given application. Neverthe­
less, we have 110 assertion that such obtained models Sy  would be reduced 
and the Q property would hold, however it can happen that the obtained 
model is reduced and the Q property holds as the given example shows. 
Since for these two classes of models the generation problems are quite dif­
ferent, so the approach to the generation should not be oriented towards a 
representation but it should be dependent on structural properties of the 
model. That statement makes essential progress in approaching implemen­
tations of the genetic algorithms.
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If the model Sy  is consistent with requirement W \ , then \V~ <==> W\, 
i.e., for producing the choice functions x  € {x}7ri, we have to use the 
requirement W\  transformed into the corresponding relational expression 
involving the blocks Trj €  7Ti instead of the elements q 6  Gi- For a given 
unranking model Su,  we can have a number of the models Sy  consistent 
with W i . We have assertion that for every model Su  there is at least trivial 
model Sy  that is consistent with W\.  One can note it by observing that 
taking the minimum partition of each indexed block, i.e., identifying each 
element qj € Gi with the block nj of the partition ttî, 1 <  i < m,  we get 
the model Sy  that is consistent with W\,  since for each choice function 
h € {h}çi there is the choice function x  € {x}-^ and | {x}Si |=  1-

Definition 5.3.2 A given model Sy  consistent with W\ is minimal if  
there is no other model Sy  consistent with W\ that \ {x'}~i |< | {x}~i [ .

We will present now the following example in order to demonstrate the 
investigated concepts.

Exam ple 5.3.1 Given is the following model Su ■

Gi =  {1,2,5,7,9,10} , G2 =  {1,2,3,4,5,6}, Gz =  {2,3,4,7,8,10}, Ga = 
{4,5,6,7,8,9},

W  : h(i) ^  h(i — 1) -T- h(i) ^  h( 1); W\  : if h[i — 1) is even then h(i) is 
odd else h{i) is even.

The first model Sy.
Each indexed set Gi, we divide in two blocks, the block G} contains odd 

elements while G? contains even elements. So, we have Gi — {G\ ■ G,} =  {{1. 
5, 7, 9}, {2, 10}}. Similarly, £ 2 =  {{1, 3, 5}, {2, 4, 6}}, Gz =  {{3, 7}, {2, 4, 
8 ,10}, Ga =  {{5, 7, 9}, {4, 6, 8}}. We make assignment: -¡- corresponds into 
Gi, while 7r 1 corresponds into G \ and Tif corresponds into G f- Respectively 
we have the indexed family 7Ti =  {-k\, 7rf}, tt2 =  {tTj, " 2}, "3  =  {^3. -§}, 
^a = ttI}. The requirement VF5r: if x( i  — 1) =  then x(i)  = 
else x(i) = 1r?, 2 < i < 4. The model Sy  is consistent with W\.

The second model S y .
We make the following partitioning the indexed sets Gi : Gi — {{1. 5}. 

{7, 9}, {2, 10}}, Gï =  {{1 , 3}, {5}, {2 , 4}, {6}}, Gz = {{3}, {7}, {2, 4, 
3, 10}}, Ga — {{5, 7}, {9}, {4, 6, 8}}. Then, we have the corresponding 
indexed family < 7r{>, l < i < 4 a s  follows: = {tt}1, ~j3}, id2 =  {rSf,
~2 , Ti'f, ir'f}, 7r'3 = {ttG, 7t'32}, tt'4 = {7141, tt£, }. The requirement W *  
is as follows: W * : if x'( i  — 1) > 2, then x /(i) < 3 else x'(i) > 2, 2 < i < 4.

The models Sy  and Sy  are consistent with W\ and the model Sy  is the 
minimal one.

□
For the above example each choice function x  € {x }^ i corresponds to 

the non-em pty layer < ^?‘ >, 1 < i < m of the family < >, 1 < f < m.
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Then, we have the formal model Sy  = < <  Gp >, 1 < i < m; W; {hfyy > . 
Comparing the model Sy  with the given model Su  = < <  Qi >, 1 < i < rn; 
W) Wi] {h}çi > one can observe lack of the requirement W\  in Sy.  That 
property is not incidental, we will present now considerations concerning 
equivalence of the unranking representations Su  and < Sy  >*£{*}„ ; where 
with < Sy  >xe{x},we mean the collection of all the models < S y  > that 
each choice function x  is a choice function of the model Sy  consistent with 
Wi.

A ssum ptions:
(t) Given is the model Su —«  Gi>, 1 < i < m \ H7; Wi; {h}g, > .
(ii) The model Sy — Sy  = «  ~i >, 1 <  i < m; W"; { x ) ^ i > is 

consistent "with W i, so W~ -̂ => Wi.
(in) For each choice function >r, we make the corresponding model S y  =<

< Gl* > , 1 <  i < m; W; {h}çn > .
(iv) < S y  >*g{^}Tis the collection of models obtained for every choice 

function >r of the model S y .

P ro p o sitio n  5.3.1 The model Su  is equivalent to the collection of models
< Sy  •

Proof. Since the model S y  is consistent with Wi, so any partial choice 
mapping < x( l) ,  x ( 2), x(i) > represents a string of blocks < G j \  
Go2, .... Qp > such that a string of elements < h( 1), h(2), ..., h(i) >, 
h( 1) 6 GÎ1. h(2) € Go% —; h(i) € Gp satisfies Wi, 1 <  i < m. Therefore, 
each choice function h € {h}^j, satisfies automatically the requirement Wi. 
Then, each choice function < ft(l), h(2), ..., h(m) > of the model S y  must 
satisfy additionally the requirement W, see the assumption (Hi). Hence, 
each choice function h £ {h}Gi, satisfies W and Wi. Since the indexed

family < Gp >• 1 < * < m is a layer of the indexed family < G% >: 
1 < i < m  and since all the choice functions of the layer satisfy the same 
requirements as the choice functions {h}g%. so {h}G;, C {h}çt . The set 
{h}s , is partitioned into a number of sets that each set is obtained
for each choice ftmction x  € Hence, the model Su is equivalent to
the collection of models < S y  -

□
The models < S y  make assertion that the generation of the

individual choice functions does not require testing the requirement
Wi. Then, we have the following corollary.

C orollary  5.3.1 For every model Su —«  Gi>- 1 <  i < rn; W; {h}gi >, 
we can make a collection of models S y  = «  % >, 1 <  i <  tn; {h}r, > 
that is equivalent to Su-
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Proof. Every requirement W  can be given as a conjunction T  A W\ AW2 A 
...AWs, where T  is a tautology, while Wr  1 < r < s denotes any requirement 
of the general form, 1 < r < s. Then, we can treat T  f\W \ AW 2  A..., AWs_i 
as a requirement W, while Ws would be treated as W \ . So, we can use 
Proposition 5.3.1 that the corresponding models S y  need to use only new 
W. Continuing this procedure for each S y  model, we get descending models 
Sy  that require the requirement T  to be tested only. Since T  is a tautology, 
so it does not need to be tested. Hence, we get descending models Sy  
= «  % >, 1 < i < m; {h}Ti >■

□
The general evaluations concerning simplification of the requirement W  

are difficult since the general form of the requirement IT is as follows: 
h(z)RE[h(z —1), h(i — 2), ..., h(l),  z], If this general formula for W  can not be 
simplified, then it makes real difficulties both for theoretical considerations 
concerning the discussed topic and also for development of corresponding 
computer algorithms. So, we make a simplification assuming that the con­
cerned requirement W  (Wi) is specified with the form h(i)RE[h(i — 1), 
i}.

The following sections are devoted into construction of the models S y  
and S y  under the above given assumptions. The reader not—interested in 
computer algorithms for making S y  neither in data structures representing 
W  can skip these sections.

5.3.1 INITIAL W
Let a requirement W  be of the form h(i)RE[h(i — 1), ¿]. Then, h(i)RE[h(i — 
1), z] can be represented as a list of pairs {<&}), {<h-i} C Qi-\,
{<li} C Gi■ If h (l), h(2), ..., h(i — 1) is a partial choice function and if 
h(i -  1) G {<7i—1}, h(i) G {qi}, then /z(l), h(2), ..., h(i -  1), h(i) is a partial 
choice function only if h(i — 1) G {?i-i} and h(i) € {^i}; 1 < i < m. 
Observe, we do not make any other restrictions on the pairs ({^¿-i}, {<&})> 
i.e., the sets {<&_ 1} and {qi} can contain only one item or a number of 
items. Moreover, for each element <7t_i, we can have a number of pairs and 
a fixed set {qi} can be the element of any number of the pairs. We declare 
the following abstract data structures:

W P—record
qi 1: set of integer;
qi : set of integer; 
end;
W I= indexed list of WP;
W =array[2..m] of WI.
With denotation W [ij].qi_l, we mean the set qi 1 that belongs to the

j  — th item of the list WI being the i — th element of the table W. For
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denotation W[i,j].qi we have the similar meaning. We can have a number 
of representations of the requirement W  using the data structures specified 
above. The basic representation we call INITIAL W and it is produced by 
the following algorithm INIT.

Algorithm INIT(for producing INITIAL W)
Input: The model Su  = < <  Gi >, 1 < i < m,  W  {Mfib > that W  possess 

the structure h(i)RE[h(i — 1), i]
Output: INITIAL W that represents W.
1. for i <—  2 to m  do
1.1. j —  0;
1.2. for qi-x *—  1 to | Gi-1 | do
1.2.1. for qi *—  1 to | Gi | do
1.2.1.1. if (qi-1, qi) satisfies W  th en
1.2.1.1.1. j  *—  j + 1;
1.2.1.1.2. W[ij].qi<—  qi;
1.2.1.1.3. W [ij].qi_l 9l_ i;

Asymptotic complexity of the algorithm INIT is 0 (n 2.m). The structure 
INITIAL W can be used for the choice function generation but for big values 
of the cardinals | Gi | this form of representation of the requirement W  can 
be not very convenient since it can require examination of the number of 
records equal to all the pairs we have for a fixed values qi-\.
The given indexing the list of records can reduce this difficulties, since each 
value qi-1 is represented by a number of consecutive indexes. Moreover, the 
values of indexes grow simultaneously with growing values of the matching 
elements q..

5.3.2 Consecutive repi'esentations of W
The next, representation we produce is the representation COMBINED W 
that can be obtained form INITIAL W  by the following algorithm COM.

Algorithm COM (for producing COMBINED W)
Input: The representation INITIAL W. n,-_i = | Gi-\ !
Output: COMBINED W that represents W.
1. for i <—  2 to  m  do
1.1. for j  •—  1 to  Tij_i — 1 do
1.1.1. for 1 <—  j  -r 1 to  n ,_ i do
1.1.1.1. if W uj].q i_ l =W [i,lj.qi_l th e n
1.1.1.1.1. W[i,jJ.qi <■— W[i j].qi U W[i,l].qi;
1.1.1.1.2. remove W[ij] (i.e., remove W[i,l].qi_l and remove W[i,l].qi 

from W);
1.1.1.1.3. rti-i *—  Tii-i -  1;
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Each row of the table COMBINED W represents assignment of an ele­
ment q i - 1 € G i- 1 into a set of elements {<?,} that each qi 6 {g,} satisfies W  
for the given qi- j. We have assertion that each value <jj_i is represented 
exactly once as W [ij].qi_l in the table COMBINED W. Asymptotic com­
plexity of the algorithm is 0 ( n 2.m). The table COMBINED W represents 
compact data that can be used easily for the algorithms concerning the 
generation of the choice functions and their usage. Any direct usage of the 
structure COMBINED W requires assertion that the records are not too 
big for handling. The representation COMBINED W can not be used for 
making the model SJ- since collection of sets W[i,j].qi for a given i does not 
create any partition on the set Gi- 

Next, we make the representation PARTITION W that each set W[i,j].qi 
is a block of a partition on Gi for fixed i.

Algorithm PART(for producing PARTITION W)
Input: The representation COMBINED W,
Output: PARTITION W that represents W.
1. for i •<—  2 to  m  do
1.1. for j  <—  1 to  rii-i -  1 do
1.1.1. for 1 <—  j  +  1 to  rii-i do
1.1.1.1. if W[i,j].qi fl W[i,l].qi ^  0 th en
1.1.1.1.1. if W[ij].qi=W[i,l].qi th en
1.1.1.1.1.1. W[i,j].qi_l <— W[i,j].qi_l U W[i,l].qi_l;
1.1.1.1.1.2. remove W[i,l] {i.e., remove W(i,l].qi_l and remove W[i,l].qi 

from W};
1.1.1.1.1.3. rii-i 4—  TR-i -  1 
else
1.1.1.1.2.1. if W[i jj.qi fl W[i, 1].qi ^  0 th en
1.1.1.1.2.1.1 insert the set Wfijj.qi D W[i, l].qi as W [ij+l].qi;
1.1.1.1.2.1.2. insert the set W [ijj.q i_ l U W[i,l].qi_l as W [ij+ l].q i_ l;
1.1.1.1.2.1.3. n-i-1 <—  rij- i  +  1;
1.1.1.1.2.2. if W[i,l].qi fl W[i, jj.qi ^  0 th e n
1.1.1.1.2.2.1. insert the set W[i,l].qi fl W[i, jj.qi as W[i,j+l].qi;
1.1.1.1.2.2.2. insert the set W [i,jj.qi_l U W[i,l].qi_l as w [ij+ l].q i_ l;
1.1.1.1.2.2.3. rii-i <—  rzj_i +  1;
1.1.1.1.2.3. W[i,jj.qi <—  W[i,lj.qi fl W[i,jj.qi;
1.1.1.1.2.4. W [ij].qi_l v— W[i,j].qi_l U W[i,l].qi_l;
1.1.1.1.2.5. remove W[i,l] {i.e., remove W[i,l).qi_l and remove W[i,l].qi 

from W};

The step 1.1.1.1.2.1. is performed only if W[i jj.qi O W[i, Ij.qi 0. Sim­
ilarly, the step 1.1.1.1.2.2. is performed only if W(i,l].qi Pi W[i, jj.qi ^  0. 
These groups of steps are performed as the operations on lists. The block 
diagram given in the Table 1 explains performance of the step 1.1.1.1. 
Asymptotic complexity of the above algorithm is 0 (n 2.m).
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of any not empty set. Then, we define the following procedures concerning 
the lists.
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Procedure INSDEN(W[i,j].QI, W[i,l].QI)
1. FLAG*—  FALSE-
2. if W[i j].Q l n  W[i, 1].QI ^  0, th en
2.1. insert into the list a new record W[ij+1]
2.2. W jij+ lj.Q I *—  W jijj.QI n  W[i, lj.QI;
2.3. nj <—  n,i +  1;
2.4. FLAG*—  TRUE;
3. re tu rn  WI, FLAG;

Procedure REMEQ(W[i,l].QI or W[i,l].QI_l)
1. remove from the list the record W[i,l] { i.e., remove both 
W[i,l].QI and W[i,l].QI_l}
2. rii *—  rii -  1;
3. r e tu rn  WI;

Procedure SPLIT(W [iJ].QI_l, W[i,l].Ql_l)
1. if W [ijj.Q I_l nW [i,l].QI_l 56 0 then
1.1. call INSDEN(W[i,j].QI_l, W[i,l].QI_l);
1.2. if FLAG= T R U E  th e n  W[i,j+1].QI*— W[i,j].QI;
1.3. call INSDEN(W[i,l].QI_l, W[i,j].QI_l);
1.4. if FLAG= T R U E  th e n  W[i,j+l].QI*— W[i,lj.QI;
1.5. if W [ijj.QI 1 ^W [i,l].QI_l th en
1.5.1. W (ij].QI_l <— W jij].QI_l nW[i,l].QI_l;
1.6. W[i jj.QI *— W jijj.QI UW[i,lj.QI;
1.7. call REMEQ(W[i,lj.QI); {observe, the record W[i,lj denotes it before 

entering SPLIT}

The Table 2 shows the result of running the procedure SPLIT.

W jijj.QI 1 W jijj.QI
Wjijj.QI l W jijj.QI {{5}} {{1,6},{2, 4}}
{{1,2,5}} {{1,6}} {{1,2}} {{1,6}}

{{6}} {{2,4}}
{{5,6}} {{2,4}}
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Table 2. The list WI before and after performing procedure 
SPLIT for two records.

After running procedure SPLIT for aO pairs (W'i.j'.QI_L W 'ij'.QI) and 
W :.. .QI_L W i.l.Q l that. W{ij].QI_lnWjU].Qi_l =  0 all the sets

WBjl.QI contain blocks of a partition on C.;. while each Wli-fl. 3}-QI 1
represents a block of a partition on These nro partitions must match,
i.e.. the blocks defined by W:i-fL 3 ,QI_1 and W Ljl.QI can sot be inoon- 
sisient. We develop the procedure MATCH for removing inconsistency that 
is introduced by a pair . WB.jBQI AY;:—1 .f .Q I_ l \  The result of nam ag 
the procedure MATCH is given in Table 3.

WB+L W B-L jj.Ql
WBjBQI_l W a jj.QI {{5. 6}} {{I. 6},{2, 4}}
{{1.2.5}} {{3.5}} ...

WB.;.Q1_1
{{L 2. 5}}

WB.j}.QI
mum

W B-L i'.QI
{{-5}}
i m

w li- l .  i'.QI 
{{1. S U %  4}}
0
{{1. 6}.{2. 4}}

Table S. The lists W1 and W T—I ■ before and after performing procedure 
MATCH for two records 

We modify the procedure INSDEN producing the procedure INSFTX:

P rx sszs f. INSF3X W B—I. f..QI_L WBT.QI
1.. BLAG------F A L S I :

2. if  W B-fl.jj.QI_l n W_; l.QI = C then
2.1. irssri into the list a new record WB—1. j—L:
2BL WB—1. —  W B-L ~ 7!
2.3. r., -—  - 1 ;
2.4. FLAG- TU l'E '.

2. FL2 —  T .-.i. 'T

ST., if  W B - L  n  WB.I'.QI #  e. th e n
5-1. insert Bntr the list a oe~ record WB j — L
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3.3. ni <—  Hi + 1;

3.4. FL2 <—  T R U E ;

4. re tu rn  WI, FLAG, FL2;

Then, the procedure MATCH(W[i+l, j].QI 1, W[i,l].QI) is as follows:

Procedure MATCH(W[i+l, j].Q I_l, W[i,l].QI)
1. if W[i,l].QI n  W[i+1, j].Q I_l + 0 th e n
1.1. call INSFIX((W[i+l, j].Q I_l, W[i,l].QI);
2. if FLAG= T R U E  th e n  W[i+1, j-Fl].Ql<— W[i+1, jj.Ql;
3. if FL2 =  T R U E  th e n
3.1. if FLAG= T R U E  th e n  W[i+2, j-hl].QI-— {}

else W[i+1, j+l].QI<— {};
4. if W[i,l].QI ^  W[i+1, j].Q I_l th e n  W[i+1, j].Q I_l *— W[i,l].QI n 

W[i+1, j].Q I_l; ______________
5. W[j,H.QI <— (Wfi.ll.QI n  Wfi+1, il.QI 1, Wfi.ll-QI n Wfi +  1, j].QI_l, 

W[i, 1].QI n W[i+1, j].Q I_l};
6. re tu rn  WI.

We present now the algorithm CAN for producing the CANONICAL W.

Algorithm CAN(for producing CANONICAL W)
Input: The representation COMBINED W,
Output: CANONICAL W that represents IV.
1.1.1. for 1 <—  j  + 1 to  rii do
1.1.1.1. call SPLIT(W[1, j].QI 1, W[l, 1].QI_1);
2. for i *—  2 to  m  do
2.1. for j  <—  1 to  rii — 1 do
2.1.1. for 1 i—  j  + 1 to  rii do
2.1.1.1. call SPLIT(W [ij].QI_l, W[i,l].Ql_l);
2.1.2. for 1 <—  1 to  7ii—i do
2.1.2.1 call MATCH(W [ij].QI_l, W [i-1, 1].QI);

Asymptotic complexity of the algorithm CAN is 0 (n 2.m). The represen­
tation CANONICAL W specifies the requirement W~,  while the subsets 
that are present in W correspond to the blocks of the partitions rr,- for
1 < i < m.  Therefore, the representation CANONICAL W defines uniquely 
the optimal model Sy  that is consistent with IVj. In order to observe that 
the model is optimal one should note that the representation PARTITION 
W contains a minimum number of subsets enabling conversion of PARTI­
TION W into INITIAL W. Then, CANONICAL W removes only conflicts 
that are present in PARTITION W.
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5.4 Modelling sets specified by rank
Given is a model S r  and a subset of choice functions {/?/} is specified 
by a rank range R({h'}) in R(h). If the rank range ^({/i'}) in R(h) is 
2—tuple and if 2 > >  1, then basing on Ranking Theorem we can often 
make a more suitable model S'r that the given set {h1} would be specified 
by the rank range using this new model. The goal is to diminish 2 as 
much as possible that is possible only if {h1} is symmetric or if it contains 
very few non-symmetric and compact subsets. If it happens that the set 
{A} is non-symmetric with a big number of compact and isolated non- 
symmetric subsets {h'}k, then basing on Ranking Theorem, we know that 
an acceptable ranking model does not exist. Then, we can demand only 
an unranking model Sy  = < <  Gi >, 1 < i < W; {h'}gi > that the given 
set {/i'} =  {h'}gi instead we request S'r and specify {h/} by rank. Any way, 
we have always to make the unranking model S'u that {/i'} =  {h'jgr or if 
a ranking representation is needed and the set {h1} is non-symmetric, we 
can ask {/i'} C {h'}g< but z' is to be as small as possible.

There are the following methods for making a suitable model S'v  or S'R
(i ) replacing indexed family < < ?;> , 1 < i < m of the model Su  by its 

subfamily < G[ >, 1 < i  < m  that Q[ C Gi
(ii) imposing an additional requirement W \ ,
(in) both making a subfamily and imposing additional requirement.
Consider now making a subfamily < G\ >, 1 < i < m. For a given set 

{h1}, we make the sets Gi containing all the possible values h'(i) taken by 
all the choice functions h! £ {/r/}, 1 < i < m.

If it happens that {/i'} =  {h'}g'., then unranking modelling is finished 
since S'u —«  Q\ >, 1 < i < m\ W\ {h!}g> > . Otherwise, we have 
to have a partial choice mapping <  h'fa) ,  ..., h'(ip) > that the
requirement W  holds for it and no its extension belongs to {h'}, while 
M 4 )  £ G'i1, h'(i2) £ Gi2, ■■■, h'(ip) £ G(v - In order to make assertion that 
the Q property holds for the model S'R, we have to create the requirement 
W\  that the partial mapping < h'(ii), h'iy,), ..., h'(ip) > contradicts it.

The first example shows only the modelling by making the indexed sub­
family < G'i >, 1 < i < m.

E xam ple 5.4.1 Given is the model Su = «  G i> , 1 < i < 5, G iQ U  =  
{1,2,..., 9}; W(r) given in (1.1); {h}g{ >, and the set {h'j is specified by 
the rank range R({h'}) in R{h} as follows: {(9,3), (19,3), (25,3), (39,3), 
(45,3), (55,3), (74,3), (80,3), (90,3), (105,3)}. The task is to make the 
model S'r  that the value z' would be as small as possible for the correspond­
ing rank range R({h'}) in R{h'}, .

The indexed family for the model Su  is as follows:
Gi =  {1,2,3 ,4 ,5} , Go =  {2,3,4,5,6} , S3 =  {3,4,5,6,7} ,
Gi = {4,5,6,7, 8} , £5 =  {5,6,7,8,9} .
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Since the set {h}gi is symmetric, so we have the corresponding table 
DCM as follows:

170
35
15
5
1

35
20
10
4
1

15
10
6
3
1

Then, we can specify the set {/i'} as follows:
< 1, 2, 3, 6, 7 >, < 1, 2, 3, 6, 8 >, < 1, 2, 3, 6, 9 >,
< 1, 2, 4, 6, 7 >, < 1, 2, 4, 6, 8 >, < 1, 2, 4, 6, 9 >,
<  1, 2, 5, 6, 7 >, < 1, 2, 5, 6, 8 >, < 1, 2, 5, 6, 9 >,
< 1, 3, 4, 6, 7 >, < 1, 3, 4, 6, 8 >, < 1, 3, 4, 6, 9 >,
< 1, 3, 5, 6, 7 >, < 1, 3, 5, 6, 8 >, < 1, 3, 5, 6, 9 >,
< 1, 4, 5, 6, 7 >, < 1, 4, 5, 6, 8 >, < 1, 4, 5, 6, 9 >,
< 2, 3, 4, 6, 7 >, < 2, 3, 4, 6, 8 >, < 2, 3, 4, 6, 9 >,
< 2, 3, 5, 6, 7 >, < 2, 3, 5, 6, 8 >, < 2, 3, 5, 6, 9 >,
< 2, 4, 5, 6, 7 >, < 2, 4, 5, 6, 8 >, < 2, 4, 5, 6, 9 >,
< 3, 4, 5, 6, 7 >, < 3, 4, 5, 6, 8 >, < 3, 4, 5, 6, 9 > .
Then, we make the indexed family <G[> , 1 < i < 5 as follows:
Q[ = { 1, 2 , 3}  , Q'2 =  { 2 , 3 , 4 }  , g '3 =  { 3 , 4 , 5 }  , Q\ =  { 6 }  , Gr5 =  { 7, 8 , 9 } , 
We observe that for the model Sy  = «  G'i > , 1 < i < 5; W(i)  given in

(1.1); > there is {h'} = {h'}g^;. So, the process of unranking mod­
elling is finished. Since the set {h'}gr is symmetric, so we have the corre­
sponding table DDCM.

table DI3CM=

□
The following example of modelling demonstrates the method of impos­

ing the additional requirement W\ in order to produce the right model
Sfe.

E xam ple 5.4.2 Given is a table A[m x n]. The task is to represent all ta­
bles A' \mxn] obtained from A  by permuting its columns using permutations 
of m  whose rank is even.

The set {h'} is a subset of the set {h}c. for the model S r —«  Ei for 
n >, 1 <  i < n; W  given in (1.19),{/i}£4 >, <h, table DP> . We can 
specify the set {/i'} by the rank range /?({h'}) in R(h). Then, R({h'})  = 
(2k, 1), where k — 1, 2, ..., | {h}^. | . This model of the set {h 'j is very 
cumbersome, therefore we will replace it with a more suitable one. The set 
{h'} is symmetric therefore, basing on Hanking Theorem, we can build 
a model S'R that {h1} =  {h'}£',. For making the corresponding unranking 
model, we observe that the indexed family < £■ >, 1 < i < n  is the same 
as the indexed family < £{ > , 1  < i < n. So, the structure of the model S[,

6 3 1 0 1

CO 2 1 0 1
1 1 1 1 1
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is as follows: < <  Si for n >, 1 < i < n; W  given in (1.19); W); {/i}^ > • 
The goal is to make the requirement W \ .

Observe, for permutations of n  whose rank is even, we have h{n — 1) > 
h(n). For making the table D’ we note that it is a modified table DP[n x n]. 
Since for each prefix h'( 1), h'(2), ..., h'(n — 2), we have exactly one choice 
function h1 G {h'}e’. Consequently, that is valid for fixed prefixes h'( 1), 
h'(2), ..., h'(n — 1), so the entries D[j, i] — 1, 1 < j  < n, n -  2 < i < n. 
Then, we observe that each D'[j, i] =DCM[j, i \ /2, 1 < j  < n, 1 < f < n — 3, 
since for each valid prefix /i'(l), h'{2), ..., 1 < i < n — 3, we have
half of all the possible permutations. For instance, the table D’ for n — 4
is as fry

D’=

lows:
3 1 
3 1 
3 1 
3 1

□
For other tasks of modeling, we can use both modelling the indexed sets 

and imposing additional requirements W.

5.5 Tabular criterion for congruence of 
representations

The main motivation for considerations given in this section supplies the 
Example 5.2.2 presented on page 96. We can have one representation model 
Su  or a collection of models < Sy  >, 1 < k < m. Correspondingly, we can 
have one model S r or the collections of models < S r  >, 1 < k < m. 
The models can be specified as follows: Sr = «  >, 1 < i < k,
W k\ W^\ {h}gk >, Table Dfc[n x k] >, while S r  = < <  Qi >, 1 < i < m,  
W ; W \ ; {/i}^ >, Table D[n x m] > . The goal is to develop a criterion 
enabling us to state formally that there is a congruence between these two 
representations.

P ro p o sitio n  5.5.1 I f  there is congruence between the representations S r 
and < S r >, 1 < k < m, then, D[i, j] = £T=i j}-

Proof. If the representations S r and < S r >, 1 < k < m,  correspond 
to the same collections of combinatorial objects, then we have to have the 
mapping r/ and the collection of mappings < ?]k > that rj : {h}gi — >< 
S'  > ,while r)k : {h}gk — >< S'k > . Observe, h = <  /i(l), h(2), ..., h(m)  >, 
while hk =< hk{ 1), hk(2), ..., hk(k) > . The substructure 5 ” is a subset 
of S =< A\,  Ao, A u > that contains k —elements. Then, r/(h(l), h(2), 
..., h(m)) = T](h(l), h(2), ..., h(k) = gk(hk). It means, we could extend 
the choice function hk into a choice function h'k = <  hk(1), /ifc(2), ...,
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hk(k), h,k(k + 1), h,k(m ) > that r]k(hk(l), hk(2), hk(k), h,k(k + 1),
h'k(m)) = hk( 1), hk(2), hk(k)). Since that holds for all the choice

functions {h}gk, so the model SR =  < <  Qk > , 1 < i < k, W k; W k; 
{h}gk > can be replaced with the model = «  Gk >, 1 < i < m, 
W k; W k; {h!}gk >, where | Q{ |=  1, 1 <  j  < k.

Let Dfc[n x k] be the table D for the model S R, while D,/c[n x m] being 
the table D for the model S Since there is only one choice function h,k 
for the prefix hk, so D’fc[f, j] — 1, 1 < i < n, for k + 1 < j  < m  and D’fc[z, 
j] =D fc[z, j } for 1 < j  < k.

Since each choice function of both representations is to be assigned to 
exactly one combinatorial object S', so we have to have | {h}gi \ =  Y^k=i I 
{/i}gk | . Then, for each hk e exists h € {h}a; that r](h) — rjk(hk),
since both h and hk are assigned to an object S'.

Hence, D[i, j } = £X=i j ]

□
By similar arguments, we can also show that if there is a congruence 

between two representations S r and S'R regardless what indexed families 
are, then the conclusion of the above proposition holds.

5.6 Conclusions
We have shown the state of art concerning the models of sets of combinato­
rial objects. The sets of combinatorial objects are represented by means of 
Su and S r  models. The choice function approach is much superior than the 
classical approach since the models developed here are both homogeneous 
and flexible enabling us to represent in a number of ways detailed speci­
fications of a given set of combinatorial objects. We have also developed 
formal methods for testing equivalence of different models and transfor­
mations of models. The formal method for diminishing the requirement 
W  to be tested has important practical meaning enabling us to diminish 
consequently the time of the generation of the concerned set of combinato­
rial objects. The tabular criterion for congruence of representations enables 
us to test quickly whether two different models represent the same set of 
combinatorial objects.
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6
Generation models

This and the next chapters are concerning the models Su  and S r  that are 
reduced and the Q property holds. Therefore, we do not assume at each 
time that a model used is reduced and the Q property holds.

6.1 The systems < Methods >

The ranking and unranking models are input data to be used by computer 
systems for the generation and for processing combinatorial objects. We de­
velop the basic < M e th o d s  > systems containing algorithms (procedures) 
to be used as routines for sequential, parallel or distributed computations. 
In fact, we have generally two < M e th o d s  > systems those using the un­
ranking models S u  and those using the ranking models S r .  The systems 
< M y  > and <  M r  > are related to Su and S r ,  accordingly. For both 
systems < M y  > and < M r  > we use the rank concept according to an 
accepted order <h, usually it is the lexical order.

The system My  contains only three algorithms < F IR S T ,  N E X T ,  
L A S T  >. The algorithm F I R S T  takes a given unranking model Sy  
as input data and it returns the choice function h € {h}git whose rank 
R(h) — 1. The algorithm N E X T  takes a given model Sr , the choice func­
tion h e  {h}gi as input data and it returns the choice function h' G {h}gi 
that R{h') =  R[h) +  1. The algorithm L A S T  takes the model Sy as input 
and it returns the choice function h' € {h}g(, whose rank R(h') = | {h}gi | 
as output.
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The system M r  contains algorithms < R A N K ,  UN R A N K ,  R A N G E  > 
The algorithm R A N K  takes a given choice function h E {h}g{ as input 

and it returns its rank R(h) as output. The algorithm U N R A N K  takes an 
integer k\ 1 < k < | {h}gi ( as input and it returns a choice function h whose 
rank R(h) = k as output. The algorithm R A N G E  takes a given subset 
of choice functions (h'} C {h}gt as input and it returns the rank range 
R({h})  in R(h)  as output. Since the specified methods use a proper table 
D as input, so we could say that the system M r  contains also algorithms 
M A K E T A B D  to be used for producing a proper table D. The algorithms 
M A K E T A B D  were widely discussed in Chapter 3.

The system < Methods > has very important general properties. Namely, 
we have the general algorithms F IR S T ,  N E X T ,  LAST, M A K E T A B D ,  
R A N K ,  U N  R A N K ,  R A N G E  that can be used for any particular model 
Su  or S r ,  respectively. Such general algorithms are rather very complex, 
nevertheless they enable us to produce output at any particular instance of 
the model. For specific classes of models we develop algorithms dedicated 
to them. These algorithms use detailed properties of those classes of models 
and therefore they are less complex than their more general counterparts. 
In fact, the classes of models can be organized in a hierarchy represented by 
a tree whose nodes correspond into the mentioned classes of models. Then, 
dedicated optimal algorithms are produced for the nodes. For instance, we 
have general algorithm N E X T  that can be used for every given model 
Sy.  We have also algorithm N E X T  for all the increasing choice functions 
and certain specific requirements W\. Moreover, if the indexed family is 
the minimal non-deformed family then there is another N E X T  algorithm 
dedicated. The dedicated N E X T  algorithms are also developed for special 
models containing deformed indexed families. Similar- hierarchy of other 
algorithms from the system < Methods > can be produced for other spe­
cific classes of models. Existence of the general algorithm and of optimal 
dedicated algorithms is very convenient for development computer system 
using object oriented programming. Then, one having specific model Sy  or 
S r  can use directly an algorithm existing in the system or he can modify 
it in order to make it less complex for the possessed data. Getting low 
time complexity of the algorithm N E X T  applied is especially important 
since that algorithm is called 0 (2n) times for the generation of the sets 

Then, even reduction of one substitution in the applied algorithm 
gives reduction of 0 (2 n) instructions if exhaustive generation is concerned. 
Complexity of the algorithm U N  R A N K  is also very essential especially if 
we have to generate a subset of choice functions {/¿'} C {h}gt and the rank 
range R({h'})  in R(h) is 2—tuple and 2 »  1. Time complexity of other 
algorithms from <  Methods > is less important, we use these algorithms 
a few times during the generation of a given set, if any.
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6.2 Implementation notes
We could develop algorithms for the system < Methods > using natural 
data structures, i.e., those used for the models S r  and Sy.  Then, using the 
given algorithms one could modify them for developing the corresponding 
programs selecting simultaneously the most suitable data structures. If the 
programs are to be written in PASCAL or other high level language then, 
a programmer has to his disposal numerous data structures including set 
structures. For the algorithms belonging to < Methods > the most com­
mon and most important operation is q £ Gi- It is known that the set 
operation 'q in G ' takes three times more time than the corresponding 
tabular operation C[<7] —T R U E  that implements ’q in Q ’. Therefore, im­
plementation of indexed families is made mainly in order to get complexity 
of testing whether q £ Gi as low as possible. Moreover, we select a most 
suitable implementation in order to find a minimal value qi £ Gi that for 
a given value h(i — 1) € Gi the value qi satisfies the requirement W, so we 
can have h{i) = qi .

The implementations of indexed families: (6.1)

* Each indexed set Gi is ordered increasingly. An indexed family < Gi >, 
1 < i < m,  can be represented by two tables of integers Q[n x m] and 
Y[n x m). Let q\ and qi belong to Gi, while y\ and y2 being the rank 
of qi and qi in Gi, respectively. Suppose, q\ < q < qi and q £ Gi, then 
2/2 =  J/i +  I- The entries of the tables Q and Y  are defined as follows: Q{qi, 
*] =  2/1, Q[q, i\ =  2/i, Q[<72,i] =  2/2, While Y[yu i] = qu Y[iji, i] = q2. We 
emphasize the given assignments do not correspond to x(Gi) neither into 
ord(q, Gi), unless the indexed family < Gi >, 1 < i < rn is the maximal 
or the minimal non-deformed indexed family. We can use for an algorithm 
both tables Q and Y  or only one of them.

** An indexed family < Gi >, I < i < m  can be represented by Boolean 
tables G[n x m], where G{j, i] = T R U E  corresponds to j  £ Gi, while G[j, 
i] =  F A L S E  corresponds to j  $ Gi- Moreover, we use additionally the table 
y  as given above. Then, x(Gi) € Gi corresponds to G\Y\x , i], i] =  TRUE.

*** An compact indexed family < Gi >, 1 <  i < rn, i.e., Gi — {minj, 
mini +1, max,} can by represented by an array of integers AG {2 x m] 
that AG{ 1, i] = mini, while AG[2 , i] =  m axj. Then, ”q in Gi” is represented 
by the following Boolean expression ”({q < =  AG[2, ¿]) A N D  (q >= AG[i, 
i])) =  T R U E ” or simply by ”{(q <= AG[2, ij) A N D  {q > =  AG[ 1, i]))” .

**** The canonical representation given by tables GI  and X  representing 
the minimal non-deformed indexed family <  Q™'n >, 1 < i < m,  for the 
given < Qi > , 1 < i < m.  The value x = X[q, f] equals ord{q,G'jnm), while 
Gl[x,i\ equals to x(Gi).

The given data structures proposed for representing indexed families 
enable us to diminish the time of performance of the operation "q £ Gi” ■
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Moreover, we can easily produce the next and reasonable value q that is to 
be tested.

6.3 The algorithm N E X T

Given is unranking model Su —«  Gi >, 1 < i < m; W ; Wi; {h}gi >, 
the requirements W  and W\  are arbitrary, the indexed family < Gi >, 1 < 
i < ml, is arbitrary except the model is reduced and the Q property holds. 
The algorithm N E X T  takes a choice function h as input and returns the 
choice function h' as output that R(h') =  R(h)+1, however we do not know 
neither evaluate the ranks R(h) and R(h') . The basic algorithm N E X T  
concerning any model Su  is a part of the algorithm ’’choice function” given 
in [19]. We rewrite now the part of the algorithm ’’choice function” that 
corresponds to the general algorithm N E X T .

Algorithm N E X T  (general)
Input: A given reduced model Su,  the table IA  that the value IA[i\ 

represents h(i).
Output: The table IA[i] representing the custom form of the next choice 

function.
Method: At the beginning the table 7.4 represents the custom form of 

the previous choice function
1. i *—  m;
2. w hile {IA[i} could not be increased for fixed < 7A[1], 7A[2],..., IA[i — 

1] >) do
' 2.1. i *—  i -  1;

3. IA  [i] ■—  min{j : j  £ Gi and j  > IA(i)  and j  satisfies W  A Wi};
4. for p *—  i 4-1 to  m do
4.1. 7.4[p] ♦—  min{j : j  £ Gi and j  satisfies W  A IIq }:
5. return 7.4.

Asymptotic complexity of this algorithm is changing from 0(n.m)  to 
O(m) depending on the indexed families, on the requirements IT and W\ 
and on the implementation. The process of production h! depends also 
strongly on h. For the best case, we have also complexity fi(l) since up­
dating only the value h(m) — IA[m can be enough for producing the next 
choice function. In fact, for numerous practical models Su  the complexity
0 0  is independent from m, then we haw usually 0 (n ) or 0(1). Frankly 
speaking the number of runs of the step 2. on average was only two for 
numerous practical models tested. That result can be justified analytically 
as follows.

Let < Gi >, 1 <  i < t, be a subfamily of the indexed family < Gi >,
1 <  t <  m . while the requirements IT and ITi being unchanged, t < m.
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Suppose, the number of choice functions {h}t for a given t is two times 
greater than the number of choice functions {h}t-i for t — 1. Then, for 
each prefix h £ {h} t -1, we have two choice functions hi and /12 belonging 
to the set {h}t. We have R(h2) =  R(hi)  +  1. Then, we need to modify 
only value h(t) in order to produce /12 from h\.  Hence, the number of 
choice functions {h } t/ 2  requires only one run of the step 2. to be produced. 
Similarly, the number of choice functions {h}t/ 4 requires two runs of the 
step 2. and so on. Then, the average number of runs of the step 2. equals 
ihh/l±l:W‘/ 4+3|W t/8 + ..; .+ rn W t/2 "  <  % fof fche mQst of th e  m odels

Su practically used, we have 0 (n ) or 0(1). We have to emphasize that the 
above result does not concern all the possible models Su- For instance if 
| Qi |>  1 and | Qi |= | Qz |=  ... = | Qm |=  1, then the average number of 
runs of the step 2. is m.

Time complexity of the algorithm N E X T  is also dependent on partic­
ular implementation used, especially representation of the indexed family 
is important. The form of the requirements W  and W\ used and their im­
plementation are also effecting complexity of the general algorithm. We 
will present now selected variants of this general algorithm, by variants we 
mean also different implementations concerning the data structures used. 
The whole number of specific variants of the given general algorithm is 
really huge, so optimal selection requires examination of the detailed prop­
erties of the model Su- Therefore, our goal is not a presentation of all 
the possible variants of the general algorithm but rather presentation of 
mechanisms that can be used for production a most suitable variant for 
particular circumstances.

6.3.1 For increasing functions
Given is the unranking model Su  = < <  Qi > , 1 < i < m; W  given in
(1.7); Wi; {h}gi >, the requirement W\ is arbitrary, the indexed family 

< Qi >> 1 < i < rn is arbitrary. Implementation: the indexed family < Qi >, 
1 < i < m,  is implemented as Boolean table G[n x m], moreover, AG{2 x m) 
is the table of maximal and minimum values max(5i) and min((5i) that 
AG[i, 1] =  min(^j) and AG[i, 2] =  max(^j), see (6.1), page 119.

Algorithm N E X T l  (Increasing choice function)
Input: The model Su,  the table IA  represents current h(i), see algorithm 

N E X T .
Output: The table IA[i] representing the custom form of the next choice 

function.
Method:
1. i *—  m;
2.1. w hile IA[i] =  AG{2,i) do
2.1.1. t «—  * — 1;
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3. IA[i] *—  IA[i] +  1;
4. for p *—  i to  m do
4.1. w hile G[IA\p], p] - F A L S E  or W\ does not hold do
4.1.1 7A[p] *—  IA\p] + 1;
4.2. IA\p + 1] <—  IA\p +  1] +  1;
5. re tu rn  I  A.

Asymptotic complexity of the above algorithm is 0 ( n  +  m), where n = 
max(W) — min(W). Since n > m, so we have 0(n).  One can prove it by 
observing that the step 4.1. can be performed at most n times in the course 
of running the algorithm. Time complexity is much reduced in comparing 
with the algorithm N E X T .  We reached it by proper implementation of the 
functions max and m in . If the requirement W\ is of the form h(i)RE[h(i — 
1), i], then we can diminish the number of runs of the step 4.1. It can be 
obtained by diminishing the number of cases, when G{IA\j>], p] =  F A L S E  
and/or by diminishing the number of cases when W\ does not hold.

Given is the model Su  as specified in the previous case except n  is big 
and the indexed sets Q, are not dense the requirement W\  is arbitrary. In 
order to diminishing the number of the tests G[/A[p], pj =  F A L S E  we use 
additionally the tables Q and Y  for representing the indexed family, see
(6.1), p. 119. Then, we have the following algorithm N E X T IR G .

Algorithm N E X T I R G  (increasing choice function with Reduced num­
ber of test G[/A[p], p] = FALSE)

Input: The model Su,  IA.
Output: IA.
Method: The tables Q[rt x m] and Yin  x m] are used for representing the 

indexed family <  Qi > , 1 <  i < m.
1. i *—  m;

5.1.2. IA[p] * Y[y. p];
5.2. if Q [/A |p j-rl,p -f  1] =  Q[IA'j>],p+1] th en  y -—  Qi/.4[p]-f l ,p  +

2. w hile IA[i’ =  AG[2,j] do 
2.1. i *—  t -  1;

4- IA\i] —  Y[y. *];
5. for p *—  i to  rn do
5-1. w hile IFi does not hold for 7,4[pi do 
5.1.1. y '—  y -f 1;

^  + 1else y *—  Q[/.4[p] 4- l ,p - f  lj:
5.3. i a \j) +  i] *— Y [ y , p + 1];
6. re tu rn  I  A.
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We have assertion that the step 5.1. is performed only for values IA\p] G 
Qi, since IA \p+  1] evaluated in the step 5.3. takes only values that belong 
to It means that the asymptotic complexity of the step 5.1. is dependent 
on the average cardinal [ Qi | . Then, we have 0 (| Qi | +m) and G(l). Using 
similar data structures for representing COMBINED W, we can produce an 
algorithm for diminishing the number of questions whether the requirement 
W\ is satisfied or not. Observe, in order to get a simple structure of the 
above algorithm we accept performance of steps 5.2. and 5.3. for m  + 1 
that is useless. Changing the range of the loop 5. to ’for p <—  i to  m — 1 
do’ and repeating the steps 5., 5.1., and 5.1.1. for I =  m, we get minimum 
time complexity of the above algorithm.

If the model Su  = < <  Qi >, 1 < i < m; W  given in (1.7); {h}gi > does 
not contain the requirement W \ , then the following algorithm N E X T Y V W  
that is a simplification of the above given algorithm could be used.

Algorithm N E X T T V W  (increasing choice function with Void require­
ment W_ i)

Input: The model Su, I  A.
Output: I  A.
Method: The tables Q[n x m ] and Y[n x m ] are used for representing the 

indexed family < Qi >, 1 < i < m.
1. i <—  m;
2. w hile IA[i] = AG[2,i] do
2.1. i <—  i -  1;
3. y <—  Q[IA[i], i] -f 1;
4. I A \i) <—  Y[y, *];
5. for p <—  i to  m  — 1 do
5.1. if Q[IA[p] +  1, p +  1] =  Q[IA[p\, p +  1] th e n  y <—  Q[IA\p\ + 1, 

P+ 1] +  1
else y <—  Q[IA\p) +  1, p +  1];
5.2. IA\p + 1] <—  Y[y, p + 1];
6. re tu rn  I  A.

We have assertion that for evaluation of each value IA[i] only a fixed 
number of steps is needed. Therefore, we have O(m) and fi(l). Nevertheless, 
time complexity of the step 5.1. is rather big. The next considerations 
are made in order to diminish time complexity if the model Su  satisfies 
additional assumptions.

Given is the model Su = «  IZi >, \  < i < m \W  given in (1.7); 
{h}ni >,  while the indexed family <TZi >,  1 < i < m, is defined in page 
20, | IZi |=  n and it is the maximal indexed family.

Algorithm N E X T I M A X  (increasing function of MAXimal families) 
Input: The model Su, the table IA[m + 1], the first m — entries represent 

current h(i), see algorithm N E X T .
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Output: The table JA[i] representing the custom form of the next choice 
function.

Method: We use only the table AG  as the representation of the indexed 
family < TZi >, 1 < i < m.

1. i <—  m\
2. w hile IA[i\ — AG[2,i) do
2.1. i +—  i — 1;
3. IA[i\ <—  IA[i) +  1;
4. for p <—  i to  m  — 1 do
4.1. IA\p +  1] «—  -fA[p] T (ip +  1;
5. re tu rn  I  A.

Asymptotic complexity of this algorithm is 0(m)  since each value IA[i] 
is updated at most once. If we replace the step 4.1. with ”4.1. IA\p] <—  
IA[p] +  1”; then we get the well known algorithm for the generation of the 
next combination of m —elements out of n [15]. One can observe it by noting 
that for all the elements ai =  1 the indexed family < IZi >, 1 < i < m, 
becomes the family < A i > , l < i < m  and the requirement W  is the same 
as specified in (1.1).

Given is the unranking model Su —<< Vi >, 1 < i < m; W  given in
(1.7); {h}vi >  that min('Pj) > m a x ^ - i )  + a j ,  2 < i < m. Suppose, n is 

big and the indexed sets are not dense.

Algorithm N E X T IS E P  (Increasing function for SEParated indexed sets) 
Input: The model Su,  the table IA[m + 1], the first m — entries represent 

current h(i), see algorithm N E X T .
Output: The table IA[i\ representing the custom form of the next choice 

function.
1. i <—  m\
2. w hile IA[i\ = AG[i, 2] do
2.1. i <—  i — 1;
3- y *—  Q[IA[i], i] + 1;
4 . IA\i] Y[y, ¿];
5. for p <—  i +  1 to  m do
5.1. IA\p\ <—  AG[1, p];
6. re tu rn  I  A.

Asymptotic complexity of the above algorithm is 0{m).
Given is the unranking model Su as specified above. Moreover, the in­

dexed sets are compact. Then, we have the following algorithm.

Algorithm N  EXTICOM  ( Increasing function for CO kin act sets)
Input: The model Su,  the table IA[m + 1], the first m ~  entries represent 

current h{i), see algorithm N E X T .
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Output: The table IA[i) representing the custom form of the next choice 
function.

1. i <—  m;
2. while IA[i\ =  AG[2,i] do
2.1. i <—  i - 1 ;
3. IA[i) IA[i] + 1;
4. for p <—  i + 1 to m  do
4.1. iA\p] <—  AG[l,p\;
5. return I  A.

This algorithm seems to be the simplest for the generation of the next 
increasing choice function. Its asymptotic complexity is 0(m),  while time 
complexity is the lowest possible.

The mechanism shown in this section applied for diminishing complexity 
of searching for a next element to be tested can be adopted for numerous 
requirements W.

6.3.2 For monotonic functions
For each variant of the general algorithm concerning the increasing choice 
functions, we can produce its counterpart dedicated to the monotonic choice 
functions. All the mechanisms are similar except substitution IA\p+\]  <—
IA\p] +  1 we replace with IA\p + 1] <—  IA\p]. The other evaluations of
IA[i\ treated similarly.

6.3.3 For bijections

Given is the unranking model Su = < <  Si >, 1 <  i < m; W  given in
(1.19); W\\ {h}s, >, where Si C U. For development of the algorithms 
N E X T  that are to be used for the generation of bijections the most im­
portant arrangement concerns testing satisfiability of the requirement W  
given in (1.19). We use one-dimensional array of Boolean variables B  which 
size equals max(U). Initially, B[q\ =  T R U E  if q e  U. Then, we have the 
following algorithm N E X T B .

Algorithm N E X T B  (algorithm N E X T  for choice Bijections)
Input: The model Su, the table I A  represents current h(i), the table B. 
Output: The table IA[i] representing the custom form of the next choice 

function.
Method: At the beginning we have B[q] = T R U E , if and only if, q G U 

and q ^  h(i) for every i G {1, 2, ..., m}.
1. i <—  m;
2. while IA[i] = AG[2, i] do
2.1. B[IA[i\] <—  T R U E ;
2.2. i <—  i — 1;
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3. IA[i] 7A[t] +  1;
3.1. w hile i?[/A[z]] =  F A L S E  or W\ does not hold do
3.1.1. IA[i] <—  IA[i) +  1;
4. B[IA[i]] <—  FALSE-
5. for p <—  i +  1 to  m  do
5.1. IA\p] <—  AG[l,p\-,
5.2. w hile B[/A[p]] =  F A L S E  or W\  does not hold do
5.2.1. IA\p] *—  IA\p} +  1;
5.3. B[IA[i]] —̂  F A L S E ;
6. re tu rn  I A , B.

Asymptotic complexity of the algorithm N E X Y B is O(n.m) since for 
each value i one can need to perform 0 (n) searches for a suitable value 
JA(i).

Given is the unranking model Su = < <  Si >, 1 <  i < m; W given in
(1.19); {h}^. >, Si C U, | U | and the indexed sets Si are not dense, in 

other words max(if) » |  U | . In order to diminish the number of runs of 
the loops ’’w hile” , we make the similar arrangement as was given for the 
algorithm NEX TIR G .

Algorithm N E X T E N T  (choice Bijection for Not—Thick indexed sets) 
Input: The model Su,  the table I  A, the table B,  the tables Q, Y  and 

AG.
Output: The table IA[i] representing the custom form of the next choice 

function.
Method: At the beginning we have B[q] = TRUE,  if and only if, q G U 

and q ^  h(i) for every i G {1, 2, ?n}.
1. i i—  m;
2. w hile /A(i] =  AG[2, i] do
2.1. B[IA\i]]<—  T R U E ;
2.2. i *—  i -  1;
3- y '—  Q[/A[i], ij + 1 ;
4. -M[ij —  Y[y, t);
5. w hile .B[JA[i]] =  F A L S E  do
5.1. y <—  y +  1;
5.2. IA[t\ *—  Y[y, ij;
6. B[IA[i][ •—  F A L S E ;
7. for p *—  i -f 1 to  m do
7.1. IA\p) —  AG[l,p];
7.2. y *—  1;
7.3. w hile B[IA\p]\ = F A L S E  do
7.3.1. y *—  y +  1;
7.3.2. IA\p\ —  Y[y, t);
7.4. B[/A[p]] *—  F A L S E ;
8. re tu rn  I  A. B.
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The steps 5. and 7.3. can be performed at most ¿—1 times for each value 
i and p, respectively. Therefore, the asymptotic complexity of the above 
algorithm is 0 ( m 2). Since n > m,  so the above algorithm is less complex 
than the previous algorithm N E X T B.

Given is the unranking model Su  =<<U j >, 1 < i <  m ; W  given in
(1.19); >, jUi |=  m,  U; =  II, were max(Uj) >|Ui |, so the sets U;

are not dense. Then, we have the algorithm N E X T B P E R  using a stock.

Algorithm N E X T BPER (choice Bijection or PERmutation)
Input: The model Su,  the table I  A,
Output: The table IA[i] representing the custom form of the next choice 

function.
Method:
1. i <—  m  — 1;
2. push IA[m] on the stock;
3. w hile IA[i] < IA[i +  1] do
3.1. push IA[i] on the stock;
3.2. i <—  i — 1;
4. for p <—  m  to  i do
4.1. pull IA[p] from the stock;
5. re tu rn  I  A.

The asymptotic complexity of the algorithm N E X T  BPER is O(m), since 
the steps 3. and 4. can run at most m —times. This algorithm is well known 
for producing permutations [53].

A proper algorithm for producing bijections piecewise increasing we pro­
duce combining a proper version of the algorithm N E X T l  with the corre­
sponding version N E X T B .  Then, the set of indexes I  = {1, 2, ..., m} is 
partitioned in two parts Ijj and / /  for index i belonging to I s , we have to 
test satisfiability of the requirement given in (1.19), while for the indexes 
belonging to I j  the requirement (1.1) is to be tested. Given is the model 
Su = «  Qi >, 1 < i < m ; W  given in (1.19) for i € Ib  and W  given in
(1.1) for i € Ic\  IP]; {/i}g, >, where 5, C U. The other arrangements are 
the same as for the algorithms N E X T B  and N E X T l .

Algorithm N E X T B l  (choice Bijection piecewise Increasing)
Input: The model Su,  the table I A  represents current h(i), the tables B  

and Ic-
Output: The table IA[i\ representing the custom form of the next choice 

function.
Method: Similar as given for the algorithm N E X T B .  Moreover, we make 

one—dimensional Boolean table I C  whose size is m. If i € Ic  then IC[i\ = 
T RU E  else IC[i] = FALSE.

1. i *—  m;
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2. w hile IA[i] =  AG[2,i] do
2.1. B[IA[i}] T R U E ;
2.2. t i t  — 1;
3. IA[i) <—  7A(z) +  1;
3.1. w hile B[IA[i}] — F A L S E  or Wi does not hold do
3.1.1. IA[i] 4—  T4[i] +  1;
4. B[IA[i]\ *—  FALSE-
5. for p <—  i +  1 to  m  do
5.1. if IC[i] = T R U E  th en  IA\p] <—  I A \ p -  1] +  1 else IA\p)

AG[ltp]',
5.2. w hile B[IA[p\] =  F A L S E  or W\ does not hold do
5.2.1. IA\p] IA\p} + 1;
5.3. B[JA[*]] <—  F A L S E ;
6. re tu rn  I  A, B.

Observe, the above algorithm differs only from the algorithm N E X T B  
by step 5.1. The algorithms NEX TICO M  and NE X T ISE P  can also be 
used without any modifications for producing choice bijections if the in­
dexed families of the corresponding models Su  applied satisfy the specified 
requirements for these algorithms. That illustrates the statement saying 
that the same set of choice functions can represent both a set of partitions 
and a set of compositions.

6.3.4 For hierarcMcal systems
Given is a hierarchical unranking representation model

{ System for  J  generation
«  Qj >, j  G J\ W  / ;  {/}g;. > as specified in (1.22).

«  Qi > , 1 < i < m\W] {h}Gi >
The models < <  Qi > ,1  < i < m;W ; {h}gi > and < <  Qj >, j  € 

J\ W  ^; { f } s  j > are reduced and the Q property holds for each model. 
The requirement is the restriction of the requirement W  and the set 
/  € {f}gj  makes a partition 011 the set of choice functions {hjg ,. We have 
here two tasks:

(i) generate the next choice function /  for the model < <  Qj >, j  € 
J ; W  f-, { f } Gj >;

(■ii) generate the next choice function that is an extension of /.
Generation of the choice function /  does not create any problem since the 

general algorithm N E X T  or any its version dependent on specific proper­
ties of the model < <  Qj >, j  e J \ W  { / j ^  > can be applied directly. 
We use denotation N E X T ( f )  in order to emphasize that the next choice 
function /  G { f}g} is to be generated. The generation of each next choice 
function h.f that is an extension of /  creates additional problems. We use 
denotation N E X T ( h f , / )  in order to emphasize that the target is the gener­
ation of each next choice function h? being an extension of / .  Then, holding
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the Q property for the model «  Gi >, 1 < i < m; W; {li}Gi > is not suf­
ficient for making the backtracking-less algorithm N E X T { h f , / ) .  In order 
to make assertion that the algorithm N E X T { h f , / )  could be backtracking- 
less, we have to modify the model < <  Gi >, 1 < i < rn\ W; {h}g. > for 
each choice function /  € {f}gr  This modification can be done by restrict­
ing the indexed sets Qi into the sets Q[ and/or by imposing additional 
requirement W®. Then, for each choice function /  € {f}çj ,  we have the 
model «  Gi > ,1  < i < m \W \  W <f \ { h ^ } g i >, where Q{ Ç Qi for ev­
ery i £ (1, 2, ..., m).  The requirement W 9  has the same meaning as the 
requirement W\ from the point of view of the generation of the choice 
functions h f , i.e., we have to test satisfiability of W  A W® for each next
ht £ {¡F}. Making the requirement W j  is a matter of individual con­
siderations, nevertheless if the requirement W  specifies increasing choice 
functions or monotonie choice functions or bijections, then we can follow 
the general results concerning satisfiability of the Q property.

For instance, if W  is given in (1.1), then W f  is specified as follows: 
h(jp) > h(jp_ j) +  (jp — j p_i  +  1). For creating the requirement W f  or for
restricting the sets Gi into the sets Qj, we have to follow Proposition 1.2.1. 
Then, for every i that j'p_i > i > j p, we have to have h(i) < h(jp) — (jp — 
i +  1).

If the set {h}gi is a set of bijections, then W f  is a proper restriction of the 
requirement (1.19) into the set of indexes J. Then, the requirement W® can 
be specified as follows: h(i) h(j\), h(i) £  h(j2), ..., h(i) ■£ h(jr). Observe, 
the requirement W® concerns all bijections, so it must be followed if we 
generate bijections piecemeal increasing or if we generate a set of increasing 
choice functions, since each increasing choice function is a bijection.

Algorithm N E X T ( f )
Input: The hierarchical model specified in (1.22), the requirement , 

current choice function / .
Output: The next choice function /  £ {f}çj
Method: We represent function /  by the table IA  that size is m since 

the partial choice function /  is to be extended up to the choice functions 
hf  . Nevertheless, only elements LA  indexed by j p £ J  are to be updated.

!• jp < jr'i
2. w hile IA[jp\ = max(ćqp) such that holds do
2.1 .  p <—  p -  1;
3. IA[jp] *—  min{<7 : q £ Gjp and q > IA( jp) and q satisfies W ^};
4. for s <—  p +  1 to  r  do
4.1. IA[js\ *—  min{<7 : q £ Gj, and q satisfies Wf};
5. re tu rn  I  A.

Asymptotic complexity of this algorithm is 0 ( | J  \ .max(| Gjp I))
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The general algorithm N E X T ( h f , f )  for the generation of each next
h.f £ {hf}  is given as follows.

Algorithm N E X T ( h f , f )
Input: The hierarchical model specified in (1.22), the requirement W®, 

a choice function / .
Output: The next choice function h £ {/¡^}
Method: Each choice function h £ { F }  is an extension of a choice func­

tion /.
1. i <—  m;
2. w hile i £ J  or IA[i\ = max(f?/) do
2.1. i<— i — 1;
3. T4[i] <—  min{q : q £ Q{ and q > IA( i ) and q satisfies W  A W® };
4. for p <—  i +  1 to  m  do
4.1. if p J  th en  IA[p] *—  min{<7 : q £ Q{ and q satisfies W  A W®}]
5. re tu rn  I  A.

Asymptotic complexity of the algorithm N E X T ( h *, / )  is 0(n.m),  so 
it is the same as for the algorithm N E X T .  We can follow the general 
technics for diminishing the asymptotic complexity of the proper version 
of the algorithm N E X T  for creating the proper version of the algorithm 
N E X T ( h f . f )  or N E X T ( f ) .

6.4 The algorithms F I R S T  and L A ST

The algorithm F I R S T  applicable for any given model Su  is as follows:

Algorithm F I R S T
Input: A given reduced model Su-
Output: The choice function hfirst € {h}g, whose rank R(h) equals 1.
1. for i t—  1 to  m do
1.1. <—  min(C?i);

Using these general F I R S T  algorithm, we could make its different im­
plementations depending on realizing the functions min() and max(). For 
instance, if we use the model as specified in (1.2), then the step 1.1. can 
be replaced with 1,1. /)/,>.« (0 *—  i- Se\’eral tiifferent \nriants of the gen­
eral F I R S T  algorithm suitable for dedicated types of models Su  could be 
developed. Nevertheless, no variant of the general F I R S T  algorithm would 
have any practical meaning since we run the algorithm F I R S T  only once 
in the course of the generation of a set of choice functions, so its complexity 
does not matter.
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If we replace the step 1.1. of the algorithm F I R S T  with 1.1. hiast{i) <—  
max(^j), then the general algorithm L A S T  is obtained that produces the 
choice function hiast- The algorithm L A S T  runs also only once in the course 
of the generation, so its optimization has no practical meaning. Neverthe­
less, the concept of usage of h[ast leads to bulky computations since we 
have to test whether each generated choice function h equals h[ast, in order 
to break the generation process. That gives necessity of additional 0(2") 
comparisons. The problem is even more important if testing whether h 
equals hiast requires performance of several instructions. In order to di­
minish this additional computations, we can change the concept of the 
algorithm LAST.  It can produce not the last choice function hiast but only 
a message that the choice function generated currently is hiast. Then, for 
proper selection of the detailed output of L A S T , we have to examine the 
proper algorithm N E X T .  If the algorithms N E X T  given in the previous 
sections were returning the value i, then i =  0 could be used as the stop 
condition for the generation of the next choice function since i — 0 can 
happen only if the next choice function to be generated does not exist. 
Alternative is usage of L A S T  that counts the number of calls of the algo­
rithm N E X T .  That method can be used only if we can easily count the 
cardinal | {/i}^ |, that happens if the set | {h}gi | is symmetric. If we have 
asymmetric sets and very irregular requirements W  and W\ evaluation of 
I {A s i  I in advance can be a difficult task. For numerous applications es­
pecially if exhaustive generation is not necessary the stop conditions are 
coming from the external applications. Then, the algorithm L A S T  can be 
developed using these external stop conditions and the internal conditions 
mentioned earlier can be postponed. For instance, as the stop conditions, we 
can select the time of running algorithms or meeting requested conditions 
by currently generated object or so on.

Consider now the hierarchical model specified in (1.22). The algorithms 
F I R S T ( f )  and F I R S T ( h ^, / )  that are the counterparts of the algorithms 
N E X T ( f )  and N E X T ( F ,  f )  are given as follows.

Algorithm F I R S T ( f )
Input: The hierarchical model specified in (1.22), the requirement W ?, 

current choice function / .
Output: The next choice function /  G {f}gj
Method: For the representation of / ,  see the algorithm N E X T ( f ) .
1. for i <—  1 to  m  do
1.1. if  i G J  th e n  f ( i ) <—  min{g : q G Qi and W?  is satisfied};

Algorithm F I R S T ( h f , f )
Input: The hierarchical model specified in (1.22), the requirement W ®, 

a choice function / .



Output: The next choice function h £ {hf }
1. for i <—  1 to m do
1.1. i f  i<£J th e n  h(i) *—  min{g : q £ Q{ and W® is satisfied};

Similarly, we can specify the algorithms LAST(h.f , / )  and L A S T ( f )  that 
are the counterparts of the given algorithms F I R S T ( f )  and F I R S T ( h J , /) .
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6.5 The algorithm UN R A N K

Given is the ranking model S r  =  < Su, <h, table D>, where Su = «  
Qi >, 1 < i < m; W; Wi; {h}gi > and <h is the lexical order.

Algorithm U N R A N K  (general)
Input: The model Sr that the indexed family < Gi >, 1 <  i < m; is 

reduced the Q property holds, the rank R(h).
Output: The table IA[i\ representing the custom form of the choice func­

tion h(i).
Method: We use the tables GI  for representing the function ord(q, G™"1), 

see (6.1), p.119.
1. for i <—  1 to m  do
1.1. x i—  1;
1.2. IA[i\ <—  <31(1, i];
1.3. while RQi) >D[s,i] do
1.3.1. if IA[i\ £ Gi and W  A Wi holds for IA[i\ then R(h) <—  

fl(h)-D [x,i];
1.3.2. x  <—  x  + 1;
1.3.3. IA[i) v -  GI[x,i\-
2. return /A;

Asymptotic complexity of this algorithm is O(n.m). For any model Su 
used and for any variant of this algorithm complexity for the best case 
is fi(m). Therefore, we would always have complexity 0(p(n).m)  for any 
variant of the above algorithm, where 0(p(n))  =  n and Q(/i(n)) =  1. So, 
we can improve the given algorithm only by diminishing dependence of 
running time on n. The main goal of any improvement is to diminish the 
average number of performances of the step 1.3. We can do it using similar 
methods as those given for the variants of the algorithm N E X T .  Before 
any improvement of the general algorithm will be discussed we present the 
following example for its using.

E xam ple 6.5.1 Unrank a choice function h that R(h) =  83 for the model 
given in the example (3.7.6).
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1260 420 105 15 15 3 3 2 1 1
0 315 90 15 0 3 0 1 1 0
0 225 75 15 0 3 0 0 0 0
0 150 60 15 0 3 0 0 0 0
0 90 45 15 0 3 0 0 0 0
0 45 30 15 0 0 0 0 0 0
0 15 15 15 0 0 0 0 0 0

four blocks that ki =  4, &2 =  2, k8 =  3, k4 =  1. The corresponding table 
DBM is as follows:

T h e  m odel rep resen ts th e  se t of p a rtitio n s  of th e  se t {1, 2, 10} in to

DBM[7 x 10] =

We have p =  84.
The sets M  are specified as follows:
Mi = {1},M 2 -  {24-8},M3 = {3 -7-9}, W4 =  {4-t-IO}, M5 = {min({l-7-10} 

~{h(  1)} ~{h(2)} ~{h(3)} ~{h{4)})}, M6 =  {3 -10} ,M 7 =  {m in({l-M 0} 
- { h (  1)} ~{h(2)} -{/i(3)} —(h(4)} -{h(5)} -{ h (6}})}, M8 = {4 -  9}, M9 
= {5 4- 10}, M o =  (min({l -f- 10} -  {/i(l)} -  {/i(2)} -  {h(3)} -  {h{4)} -  
{h (5 )} - {h (6 )}  ~{h(7)} ~{h( 8)} -{M 9)})}.

The canonical form of the sets Mi is as follows:
Mi = {xi}, M2 =  {xi, x2, ...0:7}, M3 =  {x i, x2, ...x7}, M4 =  (xr, x2,

•■•̂ 7}, M5 =  {x j}, Mg =  {x 1; x2, ...x5}, Mr =  {x ^ , M8 =  {»!, x2}, Mg
=  {x’i, x2}, M10 =  { x j .

Since p < DBM[1 , 1], so h(l) =  1.
Since p < DBM[1, 2] and h(2) > h{ 1), so h{2) =  2.
Since p < DBM[1, 3] and h{3) > h(2), so h(3) =  3.
Then, p > DBM[1, 4], so x > xi and p = 84 -  15 =  69 
p > DBM[2, 4], so x > x2 and p =  69 — 15 =  54
p > DBM[3, 4], so x > X3 and p =  54 — 15 =  39
p > DBM[4, 4], so x > X4 and p =  39 — 15 =  24
p > DBM[5, 4], so x > X5 and p = 24 — 15 =  9
p < DBM[6, 4], so x =  xg, hence h(4) =  9.
Since M5 =  {xi}, so h(5) =  xi(Ms) =  4.
Then, p > DBM[1, 6], so x > xj and p = 9 - 3  =  6 
p > DBM[2, 6], so x > x2 and p =  6 -  3 =  3
p =  DBM[3, 6], so x =  X4 and p = 3 — 3 =  0.
Therefore, h(6) =  8.
Then, h(7) =  xi(M7) =  5, h(8) =  x^Mg) =  6, h{9) =  xi(M9) =  7, 

h{ 10) =  xi (Mo) =  10,
Therefore, we have h = <  /i(l) =  1, h(2) =  2, /i(3) =  3, /i(4) =  9, 

h{5) =  4, h(6) =  8, h(7) -  5, h(8) =  6, h(9) =  7, h(10) =  10 > .

□
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6.5.1 For increasing functions
Given is the ranking model S r  —« <  Qi > ,  1 < i <  m \ W  given in (1.7); 
W\\ {h}gi >, <h, table D> the requirement W\ is arbitrary, the indexed 
family < >, I < i < m  is arbitrary except the model is reduced and the
Q property holds.

Algorithm U N R A N K l  (Increasing choice function)
Input: The model S r  that the indexed family < Qi >, 1 < i < m; is 

reduced the Q property holds, the rank R(h).
Output: The table IA[i} representing the custom form of the choice func­

tion h(i).
Method: Similarly as for the general UN R A N K  algorithm, we use the 

table GI  in order to implement the function ord(q, f?‘nm);
1. x  <—  1;
2. for i <—  1 to  m do
2.1. IA[i] «—  GI[x,i]\
2.2. w hile R(h) >D[x,f] do
2.2.1. if IA[i] G Qi and Wi holds for IA[i] th e n  R(h) <—  i?(/i)-D[x,

*1;

2.2.2. x <—  x  + 1;
2.2.3. IA[i\ <—  GI[x,i];
3. re tu rn  I  A;

Asymptotic complexity of the above algorithm is 0(n+m).  Since, n > m, 
so we have O(n). For proving correctness of 0 ( n ) it is enough to observe 
that the step 2.2. can be performed at most n  times for the whole run of the 
algorithm, while the loop 2. justifies dependence on m. Time complexity of 
the above algorithm can be diminished for special instances of the model 
S r .  Moreover, for implementing IA[i] G Qi at the step 2.2.1. we can use 
the table G.

Given is the ranking model S r  = « <  Qi >, 1 <  i < m ]W  given in
(1.7); {h}^ >, <h, table D>, the indexed family < Qi >, 1 < i < m. 

Then, we have the following algorithm U N R A N K IY W .

Algorithm U N R A N K I Y W  ( Increasing choice function with Void re­
quirement

m )
Input: The model S r  that the indexed family < Qi >, 1 < i < m\ is 

reduced the Q property holds, the rank R(h).
Output: The table IA[i] representing the custom form of the choice func­

tion h(i).
Method: The same arrangements as for the algorithm UN R A N K  I.
1.x <—  1;
2. for i <—  1 to  m do
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2.1. IA[i] <—  G/[x,z];
2.2. w hile R(h) >D[x, z] do
2.2.1. R{h) <—  R(h)—D[x, *];
2.2.2. x  <—  x  + 1;
2.2.3. IA[i) «—  GI[x,i]\
3. re tu rn  I  A)

It is worthwhile to observe that the algorithm U N R A N K I Y W  does not 
need to use any representation of the indexed family < Qi >, 1 < i < m, 
except the table GI,  since all the needed data are represented by the entries 
of the table D. Observe, the step 2.2.1. of the algorithm U N R A N K T V W  is 
equivalent to the step 2.2.1. of the algorithm U N R A N K I since if L4[z] ^ Qi, 
then D[x, z] = 0. Then, R(h) remains unchanged. Moreover, performance of 
the step 1.1. makes assertion that the requirement W  holds. If the number 
of entries D[x, i] =  0 is big, then we can apply the following algorithm 
U N R A N K IRG in order to diminish the number of runs of the step 2.2.

Given is the model S r  as for the above case except the indexed family 
< Qi >, I < i < m, is not ’’dense” that means the table D posses many 
entries equal 0. In fact, the cardinals of the sets <5tmm of the minimum non­
deformed indexed family < Q™xn >, 1 < i < m  are much greater than the 
cardinals of the corresponding sets Qi.

Algorithm U N R A N K IRG ( Increasing choice function with Random 
sets Qj)

Input: The model S r ,  the rank R(h).
Output: The table IA[i] representing the custom form of the choice func­

tion h.
Method:
l . y *—  1;
2- IA[i}<— Y[y,i}-,
3. for i <—  1 to  m  — 1 do
3.1. x <—  X[IA[i),i\,
3.2. w hile R(h) >D[x,z] do
3.2.1. R(h) R(h)—D[x, z];
3.2.2. y <—  y + 1;
3.2.3. x<—  GI{Y[y,i\,i}-
3.3. IA[i) <—  Y[y,i}-,
3.4. if Q[IA{i\-\-l,i+l) = Q[IA[i),i+l) th e n  y <— Q[/A[z] +  l,z +  l] +  l 
else y <—  Q[IA[i] + I, i +  1];
3.5. IA[i + l) ♦— y [y ,i +  i];
4. x <— X[IA[m),m]-,
4.1. w hile R(h) >D[x, m] do
4.1.1. R(h)  <—  R(h)~D[x, m];
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4.2. IA[m] *—  Y[y,m]-,
5. re tu rn  I  A]

The steps 1. and 3.2.2. make assertion that the values IA[i] Gi would 
not be used for running the loop 3.2. The step 4. makes the same job for 
i = m  as does the step 3. for i < m  except the step 3.4. does not have its 
counterpart. Therefore, we have asymptotic complexity 0(m ax(| Gi |) +m).

6.5.2 For monotonic functions
For the monotonic choice functions we get similar algorithms as for in­
creasing choice functions. The only difference is in evaluation /A[z +  1] that 
for the monotonic choice functions we use IA[i +  1] <—  IA[i). The other 
differences are the consequences of it.

6.5.3 For bijections
The proper U N R A N K  algorithm for choice bijections can be developed 
using as the foundation the general U N R A N K .  Moreover, we adopt all 
those implementations developed for the corresponding variant of N E X T  
algorithm that enable us to reduce the complexity of the general algorithm.

Given is the ranking model S r  —« <  Gi >, 1 < i < uz; W  given in
(1.19); Wi; {h}g( >, <h, table D>, the indexed family <  Gi >, 1 < i < m
is arbitrary except the model is reduced and the Q property holds.

Algorithm UN R A N  K B  (choice Bijection)
Input: The model S r , the rank R(h ), the table B.
Output: The choice bijection h represented by the table I  A.
Method: We use the table B  in the way specified for bijections.
1. for i <—  1 to  m do
1.1. IA[i\ <—  AG[i, 1];
1.2. x*—  GI[IA[i\,i];
1.3. w hile R(h) >D[x, z] do
1.3.1. if j5 [X [x,z]] =  F A L S E  and W\ holds th e n  R(h) <—  i?(/i)-D[x,

»1;
1.3.2. x <—  x +  1;
1.4. IA[i] X[x,z];
1.5. B[IA[i}} T R U E ;
2. re tu rn  I  A, B\

For this algorithm, we have O(n.m). It is very essential to compare com­
plexities of the proper instances of the algorithm N E X T  and its coun­
terpart concerning the algorithm UN R A N K .  We have observed that the 
complexity of the algorithm N E X T  for an average case changes from 0(zz) 
into 0(1) depending on the model Su used and on an implementation.
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The corresponding variant of the algorithm UN R A N K  changes its com­
plexity for the most optimistic case from f1{n.m) into Q(rri). That means 
th e  a lgo rithm  U N  R A N K  is generally  m uch m ore com plex th a n  
its N E X T  co u n te rp art. It excludes usage of UN R A N K  where usage of 
N E X T  would be enough.

6.6 The algorithms R A N K  and R R A N G E

Given is the ranking model S r  = < Su, <h , table D>, where Sy  = < <  
Qi >, 1 < i < m\ W; {h}gi > and <h is the lexical order. The model 
is reduced and the Q property holds.

Let R m'mh(i) denote the minimum rank R(h') of a choice function li’ that 
/i'(l) =  /i(l), h'( 2) -  h{ 2), ..., h'{i) =  h(i), 1 < i < m .

We observe that R m\nh(i) = Rminh(i — 1), if and only if h(i) is the 
minimum value for the extension of the partial mapping h( 1 ) ,  h(2), . . . ,  

h(i — 1) to the partial mapping h( 1), h(2), ..., h(i). We define Rminh(0) =  0.

D efin ition  6.6.1 The i—th rank difference A*R(h) is defined to be R mmh(i) 
f̂ min k-(i 1).

Let a partial mapping < h( 1), h(2), ..., h(i -  1) > be given, while < xj,  
xf,  x \  >  being the ordered string of values that q — xj (Qi) could be used 
as an extension of < /i(l), h(2), h(i -  1) >, xj = ord(h(i),Qi). Then, 
Gi = {q ■ q = x(Qi) that x  £ {zj, xf,  xf}, while Q* = {q : q =  x(Qi) 
that x £ (xj ,  x j+1, ..., x?}. Hence, Q* — Q* is the set of all the values of 
Q* that do not belong to Q*, i.e., (Q* -  Q*) = {q : q = x(Qi) that x  G {x},
*1  d " 1}-

E xam ple 6.6.1 For the unranking model Sy  —«  £■% >, 1 < i < 4, 
Si — {5, 6, ...10}; W(i)  given in (1.19); {h}^ > and the following partial 
mapping: h( 1) =  6, h(2) =  10, h(3) =  8, we have £$ = {5, 7, 8, 9} and 
G  = {9} and £$ -  S *3 = {5, 7^8}. So, x  G {1,3,4,5} for £$; x  G {5} for 
f 3 and x  G {1, 3, 4} for £3 -  £ 3 .

□
With denotation X* we mean the set of values x  that produce the set 

Q*, i.e., X*  =  {2; : x(QQ G Q*}- Similarly, with denotation X t we mean 
the set of values x  that produce the set Qit i.e., X { =  {x : x(Qi) G Q*i}- 
Correspondingly, X f  -  X* =  {x : x(Qi) € (0?  -Q*)}.

The following lemma shows the relation between the i—th rank difference 
and the entries D[x, i] of the table D.

Lem m a 6.6.1 The rank difference AiR(h)  =  E X£{x--~x‘) R x ' *]■
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Proof. In order to make an extension of < h( 1), h(2), ..., h(i — 1) > to 
< h(l), h(2), ..., h(i — 1), h(i) > we can use all the elements that belong 
to Q*.

If h(i) = min(5*), then AiR(li) =  0.
Then, A lR(k)  equals to the number of choice functions that the partial 

mapping /i(l), h(2),..., / i ( i - l )  is fixed and IT(i) < h(i), where h(i) is fixed 
and h*(i) denotes all acceptable values that are smaller than h(i). Hence, 
h*(i) G (G* — G*)- So, A ,/?(//.) equals to the number of choice functions 
that h*(i) — x(G* -  G*) and the partial mapping h( 1), h(2), ..., h(i -  1) is 
fixed. Therefore, x  G (X* — X*).

Since the set {h}gi is symmetric, so each number N[x(<5* — Gi) '■ x  G 
(X* — A*)] is independent from the partial mapping h(l), h(2), ..., h(i — 1) 
and it equals D[x, i}. Hence, the number of all the choice functions that 
posses the rank R(h) smaller than any extension of < /i(l), h(2),..., h(i—1), 
h(i) > to a full choice function h equals - x ’ )D[x, t].

Therefore, A iR(h) = E x e (X f-x ‘)D [x> *]

□

E xam ple 6.6.2 Evaluate A3R(h) for the partial mapping h : 1 —> 2, 2 —» 
2, 3 —> 4, where Su  = < <  Vi >, 1 < i < 5, V\ =  V2 — {2}, V3 = {2, 3, 4}, 
V4 = {2, 3, 4, 5}, V5 -  {3, 4, 5}; W(i)  : h(i) > h(i -  1); {h}Vi > .

The table DDCM representing the structure of {h}p{ is as follows:
9 9 9 3 0
0 0 6 3 1
0 0 3 2 1
0 0 0 1 1

We have P 3* =  {2, 3}. Since h(3) =  3(P3), so V$ -  =  {2}.
Hence, A3R(h) =DDCM[2, 3] =  6.

□

The investigated sets G* and G* are valid concepts for explaining and 
for developing numerous algorithms concerning the generation of combi­
natorial objects. Their usage for explanation of the relation between the 
rank difference and the entries of the D tables is only a part of these more 
general applications.

DDCM [4 x 5]

6.6.1 Evaluations of the sets Ç* and G*

We are concerned now with the cases of the general algorithm S E T G i  for 
evaluation of the sets Gi according to the Definition 3.2.3, p. 55.
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Increasing choice functions

Given is the model Su - «  A  > , 1 < i < m ; W  given in (1.1); Wi; 
{h}Ai > .

Algorithm SETQi (S£Tb4*)I(f°r Incresing choice functions)
Input: Su,  <h, i, %i-i that h{i — 1) =  X j_ i(A -i)- 
Output: A*.
Method: at the beginning A* =  0, we have x™ax(A ) =  max(A)-
1. for x <—  Xi-i  to  x?iax do
1.1. if x(A{) satisfies the requirement W\ th e n  A* *—  A* U {x(A ) };

Monotonic choice functions

The algorithm SETQ{ is exactly the same as for the increasing choice 
functions, instead — A { we have only to put Q* = £*.

Choice bijections

Given is the model Su —«  £i >, 1 < i < m ; W  given in (1.19); he 
{h}£i > .

Algorithm SETBQi (SE T£ i )(for choice Bijections)
Input: Su, <h, i, %i- i  that h(i -  1) =  Xi_i(£j_i)l < i  < m.
Output: £*.
Method: at the beginning £* =  0.
1. for x *—  1 to  x"iaxdo
1.1. if x(£i) ^  h( 1) and x(£i) h(2) and...x(£i) ^  h(i — 1) and x(£))

satisfies VT'ithen £* <—  ~£* U (x(£i)}

The given instances of the algorithm SETQ* for evaluation of the set Q* 
can easily be adopted for evaluation of the corresponding sets Q*. Then, it 
is enough to replace the loop 1. for x  <—  1 to  x f ^ d o  with the loop 1. for 
x  <—  x* to  x"iaxdo, where xt* =  h(i). We can implement the step 1.1. using 
the table B  in the similar way as it was done for the algorithms N E X T  
and U N  R A N K .  Then, the set £* can be produced in time 0 ( | £, |). 
Correspondingly, we can evaluate the set (Q* — (?*).

6.6.2 The algorithm R A N K

Algorithm R A N K  (general)
Input: The model Sr , the choice function h given in the canonical form,

i.e., h{ 1) =  Xi(Qi), h{2) =  x2(C?2), h(m) =  x m(Qm).



140 6. Generation models

Output: The rank R(h).
Method: Given are the sets for 1 < i < m.
1. R{h) <—  0;
2. for i <—  1 to  m do
2.1. for x  <—  AG[i, 1]; to  i ;  - 1  do
2.1.1. if x{Qi) E (Gi — Q*) then R(h) <—  R{h)+D[x, t];
2. return R(h)-,

For this algorithm we have 0(n .m ) and Q(m). We have to emphasize 
that complexity of the algorithm R A N K  has no practical meaning since it 
can run only several times dining the generation process. Explanation of 
this fact will be given in the next chapter.

If we replace step 2. with the following 2. for i  •—  1 to i do, where 
t < m , then the algorithm R A N K  produces the rank R min (h{t)).

6.6.3 Evaluation of the rank range
Given is the ranking model S r  =< Su,  table D;’< h’>, where Su —«  
Gi >, 1 < i < m; W\  {h}gi > . Moreover, we have a subsystem < 
Methods > =< F I R S T , N E X T ,  SETGi,  L A S T  >. In order to present 
the algorithm R R A N G E ,  we make the following specifications.

The algorithm F IR ST (Su )  generates the first choice function for the 
system Su-

The algorithm N E X T (h ,  Su)  takes choice function h of Su  and retrieves 
the next choice function h' i.e., R(h') = R(h) +  1.

The algorithm SETGl  takes as input the partial mapping h(l). h{2), ..., 
h(i — 1) and it retrieves Gi ■

The algorithm L AST(Su)  retrieves T R U E  if a choice function h has a 
highest rank R(h)  for the given model.

The algorithm R A N K (t ,  g, R mmh{t)) takes the partial mapping g for a 
given value t and retrieves the rank Rminh(t).

We are concerned with evaluation of the rank range for the subset of 
choice functions {h1} C {h jg, that is defined as follows. Given is a subsys­
tem S'u = «  G'i >, i e  I', T  C {1. 2. ..., m}; W; { /}g; > of S Ut i.e., 
GI Q Gi, the requirement W  is common for S[, and for Su- The set {h'jc, 
contains all the extensions of the partial mappings {/}c; to the choice func­
tions h € {h}^. We consider two steps extension of each /  e  {f}g[ to the 
corresponding subset of {h1}. The first step produces a partial mapping 
g( 1), g(2). ..., ^(i), where t = m ax(/'). The second step takes ^(1), 5 (2), 
.... g(t) as input and produces the corresponding subset of . We know 
that the set of extensions of 5 (1), g(2), .... g(t) possess a rank range that 
is continuous in R(h). Therefore, for evaluation of the rank range, we have 
to produce R ming{t).
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We will give now the general algorithm R R A N G E  for evaluation of the 
rank range R({h'}) in R(h).

Algorithm RRANGE(gehexa\)
Input: The models S r n  and S'UN.
Output: The rank range
Method: For each consecutive /  £ [f}g'  there is generated system

Sun  = «  Gi' > A < i < t , t  = ma* ( / ') ,  G" =  for i G I' ,  G'l C for 
i <£ W; {/}gj > . The indexed family < <  G" >, 1 < i < t is reduced and 
the Q property holds for S'{jN . With denotation f?({/ig}Si)U(f?min(/i(i)), e) 
used at the step 2.3.3., we emphasize that consecutive rank range (R(h'min)j, 
e) is attached to the string of the rank ranges.

1. /  <—  FIRST(S 'U)
2. w hile L A S T ( f )  = F A L S E  do
2.1. generate system S'f;
2.2. g *—  F I R S T ( S £ );
2.3. w hile LAST{g)  =  F A L S E  do
2.3.1. R A N K ( t ,  g, R minh(t))-
2.3.2. e <— D[xi, i] that xfGi)  =  ^(i);
2.3.3. R({h'}gi) —  R({h'}Si) U (Rminh(t), e);
2.3.4. g NEXT(g)-
2.4. /  *—  N E X T ( f ) ]
3. re tu rn  R{{h'}gi)-

Complexity of the evaluation of R({h'})  for each choice mapping g is 
determined by the generation of a consecutive g and by the evaluation of 
Aninh(i) according to R A N K (t ,  g, Rmmh(t)). Hence, we have O(n.m) for 
the worst case. Asymptotic complexity of the algorithm R R A N G E  depends 
on | /  | and | g \ . If for each g the number of extensions to /  would equal 
| /  |, then for evaluation of the rank range time 0(\ g | . j /  | .n.m) is 
needed.

6.7 Structure of libraries
The methodology for representing and for generating arbitrary sets of com­
binatorial objects is very homogenous. The classes of unranking and ranking 
models create a hierarchy ruled by more and more restricting properties of 
indexed families and requirements W  & W \ . We have shown the dedicated 
optimal algorithms of the system < Methods > for the main classes of 
models. If we do not have an optimal algorithm for a model represented by 
a lowest level class of models of the hierarchy, then an algorithm that is op­
timal for a more general class of models can be used. That makes the whole 
system of representation and generation very convenient for usage and for
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development since we can use successfully the object oriented programming. 
The basic structure of a generation object is as follows: < < Representation 
>, < Methods »  . The object < Representation > contains methods to 
be used for building the models Su  and S r , while < Methods > contains 
instances of the algorithms F IR ST ,  N E X T ,  LAST, R A N K ,  U N  R A N K ,  
R R A N G E ,  TABD .  The components of the < Methods > subsystem are 
obtained by succession or by individual development. We can also have 
the object <  Specification > that enables us to assign the generation 
object to the given task. For making libraries the systems < Methods > 
and <  Representation > should be organized and developed individually 
since the same object < Methods > can be assigned to several instances 
of the < Representation > system. It is very important to emphasize 
that there is no correspondence between organization of the proposed sys­
tem and the basic combinatorial objects. In order to develop the systems
< Representation >  and < Methods >, we have to think in terms of classes 
of choice functions but we do not need to think what kind of objects can be 
represented. On the other hand the system < Specification > should take 
the classical description of the set of combinatorial objects to be generated 
as input and it should produce the proper object < < Representation >,
< Methods > >  as output. This general approach to be developed by using 
object oriented programming would be suitable on one side of an appli­
cation that does not require the best possible performance. On the other 
hand a skilled user gets very advanced tools suitable for solving extremely 
difficult generation tasks in a short time.
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6.8 Conclusions

We have developed the basic algorithms for the generation of the choice 
functions of indexed families. The unranking and ranking algorithms are 
very general and can be applied for any model S u  or S r  that is reduced 
and the Q property holds, respectively. On the other hand specified indexed 
families and the requirements W  and W\  enable us to produce the most 
suitable dedicated variants or implementations of this general algorithms. 
So, we can have optimal algorithms for a concerned model. If we do not want 
to develop or to use dedicated algorithms, then we can use a more general 
algorithm that the class of generality of the models covers also our specific 
case. The given unranking algorithms are much more general than those 
known in the classical combinatorics and cover the sets of combinatorial 
objects never considered as subjects of representation and generation. We 
have shown that each ranking algorithm effectively uses corresponding table
D. Consequently the ranking algorithms are optimal if are applied for the 
full sets of the basic combinatorial objects. Moreover, we have given their 
variants applicable for any instance of sets of combinatorial objects. The 
generality of the proposed approach enables us to develop computer systems 
using object oriented programming that can supply convenient tool for any 
need concerning combinatorial computations.
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7
Generation of sets of choice functions

7.1 Sequential generation
We are concerned now with the sequential generation of choice functions. 
For a given set of choice functions {h1} to be generated, we can use two 
objects the unranking generation object Gu and the ranking generation 
object G r .

The unranking generation object is the system Gu =< Su,  -<h, < 
Mu »  . With denotation -<h we mean the order in which the choice 
functions are to be generated. Usually -<fl=<h, i.e., the choice functions 
are to be generated in lexical order. Nevertheless, the anti—lexical order 
can also be used or we can use some other orders specified in the next 
section. The subsystem < Mu > contains rutines F I R S T , N E X T ,  L A S T  
specified in the previous section under a silent assumption that -<h=<h . 
We can extend the subsystem < Mu > even more in order to meet con­
ditions of the generation that come from special sets {/i'} and from other 
environmental conditions like the requested order -<h. In order to solve 
those problems, we can add some procedures for controlling the generation 
order or procedures for transforming the given model Su  into a model that 
is suitable for meeting special requirement or special circumstances con­
cerning properties of the set {/i'}. Our approach would base on Ranking 
Theorem and on formal transformations of the models.

The ranking generation object is the system Gr n  — < Sr , <h, < 
M r  »  . The basic system < M r  > contains R A N K ,  U N  R A N K ,  
R R A N G E  and some auxiliary procedures as specified in the previous chap­
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ter. Moreover. we use the system <  M u  > . The subsystems <  Methods > 
can also be extended iin order T.o meet the environmental conditions.

Using objects Gu and Gji- we develop sequential procedures for the gen­
eration of the choice functions.

» If the set {hn) -  \ h}r . then for the generation, we use the following 
algorithm TJNSEQl.

Algorithm UNSEQl(h') (TTNranked SEQuentia] generation 1)
Method: we use <  F IR S T , N E X T .  L A S T  >;
at the beginning V! is void.
1 . i f  h! :is void th e n  call F IR ST .
2. w hile R(h') < | | do
2.1. call N E X T (h ')
2 .2 . (process U'i)

.Asymptotic: complexity of this algorithm changes from 0 ( | {ft'} |) into 
Oin.m. 1 {/¡'} [) depending on the model properties and on the variants 
of the algorithm N E X T  used. Since we have shown th a t the algorithm 
TIN R A N K  is more complex than its N E X T  counterpart., so the algorithm 
UNSEQl is the 'best for sequential generation of the choice functions, un­
fortunately it can not. be used if  {ft/} ^

»•» If the set {hr} a£ {h}c,  but the rank Tange R.[{h'}) is continuous in 
R (h ) and if the set {ft'} is symmetric., then we can transform the model 
S c  into the model S ’v  tha t {ft/} — {ft'}p' and we follow the procedure for 
the  case *. Otherwise, the algorithm RANSEQl can be used.

Algorithm. HANSEQl h' fRANked SEQuential generation 1)
Method: we use <  F IR ST . N E X T .  LAST. U N R A N K , JRRANGE. >
1 . call KRANGE(R(Kmml  e)
2. ft' —  U N R A N K (R C h N J)
3. w hile  R(h') < R{h'min) •+ e — 1 do
3.1. call N E X T ( h r)
3.2. (process tiff)

Since algorithms R R A N G E  and U N R A N K  are called only once so it 
does not effect asymptotic complexity that is the same as for the previous 
algorithm. Time complexity is practically also not -effected.

* * - If (ft'} j= {ft}_c, and the rank range R({h'}) is not continuous in 
R[ii). then the algorithm KANSEQ2 can always be used.

Algorithm RANSEQ2 iA/ ! (TANke-d SEQuential generation 2)
Method: we u se<  F IR S T . N E X T .  LAST. U N R A N K . R R A N G E ,  >
1 . rep ea t
1. 1. produce consecutive rank range (R(h^nin)1. r 7) using RR..ANGE
1 . 2. V  —  U N R A N K (R (h 'm-J  Q
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L 3. w hile < R{ihnia . —e, — I  do.
L. 3LL. call 5kEXT(ri)
L. 3.2 (pro cess hi)
until the rank range {Ri'/vN^,. eA is die last one

The algorithm RANSEQ2 possess higher asymptotic complexity .uni 
higher time complexity than the algorithms. RANSEQ2 and UNSEQl. Ct is 
effected by higher time complexity of the methods U N  R A N K  ;uid EL-IN IK 
in comparing with the method N E X T .  En fact, if the number of the const-c - 
u£ive rank ranges ej) grows, then complexity of the algorithm
RANSEQ2 is greater and greater,, since each rank range I E(ft;mil) : . c,l 
requires, usage of one call of R A N K  and one call of U N  R A N K ,  If the 
number of consecutive rank ranges {R{hTa)j. Srowa exponentially on 
n  and. m, then for the algorithm RANSEQ2 we get S2(m. | [ft/} |) for 
the most optimistic case. Since for the algorithms UNSEQl or RANSEQl 
we can have 0 {\ {ft.'} |). so it demonstrates complexity of the algorithm 
RANSEQ2 in comparing with the algorithms UNSEQi and RANSEQl. 
Suppose, the rank, range (R(h'min)j, ê , is s—tuple. So, if smaller value 
then smaller .asymptotic and time complexity of the algorithm RANSEQ2. 
It demonstrates usefulness of Ranking Theorem if we are searching for a 
most suitable model. For illustration of the general methodology of building 
the models S ', we refer the reader to the example (4 . 3 . 1) .

7.1.1 For hierarchical systems
Given is a hierarchical unranking representation model as specified in (1.22).

The models < <  Qi >, 1 < i < m;W;  {ft-Qy >  and < <  Qj >. j  £  
J ; W  G >  are reduced and the Q property holds for each model.
The requirement W jf is the restriction of the requirement W  and the set 
/  €  { f}g i • makes a. partition on. the set of choice functions {ft}v;, . Tlien, we 
have the following algorithm EXTEN for the generation of all the choice 
functions {h}g.

Algorithm EXTEN
Input; The hierarchical model specified in (1.22).
Output: The set of choice functions f ft}4;
Method; Each choice function h is an extension of a  choice function /
1. call F IR S T ( f ) ;
1.1. call F IR S T [h ! , f y  
1.2  re p e a t
1.2.1. call N E X T [ h f  , f y
1.2. 1. process ft/

un til all the choice functions ft/ that are extensions- of /  are 
generated:

2. rep ea t
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2.1 . call N E X T ( f ) ;
2.2. rep ea t
2.2.1. call N E X T ( h f j ) - ,
2.2.1. process ft/

u n til all the choice functions ft/ that are extensions of /  are generated 
un til all the choice functions {/}q,. are generated;

7.1.2 Piecewise lexical order

For numerous applications the generation and processing a given set of 
choice functions using the lexical order is not convenient. For instance, we 
may require at first the generation of the combinations corresponding to 
ft(l) =  2 and h(2) =  5, then the combinations corresponding to ft(l) =  6 
and ft(2) =  8 should be generated.

We assume now that the set of choice functions to be generated {ft'} 
is symmetric. Then, we can build a model S'v  that the set {ft'} =  {/i'}g' 
basing on Ranking Theorem. Moreover, we can build the corresponding 
model S'R since there is a table D that represents the structure of {ft'} g\. 
Therefore, we are concerned with full sets of the choice functions {h}g. in 
the following part of this section.

With denotation S, we mean any ranking or unranking model that rep­
resents a given set of choice functions {ft}g,.

Let a given model S  be split into a set of models {5}, S 2, ■■■, Sw} 
that the corresponding sets of choice functions {h}g1( {h}g2, ..., {ft}gL 
are distributed i.e.,

(z) {ft}gj n  {h}g,c =  0, for any j  and k that j,  k £ {1 , 2, ..., to}, j  ^  k
(ti) {ft}^?U {ft}^U ...U {ft}£r =  {ft}Si.

D efinition 7.1.1 The piecewise lexical order -<h is the order of the choice 
functions ft £ {ft}af generated by the order of the submodels < S 1, S2, ..., 
Sw > and by the lexical order of the choice functions, i.e., if  h\ £ {h}gj■•>

ft.2 £ {ft}gk a-nd if j  < k, then hi -<h ft2; if hi, /12 £ {h}gj and if R{h\) < 
R ftz )  then h\ -<h ft2.

So, splitting the model S  into the models {S}, 67, ..., Sw} and making 
their string < S\, S2, ..., Sw > is equivalent into defining a piecewise lexical 
order -<h on the set {ft}. It is easy to observe that any order on the set of 
choice functions {ft} can be seen as a case of the piecewise lexical order. We 
can note that to can equal | {ft} | . Then, each model Sj represents exactly 
one choice function ft £ {ft}. So, making a string < S\, S2, ..., Sw >, we 
define an arbitrary order on the set {ft}.

For splitting the model S  into a string of submodels < Si, S2, Sw >, 
we use a method SP L IT .  The method S P L IT  takes the system S  and the
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order of the desired subsets < {h}lg {h}g2, ..., {ft}g7  > as input and 
returns the corresponding string of the submodels < S\, S2, Sw > as 
output. We have the following basic S P L IT  methods.

Method SP L IT _ layer  
Input: the model S  =  Su, -<k .
1. Split the given indexed family < Qi > , I < i < m  into the string of 

layers < <  Q\ >, < Qf >, ..., < Q™ >; 1 < i  < m >  according to the given 
-<h, i.e., each {h}g2, ..., {h}g„ is the full set of choice functions of
the corresponding layer.

2. re tu rn  the string of layers < <  Q\ >, <  Qf >, ..., < Q f  > >  .

Usage of the method SP L IT _ layer  requires assertion that the distribu­
tion of the set {/x}gf into collection of subsets {h}g2, ..., {h}gw is
in accordance with splitting the indexed family < Q, >, 1 < i <  m, into 
collection of layers < <  Q\ >, < Qf >, ..., < Q'f > >  . This method is 
efficient if w is not a big number and if the sets {ft}gi, {h}g2, {ft}çu, 
are specified by means of partial validation of the values h(j) for j  £ J, 
J  C (1,2,..., m}. The method is shown in the following example.

Exam ple 7.1.1 Given is the set {h'} of all the choice bijections of n. We 
define the piecewise lexical order -<h as follows:
(i) w = 4,
(«) the set {/i}gi contains the choice bijections that h( 1) > n /2  and 
h(2) > n / 2,

(in) the set {h } g2 contains the choice bijections that h( 1) > n /2  and 
h(2) < n / 2,

(iv) the set {h } g3 contains the choice bijections that h{ 1) < n /2  and 
h{2) < n / 2,

(v) the set {h}gi contains the choice bijections that ft( 1) <  n /2  and h(2) > 
n / 2 .

For the model S, we have the indexed family < £j >, 1 < i < n. Then, 
£* =  E\ — {1, 2, ..., n/2}, £ \  =  £ | =  {n/2 + 1, n/2 -I- 2, ..., n}. We make 
the following layers:

< £ # >  =  <  £f,  £ | ,  £3 , £n >, < Qf > = < £f,  £ { ,  £3, £ n  > ,  
< Qf > =  < £1, £1, £ 3 ,  £n >, < Qf > = < £{, £ |,  £3> £n > • The 
string of the layers «  Qj >, < Qf >, < Qf >, < Qf »  represents the 
piecewise lexical order -<h .
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□
Usage of the method SPLIT_partia l_m app ing_ f  requires assertion 

that the set of choice functions {h}gi is partitioned by the partial mappings 
{ / }Gj ■ Observe, if the hierarchical model

{ System  for J  generation
< <  Qj >> j  € J \ W  / (j); { /}5 j >

< <  Qi > ,  1 <  i <  to; W \ {h}gi > 
is given, then it can be seen as the product of the method SP L IT .  The 

method S  P  L IT  jpartia l _mapping _ f  is used if w »  1 and if we have 
more complete and more detailed specification of the requested order than 
for the case SPLIT_layer.  For the method SPLIT_partia l_m apping_f,  
we use the algorithms F R IS T ( f ) ,  F R IST{h / ,  / ) ,  N E X T ( f ) ,  N E X T { h f ,  
/) ,  L A S T ( f) ,  L A S T ( h f j ) .

Method SP L IT_partia l_m apping_f  
Input: the model S  = S u , ~<k ■
1. Generate an indexed subfamily < <  Qj >, for every j  € J  >, of the 

family < Qi >, 1 < i < m, J  C {1, 2, m} that each {h}k k contains all
the extensions of a choice function f k of the subfamily «  Qj >, for every 
j  € J  >.

2. Generate consecutively choice functions f k.
3. re tu rn  the generated choice functions { / }gj according to -<h .

E xam ple 7.1.2 Implement the method SPLIT_partial_mapping_ f  for 
the following case. The set of all the increasing choice functions {h} for 
m  =  4 and n =  7. The order -<h is defined as follows: {/i} = <  {h}p., 
{ ty p i i W p i  >> where {h}\,. is a subset of {h} that h(3) =  5, {/i}p(
is a subset of {h} that /i(3) =  4, is a subset of {h} that h(3) =  6 and
{h}p. is a subset of {/i} that h(3) =  3.

The system for J  generation is defined as specified in the above example. 
Then, we have the following models S j

5, :< Vx = {1,2,3}, V2 =  {2,3,4}, V3 = {5}, V4 = {6,7}, 1 < i < j- W  
given in (1.1); {h}),. >;

Si ■< Vx -  {1,2}, = {2,3}, P3 =  {4}, V4 =  {5, 6, 7}, 1 < i < j ;  W
given in (1.1); {h}%,. >;

53 :< Vx -  {1,2,3,4}, V2 =  {2,3,4,5}, P3 =  {6}, V4 = {7}, 1 < t < j; 
W  given in (1.1); {h}^. >;

Sa :< Vx =  {1}, V2'=  {2}, V3 =  {3}, V4 = {4,5,6,7}, 1 < i < j \ W  
given in (1.1); {h}lv . > .

□
The above example shows that starting from the concept of the par­

tial mapping, we can get the model equivalent to the result obtained by
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SPLIT_layer.t.  Sometime it may not be so easy since the specification 
of the indexed sets for i > max(J) can be a difficult task. Then, the full 
structure of the hierarchical systems should be applied.

The method SP L IT _ layer  bases on the splitting indexed family into 
layers given in [19].
The methods SPLIT_partia l_m app ing_ f  and S P L I T _ R A N K  are de­
veloped basing on the given theory and methodology.

Observe, a method S P L IT  generates models corresponding to the sub­
sets {h}gi, {h}g7, ..., {h}gw. Then, each such subset possess a continuous 
rank range. Therefore, the general methods for sequential generation of the 
set of choice functions {h}gi using the lexical order can be applied to each 
subset and simultaneously to each corresponding model.

Therefore, the sequential generation system for fixed S  and ~<h is an 
object that contains the methods < Methods >  developed or used in the 
previous section for the lexical generation and the proper method SPLIT .

If a given set of choice functions {h'}gi to be generated is not symmetric, 
then we have to extend our considerations.

Let a given asymmetric set of choice functions {h'}gi be distributed by 
a given piecewise lexical order -<h into collection of subsets {{h}kk}, 1 <
k < w. Observe, symmetry of subset {h}gk is not determined. Then, the
piecewise lexical order <h is sequencing the collection of subsets {{7i}(h.}
into a string < { h } ^ ,  {h}2g?, ..., {h} % > .

D efinition  7.1.2 We say that a given piecewise lexical order -<h is clus­
tering the symmetric subsets, if all the asymmetric subsets are the prede­
cessors of all the symmetric subsets or if the all asymmetric subsets are the 
successors of all the symmetric subsets.

If a given lexical order -<h is clustering the symmetric subsets, then we 
can build a model S' that the corresponding set of choice functions {h'}g’ 
equals union of all the symmetric subsets {h}gk. Then, for the piecewise 
generation of {h'}g>i we follow the above given methodology for symmetric 
sets {h,}gi . For the generation of asymmetric subsets {h }^ , we can use 
the model S  and the algorithm RANSEQl given in the previous section.

If a given lexical order -<h is not clustering the symmetric subsets, then 
we do not solve the generation problem by building a model S'  that the 
corresponding set of choice functions {h'}g' equals union of all the sym­
metric subsets Then, the simplest solution is to use the model S
and the algorithm RANSEQl for each subset {h}gk. Complete method 
S P L I T _ R A N K  can be specified as follows.

Method S P L IT _ R A N I<
Input: the model S = S r , -<h .
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1. For each consecutive {h}^ determine the corresponding rank range

R m koi) ■
2. r e tu rn  the ordered string < -R({/i}b), R({h}g2), •••, P{{h}gy>) >•

The method S P L I T _ R A N K  is the most easy for implementation if 
the order -<h is specified explicitly by the string of ranks. Then instead 
finding the rank ranges R{{h}gk) we apply the algorithm U N R A N K  to 
each individual choice function.

7.2 Distributed generation in MIMD systems
Let P  be the number of distributed processors used. The general distributed 
generation system is the following object < S, NC, < Methods > > , where 
S  is unranking or ranking model, N C  determines the number of submodels 
and their cardinals, the subsystem < Methods > contains the methods 
used for the sequential generation. The subsystem < Methods > contains 
one of the method S P L IT  for splitting the model S  into submodels Si, 
S2, ■ ■ ■, Sw and for dedicating the submodels into the processors p \ , p2) 
..., pp. For the proper method S P L IT  used, we have here -<h=<h . The 
subsystem N C  included in < Methods > decides how many submodels 
Si, S2, ..., Sy, are to be generated and/or evaluates the cardinals of the 
corresponding sets { h } ^ ,  {h}g2, •••, Then, the subsystem N C
distributes submodels Si, S2, ..., S w into the distributed processors pi, p2, 
..., pp. Each processor pj generates and processes choice functions of the 
dedicated submodels in the way that is specified in the previous section.

We use basically the following N C  systems.

N C  Jbalanced
Input: w — P,
Output: each processor generates and processes the set of choice functions 

{h}P  that | {h}N  |= | {h}Qi | /P .

Method:
1. The model S  is partitioned into the submodels Sj, S2, •••, Sw using a 

method S P L I T 1.
2. Each model Sj  is dedicated to the processor p j .
3. for j  <—  1 to  w do concurren tly
3.1. Processor pj generates and processes the choice functions {/i}b .

Since the generated choice functions are to be processed, so for certain 
applications we may have big differences in the time of processing, when the

1E ach m ethod S P L I T  can be used.
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method NC_balanced is used. We develop the method N C  _decreasing 
in order to balance the time of processing all the processors used instead of 
making the balance of the numbers of the choice functions to be generated 
in each processor .

N C  _  decreasing
Input: w »  P,
Output: each processor generates and processes a number of the subsets 

( % ■
Method:
1. w hile a consecutive model Sk can be generated do
1.1. Generate consecutive model Sk that | {h}kçi |> | | using a

method SP L IT .
1.2. Dedicate currently generated model Sk to a free processor pj.
1.3. Processor pj generates and processes the choice functions {h}çk

Developing the method NC_decreasing we have assumed that the time 
of processing and of the generation of smaller and smaller packages is 
shorter and shorter. That is statistically T RUE. Nevertheless, it may hap­
pen that the generation and processing a subset of choice functions whose 
cardinal is small requires much more time than the generation and pro­
cessing much greater subset. Then, the method NC_decreasing  does not 
produce a good balance of the running time for each processor.

The method N C  Redistributed  gives better balance of the time of pro­
cessing since there is feed-back for redistribution of the subtasks if the 
running times for particular processors can much differ.

N C  R e d i s t r i b u t e d
Input: We have P  »  1.
Output: Each processor generates and processes a random number of 

choice functions.
Method: At the beginning the number w equals P. Each j —th processor 

generates and processes a number of choice functions of the model Sk- If 
all the choice functions {h}kk are generated and processed, then the j —th 
processor that possesses the greatest number of choice functions still to be 
generated partitions its left task in two parts and the first part is dedicated 
to the free processor, while the second part is to be processed by itself. The 
cardinals | {h}kgk | are random.

1. The model S  is partitioned into submodels Si, S 2, Sw using the 
proper method S P L IT 2

2 T he m ost su itab le  is the m ethod SP L IT _layer> nevertheless o ther SPLIT  can also 
be used.
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2. Dedicate submodels Sj  into the processors pj.
3. rep ea t
3.1. if processor pk finished the generation and processing the choice 

functions of the dedicated model th e n  find processor pj that it has the 
greatest number of the choice functions still to be generated.

3.2. The left part of the choice functions {{h}P)' is to be partitioned in

two parts ({h}^)i and ({h}3̂ .

3.3. Make the subsystems Sjj and s 'ji corresponding to ({hHw)i and
i

{{hYGj) 2> respectively.
3.4. Dedicate S 'x to pk .
3.5. Dedicate to Pj *
3.6. Each processor pj generates and processes choice functions of the 

dedicated model.
un til all the choice functions {h}gi are generated.

The method N C Redistr ibuted  gives the best balance of time of process­
ing for the MIMD systems. Nevertheless, the requirements as to commu­
nication are especially strong. That requirements were much stronger if a 
method N  C ̂ redistributed would be implemented by using SP L IT _ layer  
or SPLIT_partial_mapping  since full models of subsets would be sent be­
tween processors. Much weaker requirements as to communication we have 
if the method SP L IT _rank ing  is used. Then, the full model can be broad­
cast to all the processors and only the rank ranges must be transmitted and 
retransmitted to each processor. Obviously, if the continuous rank range 
characterize the model used, then the distribution and the redistribution 
are much easier for handling.

7.3 Parallel generation in SIMD systems

For parallel generation of the set {h}gi in a SIMD system we use widely the 
earlier concepts, except we have to make assertion that models S j  are cre­
ated and choice functions are generated in the dedicated processor p j . The 
natural requirement is to have the balanced cardinals of the corresponding 
sets {h } 3 j. Therefore, the method N C  used is the method NC^balanced.
For splitting the model S  into the models Si, S2, Sp  two methods 
SP L IT _partia l_m app ing_ f  and S P L IT  _ranking  are the most conve­
nient, however for special applications the method SP L IT _ layer  could 
also be used.
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7.3.1 Generation using S P L IT _ ra n k in g
We are concerned with the generation of a given set of choice functions 
{h'}Si assuming that the splitting model S  is to be done by implementing 
the method SPLIT_ranking .  If the set {h'}gi is symmetric and if the 
rank range !?({/i'}) is not continuous in R(h), then the most obvious and 
general method requires building the model S'R that the corresponding rank 
range R({h'}g>.) is continuous in R(h').  Then, the following algorithms can 
be used.

Algorithm RANPARl(/i') (RANking PARallel generation _1)
Input: the rank range R({h'}>h) =  (1, | {h'}.4( |), P  is the number of pro­

cessors used. Given is the table D representing the structure of RQ h'}^.).
Output: The set of choice functions {h1}^. is generated in the SIMD 

system that each processor pf generates | {h!}_^ | ¡P  choice functions. 
Method: Each processor pi knows its index i 
1. for i <—  1 to  P  do in parallel
1.1. R(hi) <—  ( i -  1). | {h'}Ai \ / P + \
1.2. U N R A N K  (hi)
1.3. for j  <—  1 to  | {h'}A I / R  — 1 do
1.4. call N E X T (h i) .

Each processors pi performs only one time procedure U N R A N K  and 
I {h'}Ai I / P  — 1 times the procedure N E X T .  If the cardinal | {h'} ^  | 
can not be partitioned into | {h '}jii | / P  equal parts, then the last pro­
cessor generates only r  choice functions, where r is the rest of the division 
I {h'}Ai | / i 3 - If the rank range R({h'}.4i) ^  (1, | {h'}A I) but it is 
continuous in R(h), then we do not need to create the model S'R but the 
model Sn  is enough good for handling the parallel generation. Then, the 
algorithm RUNPAR2 can be used instead of RUNPARl.

Algorithm RANPAR2(/i') (RANking PARallel generation 2)
Input: the rank range R({/i'}^<) =  (Rmin{h'}, e).
The other conditioning is the same as for the algorithm RANPAR1.
1. for i <—  1 to  P  do in parallel
1.1. R (h{) _  i) .e /P  +  R min{h'}
1.2. U N R A N K  (hi)
1.3. for j  <—  1 to  e /P  -  1 do
1.4. call N E X T (h i) .

The goal of the following example is to show that creation of the model 
S'R is essential for handing the parallel generation of the set of choice func­
tions in SIMD system.
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E xam ple 7.3.1 Given is the following unranking model Sy  = < <  Ai >, 
1 < i <  4, n =  8; W  given in  (1.1); W\ given in (7.1); {h'}_44 > . The task 
is to make parallel generation of the set {h1} ^  using SIMD system that 
P  = 7.

Wi : h'(3) =  h'(2) +  1 (7.1)

We can treat the set { h '} ^  as the subset of the corresponding full set of 
increasing choice functions {h of the model S/j —«  Ai >, 1 < i < 4, 
n =  8; W  given in (1.1); { h } ^  >. Then the table D is the DCM table as
fol ows:

35
20
10
4
1

15
10
6
3
1

The rank range R({h'}Ai) hi R(h) is as follows: R{{h'}Ai) = <  (1| 5), 
(16, 4), (26, 3), (32, 2), (35, 1), (36, 4), (46, 3), (52, 2), (55, 1), (56, 3), (62, 
2), (65, 1), (66, 2), (69, 1), (70, 1) > .

The rank range R({h'}At) in R(h) is discontinuous and very difficult to 
handle. Even if we solve the problem of partitioning this rank range into 
7 subranges, then the generation algorithm would be very inefficient, since 
in every step at least one processor would run the U N R A N K  algorithm.

The set { h '} ^  is symmetric.
Therefore, we can use the model < <  Ai >, 1 < i < 4, n =  8; W  given in 

(1.1); W\ given in (7.1); {h'}_Ai > . So, the table D that represents the 
structure of the set { h '}^  is the table W(1.5)DCM.

15 5 5 1

W(1.5)DCM=
10
6
3
1

Then, the rank range is continuous in R(h'). Therefore, the
problem of the generation of the set jR({/i,}^i) can easily be handled. We 
can use the algorithm RANPAR1.

□
If the set of choice functions {h'}gi is not symmetric, then the algorithms 

RANPAR1 and RANPAR2 can not be used directly. Then, we can build the 
model S' representing the symmetric part of {h'}g{. Simultaneously, the 
number of discontinuous asymmetric parts of {h'}gi can also be diminished. 
For generating and for processing the symmetric subset of {h'}gi we apply 
algorithms RANPAR1 or RANPAR2 Then, each asymmetric part of 
should be generated and processed using the algorithm RANPAR2. That
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approach is reasonable if cardinals of each asymmetric subset of {h ' } g i 
possess the cardinal | { h ' } g i | > >  P.

If asymmetric subsets { h " } g { are included in { h ' } g i and if the cardinals of 
each continuous part { h " ) g i are fixed, then we can also distribute the gen­
eration of the discontinuous subsets into processors, so that each processor 
would generate choice functions of the dedicated asymmetric subsets.

7.3.2 Generation using S P L IT _ la y e r
Suppose, given is the indexed family < Gi >, 1 < i < m, that the set of 
choice functions { h } g i =  { h ' } g i can be partitioned into w  layers { G i ' 1} ,  

1 < i < m  and all the cardinals | | are fixed and equal e. Then,
the set { h ' ] g i can be generated in parallel using SIMD system. The gen­
eral algorithm LAYPAR for this generation uses SP LIT_layer,  however, 
different implementations can also be used.

Algorithm LAYPAR(/i') ( SP L IT _ layer  for PARallel generation ) 
Input: The unranking representation model Su-
Method: With denotation < G{ ' 1 >, I < i < m, we mean the j —th layer 

dedicated to the processor pi.
1. Split the indexed family < Gi >, 1 < i < m, into w layers that w > P.
2. Dedicate k = w /P  layers to each processor pi
3. for I <—  1 to  P  do in parallel
3.1. for j  <—  1 to  & do
3.2. call F IR S T  for the currently processed layer < Gi’1 >, 1 < i < m.
3.3. rep ea t
3.3.1. call N E X T (h j )
3.3.1. Process the choice function h}
u n til the last choice function of the layer < G{ ’1 >, 1 < i < m is 

generated.

The algorithm LAYPAR is suitable for the generation of choice bijections, 
then it is an easy task to split the indexed family < & > , l < z < m  into 
layers that the cardinal of each layer < G{’ >, 1 < i < rn is fixed.

7.3.3 Generation using S P L IT _partia l_m appin g
We can also make the generation of a given set of choice functions {h'}gi in 
SIMD system using SPLIT_partial_mapping  as the main vehicle. Simi­
larly, as for the previous section we need to make assertion that cardinals of 
the sets of choice functions {h^}gi equal e for each partial mapping / .  For 
numerous practical applications that holds. For instance, if we generate the 
set of all the permutations of m  out of n, then each partial mapping for the
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subfamily < Si >, 1 < i < t, t < m  possess a fixed number of extensions to 
full choice functions of the indexed family < Gi >, I < i  < m. Moreover, if 
the set of compositions or partitions with fixed cardinal of each block is to 
be generated, then for each partial mapping f r the number of extensions 
of /  to full choice functions h is dependent only on r, where f r is a partial 
choice mapping the subfamily < Si >, 1 < i < k\+  +  ..+ kr , see the
model 2.38. The methods developed by using SPLIT_partial_mapping  
as the main vehicle are unranking methods, so they only require the basic 
unranking model Su- Nevertheless, the problem is assignment of a set of 
partial mappings /  to each processor pi. For making this assignment we 
can use any method of splitting the set {/}ç; into P  subsets { f } lg> that
the cardinals | { f } lg> \ equal and then we assign each such subset { f } lg, to 
the processor p,.

Algorithm MAPAR(h') ( S P L IT  vartial mamnno  for PARallel gen­
eration )

Input: The unranking representation model Su-
Method: With denotation < G{ >, 1 < i < t, we mean the subfamily of 

the indexed family < Gi >, 1 < i  < m .
1. Create the indexed subfamily < Gj >, 1 < i < t that each choice 

function /  possess the same number of extensions to the choice functions 
h of the family < >, 1 < f < m. A number of choice functions f /  
dedicated to pi processor equals w.

2. for I <—  1 to  P  do in parallel
2.1 . for j  *—  1 to  w do
2.2. w hile there is still an extension of to h do
2.2.1. Generate the next extension hj of f tJ.
2.2.2. Process the choice function hj

For generating an extension hj of f f ,  we use the modified algorithm 
N E X T  that is restricted into the domain {t +  1 — m}.
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7.4 Conclusions

The given in this chapter methods and algorithms use the investigated in 
the previous chapter models and rutines for developing sequential or dis­
tributed or parallel exhaustive generation of arbitrary sets of choice func­
tions. The developed methods posses lowest time complexity when unrank- 
ing methods are used. If we have to use ranking methods, then the main 
concern is to make assertion that the algorithms R A N K  and U N R A N K  
would run a minimum number of times. For making that assertion, we use 
widely Ranking Theorem and developed earlier methodology for modelling 
and for the generation.
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8
Miscellanea

The developed methodology for modeling and for the generation of combi­
natorial objects has concerned mostly the classical problems of the combi­
natorics. New problems, we have investigated till now posses rather auxil­
iary meaning to be used for better performance of the classical generation 
jobs. The goal of this chapter is to demonstrate the great potential of the de­
veloped theory for investigation quite new problems and their solving with 
the aid of the given or modified general methodology. Currently such jobs 
emerge from many branches of computer science mainly concerning the op­
timization theory, in particularly genetic and evolutionary algorithms [48]. 
Till now formulations and solutions of these additional generation tasks 
are very specific and contain only special cases of the general problems
[45]. The presented in this text approach enables us to make the formula­
tion of the problems and algorithms for their solving much more general. 
Apart from the optimization theory there is also strong need for stating 
new combinatorial problems corresponding to many new tasks concerning 
cryptography. In this chapter, we will also demonstrate such tasks and show 
their solutions.

8.1 Indexed families and CF DATABASES
The developed here methods of modeling and of the generation of combi­
natorial objects is rather self-contained in term of potential of formulation 
and solving the generation tasks. Nevertheless, there are structural simi­
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larities between CF DATABASES [22] and indexed families. There is also 
certain structural similarity between the exhaustive generation of the full 
set of choice functions and sorting to be performed in SELRAM [25] or in 
DSM [22], These structural similarities enable us to observe certain mutual 
correspondence between searching and sorting on one side and generation 
of choice functions on the other side. An object in term of CF DATABASES 
can be seen as certain combinatorial object, moreover there is a correspon­
dence between the methods of searching a record (object) and methods 
of the generation of a combinatorial object. In fact, if unranking model is 
reduced and the Q property holds, then there is also similarity between 
certain algorithms for generation of choice functions and algorithms for 
making a search in CF DATABASES. Since we have also developed ran­
dom and semi random search performed in CF DATABASES, so our goal is 
to reuse their structure for random and semi random generation. Studying 
structural similarity between the search algorithms and the generation al­
gorithms promotes deeper understanding the generation problems, we have 
for the models that the Q property does not hold. That understanding be­
came quite helpful in development of the general generation algorithms 
when these models are concerned.

Let us examine in more detail the basic structural similarities between 
CF DATABASES and relative notions on one side and indexed families 
and their choice functions on the other side. For CF DATABASES the 
main structure is the string of characteristic functions <  9 i(oj), g2{oj) , ..., 
gni(oj) >, while the indexed family < G\,Gi,—,Gm > is the fundamen­
tal structure for the developed here theory. In fact, we have the struc­
tural correspondence, between the string of codomains < Ti, T2, ...,rm > 
of the characteristic functions and < Gi, Gi, ■■■,Gm >, since < Fx, T2, 
...,Tm >  is an indexed family1. Then, the string of values < g\(oj), 
<72(Oj), 9m{oj) > for a fixed object oj corresponds to the string of values 
< h{ 1), h{2),..., h(m) >, hence it is a representation of h e Then, we
observe a structural and functional correspondence between the following
algorithms: ____________________

combinatorial objects 
F IR S T  
L A S T

IDNEXTMIN N E X T  if <h is the lexical order *
* if <h used is the anti-lexical order, then the algorithm N E X T  corre­

sponds to IDNEXTMAX.
The rutin EXISTENCE is the basic component of the algorithms de­

fined for processing CF DATABASES in DSMs. We show now that similar

1 For num erous instances instead of the correspondence F ; <— > Qi, we have a corre­
spondence Tj <— + Qi or Tj <— * Q i .

CF DATABASES 
MIN 
MAX
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EXISTENCE function is the basic rutin for the algorithms concerning the 
generation of choice functions.

Let 7 fi £ Ti, € T2, ...,7 ir € Tr , while 1 < ^  < i2 < ... < ir < m. 
The function EXISTENCE(7 i i , 7 i2, ...,7 ir) returns value TRUE if there 
exists an object 0j £ O that 5 il(0 j) =  7 ¡^g i^o j)  = 7 i2, 9ir(°j) = 7 'iP> 
else it returns value FALSE, see [22] for more detailed examination.

Let us investigate a similar concept for the generation of the combi­
natorial objects. We use the following denotations: <7̂  € Gix, qi2 £  Gi2, 
■■■,Qir 6  Gir , we have also 1 < ¿1 < z2 < ... < ir < m. Instead writing 
Qii € Gii, € Gi2, — ,qir € Gir > we can  be more specific putting qil £ Gilt 
qi2 S  £ j 2, ...,qir £  or gq £  G*h , qi2 €  £*2, ...,qir £  </*. depending on 
situation. The function EX ISTEN C E^,, qi2, ...,qir ) returns value TRUE 
if there exists a choice function h € {A}^ that h(i\) = A(z2) =  gi2, ...,
A ( v )  =  9tr .

The function EXISTENCE(7 i l , 7 i2, ..., 7 ir) possess the fixed body and it 
consumes time 0(1) if processing CF DATABASES is performed in DSMs, 
while there is no one function EX IST E N C E ^,, qi2, ...,<Ar ), we have nu­
merous algorithms for its evaluation dependent on the given model, in­
stead. Asymptotic complexities of such algorithms vary from 0(1) up to 
O(n.m). Nevertheless, for different models and their fundamental proper­
ties and for different detailed algorithms there is a correspondence between 
E X IS T E N C E ^ , 7<a, ...,7 ir) and E X IS T E N C E ^ , qi2, ...,qir) . We can 
examine this correspondence observing the following algorithms.

The algorithms MIN and F IR S T  expressed by mean of EXISTENCE 
functions.

Input: the values 7 j, 7 2, ...,7 2 denote the elements of Tj, T2, . .. ,r2, 
respectively, while gj, g2, ...,qi denote the minimal elements of G\,Gi-, 
■■.,Gi, correspondingly that the requirement W  holds.

Output: the minimum Oj £ O that oj =< 7 i , 7 2,---,7 m > or the 
minimum choice function A = <  A(l), A(2), ..., h{m) >, i.e., rank R(h) 
according to the lexical order is minimum.

Method: In brackets, we specify steps to be performed for the genera­
tion purpose, while denotations without brackets concern processing CF 
DATABASES.

1. for i <—  1 to  m  do
1.1. if E X IST E N C E ^, 7 2, ...,7 i) =TRUE 

(E X IST E N C E ^, g2, ...,gi) =TRUE) th en  assign the minimum of Ti into 
Qi (minimum of Gi into h(i) ).

2. re tu rn  < 7 i, 72 .->7m > (< A(l), A(2), ..., A(m) >).

Structural similarities between MAX and L A ST  can also be specified, 
respectively. We will present now the structural similarities between the 
algorithms IDNEXTMIN and N E X T  .
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The algorithms IDNEXTMIN and N E X T  expressed by means of EXIS­
TENCE functions

Input:(i) the string of values of the characteristic functions that gi(oj) =
7l> 52(Oj) =  72. - , 9 m { O j )  =  7m.

(ii) the choice function h that h( 1) =  qi, h(2) =  <72, •••, h(m) = qm;
Output: (i ) the string of values of the characteristic functions (j\ (o') =  

91(0j) , = 52(oj), •••.9i-i{o'j) =  gi-i{oj), gi(oj) =  p{, 5i+i(°i) =
(5i+i, <7i+2(o' ) =  ¿£+2, 5m(Oj) = (5m, or the next minimum choice 
function h' =< h'{ 1) =  h{ 1), h'{2) = h{2) , / i ' ( i - l )  =  / i ( i - l ) ,  /i'(i) =  Pi, 
/i'(z +  1) =  ti+i, h'(m) =  i m >

Method: (i) with denotation ¡3{ we mean the minimum value from the 
set Tj that >  pi(oj), while ¿4- denotes the minimum value from the set 
Tk

(ii) with denotation pi we mean the minimum value from the 
set Q* that p£ > h(i), while tk denotes the minimum value from the set Qk.

1 . i *—  m;
2. while E X IST E N C E ^, 72 , —,7 i- i ,  Pi) = FALSE (EX ISTEN CE^, 

<72, , 9i—1, Pi) =FALSE) do
2.1. i <—  i — 1;
3- 9i{o'j) *—  Pp, (h(i) <—  Pi\)
4. for k <—  i +  1 to  m do
4.1. pfc(o' ) <■—  <5fc; (h{k) «—  £fc;)
5. re tu rn  < 51(0'.), 52(0'-), > (< /¿'(l), h'{2), ..., >);

For choice functions h = < h( 1), /i(2), ..., h(m) > or for strings of values 
of characteristic functions < 7 1 , 72 , —, 7m >, we can use the common 
notion ’’string” in order to express the concepts of common head and tail.

Let {w i , W2, ..., be a set of strings over a given alphabet that W{ = <  
a\ ,ct\, ...,alr > . Suppose, u>i and wj are two strings that Wi = <  a \ , a \ , 
...,qJ. > and Wj —< ...,otJs > and a\ = a\, a %2 = of2, ...,oJ. =  oPk,
while o^.+i 7̂  o^+1- The common prefix, i.e., <  a\ =  o j, a \  =  0 3 , ..., oj. = 
aJk > for W{ and Wj, we call the common head. We have the following 
observation:

Remark 8.1.1 I f  Wj is the next greater than W{, then Wj and W{ posses 
the longest common head out of all strings from the subset of {wi, W2 , ..., 
w-} that contains the strings greater than Wi.

Since, the above given observation concerns both the specified set of 
records and the set of choice functions of a given model, so it concerns 
both generation of choice functions and sorting records in DSMs.

The structure of the presented here algorithms is the foundation for 
development other generating algorithms even if they are to be performed 
for the models that the Q property does not hold.
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There are situations that making a model Su possessing the Q property 
is really a difficult problem. 2 Then, we have to manage with models that 
the Q property does not hold, that happens mostly if we implement ge­
netic algorithms. Such problems are extensively researched [48], [45]. For 
instance, we have shown the task of creation the model Su  in Example 
5.2.5 that the Q property can not hold. We are concerned now with the 
general backtracking algorithm N E X T W Q  that is a generalization of the 
algorithm N E X T  and it is usable for any model including those models 
that the Q property does not hold.
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Algorithm N E X T W Q  (general N E X T  for the models Without Q property) 
Input: A given reduced model Su that the Q property does not hold; the 

table IA  represents current valid choice function h.
Output: The table IA[i] representing the custom form of the next choice 

function.
Method:
Expression D : q =  min{£/; } — {L4[t]}, i.e., q is as small as possible and 

q € Qi and q > IA[i] and q satisfies W  A Wi, see Definition 3.2.3;
Expression U : q — min{£/*}, i.e., q is as small as possible and q G Qi 

and q satisfies W  A W \ , see Definition 3.2.4;
Function D O W N  : returns the element q from the set {Qt — {//![?]}} 

that satisfies D or it returns 0 if the element satisfying D does not exist; 
if the element q satisfies D th en  
D W O N  <—  q that q satisfies D; 
else
D O W N  <—  0;
Function UP  : returns an element of the set Qi that satisfies U or it 

returns 0 if the element satisfying U does not exist; 
if the element q satisfies U th en  
UP  <—  q that q satisfies U\ 
else
UP <—  0;

1. i <—  m;
2. w hile i < m  or Sem = F A L S E  do
2.1. case Sem  of
F A L S E  : if D O W N  ^  0 th e n  IA[i] DOWN-
T R U E  : if UP ^  0 th e n  IA[i) UP;

2In fact, it is an  open problem w hether model th a t the Q property  holds always exist 
If response is positive, then ano ther problem is the size of inpu t d a ta  we have to  have 
in order to  make assertion th a t the Q property  always holds.
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2.2. if IA[i] has been updated at the step 2.1. th e n  i <—  i + 1; Sem  
T R U E ; else i <—  » — 1; Sem  <—  F A L S E ;

3. re tu rn  LA.

Asymptotic complexity of the algorithm N E X T W Q  is 0 {2m), since per­
formance of the step 2. takes at worst 0 (2m) steps. On the other hand 
performance of the algorithm can be completed in time fl(l). For an av­
erage case, we can have complexity 0 (2m) or it can be 0 (mk)> where k is 
a fixed integer dependent on the model S y .  Frankly speaking, we can have 
models S y  that the Q property does not hold only for very few cases on 
the other hand, we can have models S y  that the Q property does not hold 
nearly for all possible partial choice functions. Obviously, if the number of 
partial choice functions that the Q property does not hold is greater, then 
we have greater asymptotic complexity for an average case of the algorithm 
N E X T W Q .

If we apply the general algorithm N E X T W Q  for any special case, then 
the real difficulties come from huge number of possible partial choice map­
ping in comparing with the number of full choice functions of such models. 
That means, we have to perform many times backtracking and looking 
forward steps in comparing with the situation that the generation process 
is successfully completed without any backtracking. In order to diminish 
complexity of the generation of the next choice function, we have to ex­
amine the detailed properties of a given model with respect to possibility 
of making ’’shortcuts” that would reduce the number of backtracking and 
looking forward steps. Unfortunately, the asymptotic and time complexi­
ties of such dedicated algorithms are strongly effected by fitting a proper 
dedicated algorithm to a given model. Therefore, the number of such dedi­
cated algorithms is much greater than the number of dedicated algorithms 
for the models possessing the Q property, so we are not able to consider 
here all the detailed cases and we can not design a proper variant of the 
N E X T W Q  algorithm for each case.

On the other hand the general structure of the algorithm N E X T W Q  
describes the philosophy of the shortcuts and it is very helpful for designing 
a suitable variant of the general algorithm. So, we present now the general 
structure of the algorithm N E X T W Q .

The structure of the algorithm N E X T W Q .
Input: a choice function h € {h}gt
Output: the choice function h! that is the next greater than h (with 

respect to the lexical order)
Procedure SH O R TC U T
can be applied only if EX ISTEN C E^, <72, ...,qi,pi+\, ...,pk) =FALSE, 

it takes the string < <71, q2,...,qi,Pi+i,---,pk > and the model Sy as input 
and it returns the value z as output.

We have two cases:
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(i) z =  s < i in the case of necessity of modification of the head,
(i i) z =  t < k and z > i is returned if the tail needs modification, 
{the body of SH O R C U T  depends on properties of the model Su  }•

1. i <—  m  — 1; fc <—  m;
2. pk «—  UP;
3.w hile i < m  or k < m  do
3.1. if E X ISTEN C E^, q2, •••, <7i>Pt+i> •■•,Pfc) —FALSE th en  
{there is a new minimum prefix of the tail < p'i+1, ...,p's >, s < k or 
there is a new common head < <71, <72, >, t < i}
3.1.1.1. SH O R T C U T ;
3.1.1.2. case 2 of
3.1.1.2.1.1. z < t : i *—  t; k <—  i + l pk *—  UP; {if new common head 

is to be produced}
3.1.1.2.1.2. k <—  s; pk <—  D O W N ; {if only the tail is to be modified}; 
else
3.2.1. k <—  k +  1;
3.2.1. Pk <—  D O W N ;
4. re tu rn  hi = <  g2, >;

The given structure of the algorithm N E X T W Q  and any its variant 
demonstrates the goal, we have for designing the most successful procedure 
SH O R TC U T  taking under account valid properties of a given model. 
That goal is to produce relatively smallest value 2. We justify it observing 
that for the general algorithm N E X T W Q  the procedure SH O R TC U T  is 
trivial since it returns always value z — k — 1. Moreover, we observe:

” If relatively smaller value 2 can be returned, then in fact greater re­
duction of backtracking and looking forward steps at the whole run of the 
algorithm. Consequently, complexity of the algorithm N E X T W Q  would 
be most reduced.”

We will give now the algorithm N E X T W Q B  matching the model Su = <  
< Si >, 1 < i < m; W  given in (1.19); {h}^. >, the Q property does not 
hold, see (1.21). We get such model by implementing genetic algorithms in 
order to find a permutation solving a given intractable task, see Example
5.2.5.

Algorithm N E X T W Q B .  ( N E X T W Q  for choice Bijections)
Input: a choice bijection h 6 {h)gi
Output: the choice function h' that is the next greater than h (with 

respect to the lexical order)
Method: We postpone the technical details concerning assignment of the 

value for bijections. That arrangement was discussed earlier for the algo­
rithm N E X T  and its versions. With CD  we denote codomain of the current 
partial mapping. At the beginning CD  equals codomain of the given h. 

Procedure SH O R TC U T
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can be applied only if EX ISTEN C E^, q2, ...,qi,Pi+\, . . . , P k )  =FALSE, 
it takes the string < q\, q2, •••, Çi,Pi+i, ---iPk > and the model Su  as input 
and it returns the value 2: as output.

We have two cases:
(i) z = s < i in the case of necessity of modification of the head,
(ii) z = t < k and z > i is returned if the tail needs modification.
1. z *—  k — 1;
2. w hile (z > i +  1 and (pz £ Sk or (Sz -  pz) Pi CD = 0))) or

(z < i and (qz £ Sk or qz = max-fS- — CD})) do
2.1. case z of
z > i + 1 : CD  <—  CD -  {p~}; 
z < i  : CD <—  C D - { q z}\
2.2. z <—  z — 1;
3. re tu rn  z

1. i <—  m — 1; k <—  m;
2. Pk —  UP-
3. w hile i < m  or k < m do
3.1. if EX ISTEN C E^, q2, . .. ,q i,P i+ i,  —,Pk)  =FALSE th e n
3.1.1.1. SH O R TC U T ;
3.1.1.2. push (k ,pz) on stock\ {the value p~ is going to be assigned into 

current k }
3.1.1.3. CD  <—  CL>U{p_~};
3.1.1.4. case z of

z < i : i <—  z — 1; k *—  i + I; pk <—  U P ; 
z > i : k <—  z; pk —  D O W N ;

else {if}
3.2.1. k <—  Jfe +  1;
3.2.2. if k is on the top of stock th e n  pop(k,pz) fro m  stock; Pk *—  pz', 

else pk *—  DOW N;
3.2.3. CD *—  C D u {p k} \
4. re tu rn  h’ = <  qu q2> pi+1, ...,pm >;

T heorem  8.2.1 The algorithm N E X T W Q B  is correct.

Proof. If the Q property does not hold for a given generation model and 
if < qi,  172, ...,qi,Pi+ \,...,Pk > is not a partial choice mapping the model, 
then there is a value z < k  that < q\, q2, ...,9;  > is not a common head 
for h and h‘ or Pi+i,...,pz is not the prefix of the tail for h'. Since we 
have to produce a bijection and Ą  /  0 for every i, 1 <  i < m, so no 
value Pk could be assigned to the index k  only if for every pk € Sk there 
is an index j  <  k  that pk — p j  or pk — qj- Basing on the expression at 
w hile (the step 2. of the procedure SH O RTCU T)  we observe, z is the
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maximum index that current value pz{qz) could be assigned into current 
k. The steps 3.1.1.2. and 3.1.1.3. and 3.1.1.4. reserve current value pz for 
making its assignment into current k and replace p.  with a new allowable 
value. Consequently, we cut off a number of backtracking and looking for­
ward steps that would enable us to update the value p., if the algorithm 
N E X T W Q  were used. Assignment of the values pk is the same as for the 
algorithm N E X T W Q , so N E X T W Q  gives the same extendable partial 
choice mapping < qi, (¡2-, Qi,Pi+i, —,Pk > after a number of backtracking 
and looking forward steps, as we get by applying the SH O R TC U T  proce­
dure and by modification of the values between pz(qz) and pk performed 
in the steps 3.2.1., 3.2.2. and 3.2.3. For observing correctness of the stock 
usage, we note that on the top there is always a pair (fc,ps ) that the index 
k is minimum out of all the indexes currently put on the stock. That means 
nesting the backtracking and looking forward steps for proper assignment 
of the values into consecutive indexes is correct. That finishes the proof of 
correctness of the algorithm N E X T W Q B .

□

8.3 Surrounded generation of choice functions
We develop the generation of a set of choice functions that is alternative 
for exhaustive generation using UNSEQl.

Let < Qjn,n >, 1 < i < m, be the minimal non-deformed indexed family 
for the given model Su  = < <  Gi >, 1 < i <  m; W; W p  {h}^ > . Then, 
we have the corresponding model Sy“n = < <  i/f“n >, 1 < i < m; W; Wp  
{h}g,min > . Suppose, h\ and hi belong to {h}^. Then, hi and hi belong to 

since {h}gi C {/i}gmin. The choice functions are ranked according 
to the lexical order <h .

Let R mxn(h) denote the lexical rank of a choice function h that is evalu­
ated for the model S'™.

D efinition 8.3.1 For the given choice functions hi —< h i(l), hi(2), ..., 
hi(m) > and hi = <  /i2(l), hi{2), ..., hi(m) > the numbers R mm(hi) and 
Rmm [hf) we call the absolute rank.

Correspondingly, i?mm(/i2) — / imin(/ii) we call the absolute rank differ­
ence.Observe, the rank difference is an integer accompanied by a sign (+ 
or - ) .

Suppose, we have created the model Su = «  Gi >, 1 < i < m; W, 
W i ; {h)gi > using as a prerequisite the set of choice functions {h'} that 
{'>'} C {h)Q„ see Example 5.2.5. The Q property does not hold for Su- 
We have, {h '\  =  {h\, h'2, ..., h'z}, so that R min(h[) < R mm{h'2) < ... < 
Rm,n(h'z). If the set {/i'} is to be generated exhaustively using a counterpart
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of the algorithm UNSEQ1, then a counterpart of the algorithm F IR S T  
must be used that produces a choice function from the set {/i}^ which rank 
is minimum. Since the Q property does not hold, so running the modified 
F IR S T  can require much time and after making all these evaluations we are 
not sure that the result would be produced. Moreover, using the algorithm 
N E X T W Q  the running time for producing each next choice function h € 
{h}gj can very significantly since for this algorithm we have 0 (2m) and 
fi(l). On the other hand the absolute ranks of the choice functions {/i}p, 
are focused around the absolute ranks of the choice functions {h\, h'2, ..., 
/i'.}. If R mm(h[) «  R m'n(h'2) «  ... < <  Rmm(h'z), then running time of 
the algorithm N E X T W Q  is greatest for producing the first choice function 
focused around each /i'.

In order to reduce the mentioned problems, we investigate the following 
surrounded generation for producing the whole set { h } g x. On the other 
hand exhaustive generation of the set { h } g { may not be needed, then the 
surrounded generation can be completed that produces a subset {h}* C 
{/i}6i, where | {/i}* | {/i}^ | . Generation of the set {/i}* can be quite
satisfactory for a given application. That approach could also be treated 
as alternative for more restrictive defining the crossing operations, if the 
genetic algorithms are concerned.

The surrounded generation of the choice functions can be specified as 
follows:

Method suround_gen. (surrounded generation - generates most of choice 
functions from the set {h}^ ).

Input: Su  and the set of choice functions {h1} c  {h}gi used for producing 
the model Su-

Output: The set of choice functions {h}* C  {h}g<, where | {h}* |=
I {h}Si I •

Method: With denotation N E X {h ',< h) or N E X (h ' ,> h), we mean any 
algorithm from the group N E X T  or N E X T W Q  applicable if the Q prop­
erty does not hold. The generation is followed using the lexical or anti-
lexical order, accordingly.

A variable count is a measurement concerning the generated surround­
ing subsets, i.e., count can represent the number of the generated choice 
functions or it represents time consumed for their generation or any other 
measurement that concerns each surrounding and produced set of choice 
functions.

1. order the choice functions {h1} according to the lexical order producing 
the string < h' > =  < h[, h2, ..., h'z > .

2. for i =  1 to  z do
2 . 1 . h* <—
2.2. count <—  1;
2.3. w hile h' ^  and count < max do
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2.3.1. h* <—  N E X (h*,  < /l); (generate the next choice function according 
to the lexical order}

2.3.2. update count;
2.3.3. re tu rn  /i*;
2.4. count *—  1; h' *—  h'{\
2.5. w hile h* ^  h'i _ 1 and count < max do
2.5.1. h* *—  N E X (h*, > h);(generate the next choice function according 

to the anti-lexical order}
2.5.2. update count;
2.5.3. re tu rn  h*

The given method can be implemented both as a sequential algorithm 
or we can make implementation as a parallel or distributed algorithm. We 
can select a measurement count, so that too much costly choice functions 
would not be generated. That concerns especially the first and the last 
choice functions according to the lexical order.

8.4 Random generation when the Q property holds
Another case of non-exhaustive generation of choice functions is their ran­
dom generation. The tasks of random generation of choice functions can 
be split in two classes. The first class contains reduced models that the 
Q property holds, the second class of tasks concerns the models that the 
Q property does not hold. In this section, we are concerned with the first 
class of tasks. Similarly, as it was for the deterministic search and gener­
ation, we observe structural similarities between the algorithms developed 
for searching a random object in CF DATABASES and the generation of 
a random choice function for a fixed Su  model. We have given algorithms 
IDRAN and IDSEMRAN in [29] for random search of a record (object) 
contained in a fixed CF DATABASE. The concept and the structure of 
these algorithms we are going to carry on the ground of random choice 
function generation.

8.4 .I The algorithms G E R A N D  and G E R A N D S T E
The goal is to generate a random choice function of a given model Su  or 
S r . The simplest way of solving this task is to use a given S r  model. Then, 
we generate a random number R(h ) from the set 1 < | {h}gi |, where R(h) 
is treated as the rank. The last step is to use the algorithm U N R A N K  pro­
ducing the choice function h. Complexity of this sketched method is rather 
high since we known that the algorithm U N R A N K  has high asymptotic 
and time complexity by itself. Therefore, we propose another method us­
ing the model Su- Then, the points h{i), 1 <  i <  m, of the function h are
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generated in a random way following the model properties. Formally, we 
have the following general algorithm G E R A N D  that is a counterpart of 
the algorithm IDRAN [29].

Algorithm G E R A N D  (general algorithm for GEneration of a RANDom 
choice function)

Input: A given reduced model Su  that the Q property holds.
Output: The table IA  represents the custom form of a random choice 

function {h}gr
Method: The steps 1.1. and 1.2.1. denote random generation of an ele­

ment that belongs to Qi, while EXISTENCE(/A(1), IA {2), ..., IA (i — 1), qi) 
takes value TRUE if there exists partial choice mapping < IA (  1), IA(2), 
... ,IA(i -  1), IA{i) >  that the requirements W  and W\ are satisfied.

1. for i <—  1 to  m do
1.1. qi <— random (^) ;
1.2. w hile EXISTENCE(/A(1), IA{2), ... ,IA(i -  l ) , qi) = FALSE do
1.2.1. qi *— random(<5i);
1.3. IA(i)  <—  qg,
2. re tu rn  I  A.

The given algorithm G E R A N D  posses time complexity Q(m), while for 
the worst case we could have O(oo) since the loop 1.2. could be performed 
any number of times. Moreover, the given algorithm does not enable us 
implementing any statistic for controlling the process of random generation 
of choice functions. In order to avoid these difficulties, we propose the 
following algorithm.

Algorithm G E R A N D S T E  (general algorithm for GEneration of 
a RANDom choice function Enabling STatistics)

Input: A given reduced model Su  that the Q property holds.
Output: The table IA  represents the custom form of a random choice 

function h G {h}g4.
Method: For i = 1 the set QJ1 equals Q\ . For i > 1 the algorithm SETQl 

produces a proper set QI as it was specified earlier. The step 1.2. uses 
simplified notation that means a random element form the set QI is assigned 
as the value IA(i).

1. for i <—  1 to  m do
1.1. SETQ* ■
1.2. IA { i) <—  random(C/*);
2. re tu rn  I  A.

Asymptotic complexity of the algorithm G E R A N D S T E  is O(m.n) be­
cause of necessity of production of the set Q*, while we have also Q(m) for 
the best case. Since, we can implement statistics for performing the step
1.2., so the given algorithm enables us controlling probability of the gen­
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eration of particular elements from the set Q\, that determines a statistic 
ruling the generation of choice functions.

8.4-2 The algorithms G R E R A N  and R A N S C A N
Given is a model S u  = «  Qi >, 1 < i < m\ W ;  W \ \  {h}5i >, a choice 
function h G {h}gi and the lexical order <h. The task is to generate a 
choice function h! G{/i}g. that the corresponding ranks satisfy the relation 
R(h') > R(h). Similarly, as it was given in the previous section, we could 
solve this task by generating a random number p from the range (R(h ) + 1 , | 
{h} |], Then, treating p as the rank of a choice function h' and using 
the algorithm U N R A N K ,  we could produce h1. We have for this method 
asymptotic complexity 0 (n.m) and Q(rn), since it is effected by complexity 
of the algorithm U N R A N K .  Time complexity of such method is really huge 
and it makes the sketched approach impractical. Moreover, for making such 
generation we have to have assertion that the set is symmetric. We get 
better results using the following algorithm GRERAN.

Algorithm G R E R A N  (general algorithm for the generation of the choice 
functions whose rank is RANdomlv GREater than the given one).

Input: A given reduced model Su  that the Q property holds, the table 
IA  representing the given choice function h.

Output: The table IA  represents the custom form of a choice function 
h! g {h}gi , that R(h') > R(h).

Method: For i = 1 the set Q\ — {/A[l]} equals Q\ — {/A[l]}. For i >  1 
the algorithm SETQ{ produces a proper set Q{ using the value IA (i  — 1) 
as it was specified earlier. The goal of the steps 3. and 4. is to find the 
value j  that is nearest to i and such that increasing IA(i) could be done. 
A simplified notation, we use at the step 6. similarly as it was given at the 
step 1.2. of the algorithm G E R A N D ST E .  Observe, this notation differs 
from the notation used at the step 1.

1. i *—  random(l,m );
2. j  *—  i;
3.1. w hile (I A ( j ) =  max(£?j)) and (j  < m) do
31.1. j  <— j  +  1;
4. if ((j  — m) and ( j  =  max(£?j)) then
4.1. j  <—  i — 1;
4.2. w hile (IA (j)  — max(<5j)) and (j  > 1) do
4.2.1. j  <— j  — 1;
4.2.2. if ((j  = 1) and (j  = m ax(^))) th en  re tu rn  ’’rank R(h) is 

maximum”; stop;
5. SETQ)-
6. IA \j\  <—  random (Q* -  {/A[j']});
7. for i *—  j  + 1 to  m do
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7.1. S  E T  Gy,
7.2. IA(i)  m in(a;);
8. re tu rn  I  A;

We have complexity O(n.m) and Q(l) for the algorithm G RERA N .  If 
smaller value i is produced at the step 1., then there is greater rank differ­
ence R{h') — R(h). So, the main control of the rank difference R(h') — R(h) 
can be done using different statistics for random generation of value i. The 
range of control of the difference R(h') — R(h) is much more narrow, if 
we use a statistic for producing greater or smaller values IA[j] at the step
6. We have also a possibility of controlling the tail produced at the step
7. For that purpose, we replace the step 7.2. with the following step 7.2. 
IA(i) <—  random(Q*) and we can use statistics for making this random 
generation.

The algorithm G R E R A N  can be used as the basic component for scan­
ning in a random manner a set of choice functions {h} of a given model 
Su- For this scanning we can use the following algorithm R A N  SC  AN.

Algorithm R A N S C A N  (RANdom SCANner)
Input: model Sy.
Output: randomly generated choice functions whose ranks increase
1. h <—  F IR S T
2. w hile 1 =  1 do
2.1. h' *—  GRERAN-
2.2. h <—  h'.

The algorithm G R E R A N  can be widely used if non-exhaustive genera­
tion of choice functions for a model that posses the Q property.

8.5 Random generation when Q property does not 
hold

For the models that the Q property does not hold, we can not apply the 
algorithms for random generation of choice functions developed in the pre­
vious section. There is strong similarity between the algorithms for deter­
ministic and random generation of choice functions using models that the 
Q property does not hold, instead. For the class of models discussed in this 
section a real random generation of choice functions using a counterpart of 
the algorithm G R E R A N  S T  E  is theoretically possible. Nevertheless, very 
high asymptotic and time complexities of such algorithms, especially if the 
Q property does not hold for numerous instances of a given model, make 
such investigations impractical. Much easier task is to generate a semi ran­
dom choice function h' that its rank is greater from a given choice function
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h. For making such generation, we will develop a counterpart of the general 
algorithm N E X T W Q .

We present now the structure of the general G E N R A N W Q  algorithm 
for random generation of a choice function whose rank is greater than the 
rank of a given choice function h.

The structure of the algorithms G RERA N W Q .
Input: a choice function h G {h}gi
Output: a random choice function h' whose rank is greater than h (with 

respect to the lexical order)
Method: We have two variants of such general algorithm. The instruc­

tions specified in parentheses are assigned to the second variant that enables 
us to implement numerous statistics concerning the generation of the choice 
function h '. For the first variant, we randomly select only the initial length 
i of the head. Then, the choice function h' possessing the minimum rank 
and the head of the length i or smaller is produced.

Functions UP  and D O W N  are the same as those given for the algorithm 
N E X T W Q .

Procedure SH O R TC U T
{similar as it was given for the algorithm G R E R U N  used for the model 

St/}.

1. i *— random (l,m ); k *—  i +  1;
2. Pk *—  U P ; (pk *— random(Ç* -  {/A[i]}));
3.while i < m  or k < m  do
3.1. if E X IS T E N C E ^, q2, ...,qi,pi+i, ...,pk) =FALSE th en
3.1.1.1. S H O R T C U T ;
3.1.1.2. case z of
3.1.1.2.1.1. z < t : i <—  f; k <—  i +  1; pk <—  UP ; (Pk <— random(Çq — 

(«[■]}));
3.1.1.2.1.2. k .—  s; pt  .—  DOWN; (pt <— random©/)); 
else
3.2.1. k <—  k + 1;
3.2.1. pk «—  D OW N; ( p k — random(# ) ) ;
4. re tu rn  h' =< q u  q2 , . . . , q i , p i + u  ...,pm >',

Simple replacement of the instruction pk *—  UP  with the instruction 
Pk *— random((?j — {/A[i]i}) and replacement of the instruction pk <—  
D O W N  with the instruction pk *— random(£{) essentially changes time 
complexity of evaluations especially if for numerous partial choice mapping, 
we can not get any full choice function. If we use the instructions pk <—  UP  
and pk <—  D O W N , then the procedure SH O R TC U T  can be used sim­
ilarly as for the deterministic generation. If the instructions for random 
generation of pk are used, then development of a proper SH O R TC U T
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procedure is much more difficult since there is a greater number of the 
possible tails for completing the generation. Therefore, we recommend 
possibility of usage of the instructions p k <— ra n d o m ^  — {/A[i]}) and 
Pk <— random(<5*) only if the Q property does not hold for a few par­
tial choice mappings, while usage of the instructions p k .*—  UP  and 
Pk <—  D O W N  should be considered as a valid principle if for numer­
ous partial choice mappings the Q property does not hold. Nevertheless, 
we emphasis that applying instructions pk *— ra n d o m ^  -  {/A[i]}) and 
Pk <— random ^*) enables us to use numerous statistics for the generation 
of a random choice function h' that R(h') > R(h).

If we develop a proper variant of the algorithm G R E R A N W Q ,  then the 
algorithm R A N S C A N  can be used directly.

8.6 Non-monotonic generation of choice functions
The goal is to develop deterministic ranking model that entropy of the 
absolute rank difference R mm(h) — R mm(h') is as high as possible for given 
h, where h! is the next choice function generated for h, see (8.3.1). So, if 
one knows h, R(h), R(h’) but does not know the model, then he is not 
able to evaluate h!. In other words, we can say that the goal is to make 
the order - 0  used as much hidden as possible. Of course, the requested 
order <h must be pretty far from the lexical order and any its variant 
including piecemeal lexical orders. The second restriction we put on -<h is 
specification to be given for the proper user of the model. On one side the 
specification can not be defined with a simple formula since the requested 
entropy of h' could not be high. On the other side, we can not make a 
tabular specification of the order -<h, since the ranking model would be 
too much bulky. We conclude that solving the stated problem when staying 
on the classical ground would be really a difficult task.

If the developed till now representation models were used, then entropy 
of h' would be much greater since the number of the possible representation 
models depends exponentially on n  and m. Nevertheless, if a sequence of 
consecutive choice functions were known, then evaluation of the next h' 
would be an easy task. Therefore, in order to preserve high entropy of h' 
for its given rank, a new approach for representing sets of choice functions 
is needed. A method for increasing the entropy of h' was investigated in
[30] and its specific usage for development of cryptographic systems was 
given in [31]. We will recall and develop this methodology.

The block diagram of a hierarchical ranking model that possess seemingly 
random generation order ~<h is given in Fig.8.1.

The hierarchical model possess k levels. The order ~<h used for the model 
is nowhere specified but could be revealed by the sequence of choice func­
tions h generated in accordance with the sequence of natural numbers
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hidd en  hierarchical m od el

FIGURE 8.1. A ranking model for non-monotonie génération of choice functions 
RYSUNEK 8.1. Model rankingowy dla niemonotonicznej generacji funkcji wyboru
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1,2,... representing the rank R*(h). In fact, the string of the ranking mod­
els < S R, ..., SR > is made individually in the course of processing 
for each natural number representing a given rank R*(h). At each step of 
the hierarchical model evaluation, we construct the consecutive component 
S lH, then using this model and the number rank I the choice function hl is 
evaluated. The choice function hl is used as an intermediate operator that 
acts on a hidden indexed family < 0 [ >, 1 < i < Zf, 1 < I < k producing 
its subfamily < O1̂ ,  Olh , ..., Oljm > . Then, an isomorphic indexed family 
< Q[ >, 1 < i <  m  is produced or we use additional fixed methods for this 
production in order to make assertion that the obtained ranking model 
S lR = < <  Q\ >, 1 < i < m; W l\ {/r*}^, < h, table D* > is reduced and the 
Q property holds. Observe the order <h used at each level is the lexical 
order. The choice function hk produced at the k level is simultaneously the 
output corresponding to the given rank R*{h) =  < rank 0, rank 1, ..., 
rank k > . The methodology of processing is specified in more detail as 
follows.

Algorithm UNRNOMON( UNRanking choice functions using an non­
defined and NOn-MONotonic order -<h)

Input:
(i) hidden data: Parameters k, z\ 4  Zfc, indexed families < Oj >, 1 < 

j  < zi, 1 <  I < zi,
the requirement W l and a rule RUl for constructing the unranking mod­

els S\j that axe reduced and the Q property holds basing on a given in­
dexed family < O 1̂ , O1-̂ , ..., C?jm > .The ranking model S°R = < <  Q\ >, 
1 < i < m; W°; {/i°}eo, <h, table D1 > .

(ii) open data: The ranks rank 0-~rank k that R*{h) = <  rank  0, rank
1, ..., rank k > .

Output: Choice function h — hk.
Method: The step Olh , Olh , ..., Oljm > *—  / i '- 1(< 0 \ ,  Ol2, ..., Olt >) 

means selection indexed subfamily < , O lj2, ..., (9jm > from the indexed
family < 0 [, Ol2, ..., OlZi > by means of the choice bijection hl~l —< j i,
J2> ••■! jzi ^  •

The step hl <—  U N R A N K {S [£ l , rank I) produces the choice function 
hl using the model S lR l and the input rank I.

1. h° *—  UNRANI<{S°r , rank 0);
2. for I =  1 to  k do
2.1. < Olh , Olh , ..., 0 ) m > —  hl~ \ <  0[ ,  Ol2, ..., OlZl >);
2.2. make the indexed family < Q\ >, 1 < i < m  applying RUl into 

< Ol■ Ol- Ol- > ■
2.3. evaluate table D1,
2.4. hl <—  U N R A N K {S 1r \  rank I)-
3 . h i —  hk]
4. re tu rn  /i;
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The block diagram shows iterative evaluation of the choice function h 
for a given rank R*(h). One can show that if R*(h') = R*(h) 4  1, then 
R(h') =  R(h) + where R*(h) denotes the rank according to the
order -<k , while R(h) denotes the rank according to the lexical order <h . 
The entropy of A R^ )  is a measurement of a quality of the given multi­
level model. If entropy of &R(h) is greater, then prediction of h! for given 
h is more difficult. We can observe that even for k =  1 the entropy of 
AR(h) is very high. We have the following arguments for that statement: 
the number of possible models S lR for each level I is 0(2 m), in fact the 
number of possible indexed families < <  Q\ >, 1 < i < m, is 0 (2 m). That 
concerns also < <  Q\ >, 1 < i < m, if k — 1. Then, we observe that AR^)  
can be positive or negative, since that property depends only on properties 
of the selected sets < O 1̂ , Olj2, ..., (9jm > but is independent from the 
choice function hl~l used for making this selection. The given algorithm 
is polynomial time and its asymptotic and time complexity are effected 
mainly by complexity of a method that uses the rule RUl and it produces 
not redundant model that the Q property holds.

We can accept W l = W  and it is specified in 1.19, since for a given model 
the number of choice bijections is greatest out of all different value choice 
functions.

This general generation model can be simplified by accepting rank 0 = 
rank 1 = ... — rank k and/or < Oj >, 1 < j  < z\ =  < Oj >, 1 <  j  < zi = 
... = <  Oj >, 1 <  j  < Zfc. Then, the rank R*(h) would equal rank 0 and/or 
we need to store one indexed family instead k indexed families < Oj >, 1 < 
j  < z\, altogether. The models S lR remain different because we have still 
different indexed families < Q- >, 1 < i < m, at each level, in general. That 
simplification reduces memory needed for storing the generation model and 
the input data are also much reduced but entropy of h for given R(h) is 
still high.

The detailed analysis of the entropy of A R^)  is rather a difficult task, 
so we present an example of such generation, instead.

E xam ple 8.6.1 The structure of model at each I — th level is the structure 
of the model for choice bijections, n = 12, m =  8, k = 10, z; =  12. The 
sets O j  were common for all the levels and were generated randomly. We 
assumed rank  0 =  rank 1 =  ... =  rank k. For nine consecutive values of 
the rank  0 = <  1 4  9 >, we get the following choice bijections h.

1 -  < 1,4,3,7,12,10,2,5 >
2 -  < 3 ,1 ,4 ,9 ,8 ,5 ,7 ,12 >
3 -  < 1,3,8 ,6 ,9 ,12,7 ,2  >
4 -  < 3,1,6,5,4,9,10,12 >
5 -  < 1 ,2 ,10,4 ,6 ,8 ,3 ,7  >
6 -  < 3,7,12,2,8,10,4,11 >
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FIG U RĘ 8.2. The błock diagram of autentification 
RYSUNEK 8.2. Schemat blokowy autentyfikacji

7 -  < 1,4,11,8,6,10,7,2 >
8 -  < 7,1,4 ,9 ,2 ,11,5 ,8  >
9 -  < 4,2,10,8,9,5,6,12 >

□

Consecutive choice functions produced can not be seen as random ones 
for an external observer but rather as semi random, since the numbers 1, 
4 and 3 repeat very often as the values taken for the first three indexes. 
That property is very common for the considered here generation and it 
happens independently from values n, m  and k, the starting rank R*{h) 
does not also have particular meaning for existence of this property. In 
order to reduce influence of this property on possibility of predicting the 
choice function h', we have to use possibly big values n and m  but the value 
k  is not especially significant for greater semi-randomization of the results.

The given multi-level models for non-monotonic ranking generation of 
the choice functions possess very wide and significant possibilities of ap­
plication in cryptography. Simply the rank send by an open network can 
be treated as a secret cod of a key value represented by the correspond­
ing choice function. Another valid applications concern individual digital 
& changeable signatures that correspond to consecutive choice functions of 
a given model, [30]. Usage of the authorization system is demonstrated in
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Fig.3. For getting confirmation of the signature we can use the following 
two protocols.

The first protocol.

AIN (Authorization INstitution) and USER possess the same hierarchi­
cal model, both posses the same current value of the rank R*(h). The 
changeable digital signature is the pair (R*(h),h).

1. The value R*(h) USER increases by 1 and such updated R*(h) he 
stores and uses for evaluation corresponding h.

2. Then USER submits the pair (R*(h),h) to REQUESTOR.
3. Next REQUESTOR sends the name of USER to AIN asking for con­

firmation.
4. AIN checks the current value R*(h) contained in the model of USER 

and evaluates corresponding h.
5. AIN sends the pair (R*(h),h) to REQUESTOR.
6. REQUESTOR gets confirmation if the pairs (R*(h),h) obtained from 

REQUESTOR and USER match.
7. AIN increases R*(h) by 1 and writes this new value to the model of 

USER.

This first protocol enables not only confirmation of the changeable signa­
ture but lack of confirmation informs USER that somebody used his model 
for authorization or something wrong is going on with AIN. The disadvan­
tage of the first protocol is possibility of making not wanted confirmation 
by REQUESTOR.

The second protocol.

AIN (Authorization INstitution) and USER possess the same hierarchi­
cal model, both posses the same current value of the rank R*(h). The 
changeable digital signature is the pair (R*(h),h).

1. The value R*(h) USER increases by 1 and such updated R*(h) he 
stores and uses for evaluation corresponding h.

2. Then USER submits the pair (R*(h),h) to REQUESTOR.
3. Next REQUESTOR sends the pair (R* (h), h) and the name of USER 

to AIN asking for confirmation.
4. AIN checks whether R*(h) obtained from REQUESTOR and stored 

in the model of USER match if no then REQUESTOR and next USER are 
informed that R*(h) is wrong, so confirmation is not possible.

5. If values R*(h) obtained form REQUESTOR and stored in the model 
match, then AIN evaluates h using model of USER.

6. If h evaluated by AIN and that obtained from REQUESTOR match, 
then AIN gets confirmation and informs REQUESTOR about



182 8. Miscellanea

7. AIN increases R*(h) by 1 and writes this new value to the model of 
USER.

The second protocol gives greater safety both for USER and AIN. First 
of all the REQUESTOR can use only once the pair (R*(h),h) requiring 
confirmation. Moreover, if confirmation can not be completed, then both 
AIN and USER can come to interesting for them conclusions.

This simple method of usage of the hierarchical non-monotonic ranking 
model possess numerous practical applications that are pretty far from the 
subjective of this text, so we do not discuss them here.

8.7 Conclusion
Numerous problems concerning non-exhaustive generation of combinatorial 
objects have been considered in this chapter. We have developed methodol­
ogy for the surrounded generation of the choice functions, for then random 
generation and also for non- monotonie generation of choice functions. The 
developed methodology concerns both the unranking models that the Q 
property holds or we use models that the Q property does not hold. For 
non-monotonic generation of choice functions the ranking models are used. 
The presented results prove versatility of the developed theory. We can eas­
ily apply it for discussing numerous generation problems included in this 
text. Since the developed theory concerns the fundamental properties of the 
models, so we can also expect its usefulness for studying new problems that 
were not mentioned in this text. The structural similarity between search 
problems performed in CF DATABASES and DSMs and the generation of 
choice functions shown in this chapter create new interesting perspectives 
of seeing search and generation as the similar problems. It enables us to 
imagine replacement of huge databases with compact generation models 
and a search replace with a generation. That perspective creates a new 
interesting range of future research.

The general results developed in this text show clearly that the problems 
of combinatorics possess strongly algebraic character, so algebra should 
be seen as the main supporter of the methodology when combinatorial 
problems are concerned.
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S um m ary

This text shows the representations of sets of combinatorial objects by 
choice functions of indexed families. We investigate and study the unrank­
ing models those represent sets of choice functions. Our main concerns are 
sets of increasing choice functions, sets of monotonie choice functions and 
sets of choice bijections. We demonstrated usage of these models for repre­
senting the basic combinatorial objects, i.e., permutations, combinations, 
variations, partitions, decompositions and compositions. Then, the struc­
tural numbers and the tables D for representing the structure of sets of 
choice functions are studied. The tables D create new theoretical founda­
tion for deeper understanding of the structure of the whole combinatorics 
in relation to Stirling’s numbers and to Pascal’s triangle. These tables are 
the main components of the ranking models, we investigate also transfor­
mations of the models basing on the tables D. Ranking Theorem presents 
the main existential result for our philosophy of getting the most suitable 
models. As far as the representation of sets of combinatorial objects is 
concerned the choice function approach gives benefits that could not be 
obtained using the classical methodology, we demonstrate these benefits. 
Then, the generation of combinatorial objects is performed by means of 
the generation of choice functions. We develop the system < Methods > of 
the basic procedures for the generation of choice functions. We investigate 
the general algorithms N E X T ,  F IR S T  and L A S T  and their most efficient 
variants dedicated to unranking generation of choice functions of specific 
classes of the models. The investigated notion ’’the Q property” enables 
us to explain the model properties leading to existence of backtracking- 
less algorithm. Then, the algorithms U N R A N K , R A N K  and R A N G E  
for ranking generation of choice functions are devloped. The tables D are 
the essential components of the developed algorithms concerning the rank. 
The sequential, parallel or distributed systems for exhaustive generation of 
choice functions are given. We demonstrate also usefulness of the presented 
here approach into solving the general tasks for the models that the Q 
property does not hold. We have shown backtracking and looking forward 
algorithms showing simultaneously the structure of efforts undertaken in or­
der to diminish as much as possible the number of backtracking and looking 
forward steps. We have also shown development of digital signature system 
basing on the given theory. The results concerning non exhaustive gener­
ation are for the first time so strongly unified supplying convenient tools 
for implementation and futher development of optimisation algorithms es­
pecially the genetic algorithms.
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Modelowanie Arbitralnych Zbiorów Obiektów 
Kombinatorycznych oraz ich Sekwencyjna i Równoległa 

Generacja

Streszczenie

Obiektem kombinatorycznym w sensie niniejszej pracy jest każda struk­
tura jak zbiór, graf, tablica, itp., skonstruowana na podstawie danych repre­
zentujących inną strukturę oraz o reguły tworzenia takiego obiektu kom- 
binatorycznego. Przez podstawowe obiekty konibinatoryczne rozumiemy 
permutacje i wariacje, kombinacje, podziały liczb lub zbiorów, dystrybucje 
oraz kompozycje. Każdy zbiór obiektów kombinatorycznych może byc zdefi­
niowany w oparciu o odpowiadający zbiór podstawowych obiektów kombi­
natorycznych. W pracy przedstawiono metody modelowania oraz generacji 
zbiorów obiektów kombinatorycznych. Podstawową reprezentacją obiektów 
kombinatorycznych jest funkcja wyboru h rodziny indeksowej < Gi > ,  
1 < i < m, rozumiana jako odwzorowanie i —» ca, gdzie i € I, qi € Gi, 
I  =  {1,2, Dowolny zbiór obiektow kombinatorycznych odpowiada
zbiorowi funkcji wyboru {/i}^ jakiegoś modelu nierankingowego Su, którego 
ogólna struktura wyrażana jest następująco: Su  = < <  Gi >, 1 <  * < m; 
W\ W i ; {h}gi >, gdzie W  oraz W\ określają warunki, jakie dodatkowo 
musi spełniać każda funkcja wyboru h € {/i}g,. Warunek W  określa jedną 
z podstawowych klas funkcji wyboru, podczas gdy Wi pozwala zdefiniować 
dowolną jej podklasę. W modelowaniu obiektów kombinatorycznych znaj­
dują zastosowanie klasy rosnących funkcji wyboru, klasy funkcji monofon­
icznych oraz klasy bijekcji.

W pierwszych dwóch rozdziałach pracy przedstawiono podstawowe właś­
ciwości modeli reprezentacyjnych znajdujące zastosowanie w modelowa­
niu arbitralnych zbiorow obiektów kombinatorycznych, pokazano modele 
zbiorów podstawowych obiektow kombinatorycznych.

W dalszej części pracy przedmiotem rozważań jest struktura zbioru {h}ęt. 
Istotnym wyróżnikiem tej struktury jest odpowiednia tablica D, której 
elementy są ogólnie zdefiniowanymi liczbami strukturalnymi. W szczegól­
nych przypadkach liczbami strukturalnymi są elementy trój kata Pascala 
lub liczby Stirlinga. W oparciu o tablice D rozważany jest izomorfizm oraz 
równoważność modeli reprezentacyjnych. W celu przedstawienia podsta­
wowej filozofii transformowania modeli reprezentacyjnych istotne znacze­
nie ma twierdzenie rankingowe o charakterze egzystencjalnym. Przedsta­
wione rozważania służą do rozwinięcia koncepcji reprezentacyjnego modelu 
rankingowego zdefiniowanego jako struktura, Su(k) —< Su, <h, tablica D 
>, gdzie <h oznacza porządek na zbiorze {/r}^, pochodną porządku <h 
jest ranking R(h) rozumiany jako odwzorowanie N  —+ {/i}gi , N  = {1,2, ...,
I {h}ęt |}. Własności modeli rankingowych oraz nierankingowych wyko­
rzystano następnie dla wprowadzenia i rozwinięcia modeli generacyjnych, 
których podstawowymi komponentami jest system < Methods > zawiera­
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jący istotne dla generacji procedury F IR S T , LAST, N E X T ,  UN R A N K ,  
R A N K , R A N G E  oraz procedury pomocnicze.

Rozdział 6 przedstawia podstawowe procedury z tego systemu oraz ich 
najważniejsze warianty w zależności od własności modeli reprezentacyjnych.

Rozdział 7 rozważa generację zupełną zbiorów funkcji wyboru w sys­
temach sekwencyjnych, rozproszonych oraz równoległych przy wykorzysta­
niu przedstawionych powyżej procedur. Istotną własnością modeli reprezen­
tacyjnych jest własność Q oznaczająca istnienie beznawrotowych algoryt­
mów generacyjnych. Rozważania przedstawione w pierwszych siedmiu roz­
działach koncentrują się wokół modeli posiadających własność Q.

Rozdział 8 zajmuje się różnymi zagadnieniami dotyczącymi szerszych klas 
zadań i reprezentacji, przede wszystkim rozważane są warianty niezupełnej 
generacji zbiorów funkcji wyboru oraz generacji, w przypadku gdy włas­
ność Q nie jest spełniona. Pokazano strukturę wysiłków, które należy pod­
jąć celem uzyskania algorytmów o możliwie najmniejszej liczbie nawrotów. 
Wynik ten wykorzystano dla rozwinięcia algorytmu generacji bijekcji wyboru 
Ważnym wynikiem szczegółowym jest przedstawiony system podpisu elek­
tronicznego rozwinięty w oparciu o wprowadzone modele hierarchiczne. 
Ciekawym prognostykiem dla przeszłych badań jest strukturalne podobień­
stwo wyszukiwania przeprowadzanego w maszynach do głębokiego wyszuki­
wania oraz generowania funkcji wyboru.




