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c n (P S L ( 2 ,K ) )= 4  for K = Q , R

Jan Ambrosiewicz 
Białystok Technical University, Poland

Let G be a group. The smallest integer m  satisfying equality C m =  G for each non
trivial conjugacy class C  of G is called the covering number and is denoted by cn(G). The 
problem of investigation of cn(G) is called the covering problem.

It is known that

1. If K  = C, then cn(PSL(2,I<)) = 2, (see [2]),

2. If K  is finite field and \K\ >  4, then cn(PSL(2, K)) =  3, (see [5]),

3. If K  =  Q, R, then cn(PSL{2, K ))  >  3, (see [4]).

Using the following theorems

T heorem  1. I f A  € GL(n, K ), A (jf Z  and also V = diag(v i , . . . , v n), W  =  
d ia g (w i,... ,w n), u,- V j ,  W{ ^  w, for i j ,  then there exist X , Y  € GL{n.I<) such
that A  =  (A -1 V X )(Y ~ XW Y ) and det(X), det(Y) are arbitrary elements of I \ ' , (see [1]).

Theorem  2. I f  A € G L (n ,K ) (n = 2,3; K  — R .C ), A £ Z , then there exists X  € 
S L (n ,K )  such that eigenvalues of A X ~ l A X  are different, (see [2]).

it has been proved that cn(P SL(2,R )) < 4, (see [2]).
Now we can prove that if K  =  Q ,R , then PSL(2,I<) -  Z  = C3 ( C -  any nontrivial 

conjugassy class) and cn(PSL(2, K )) — 4.
A similar problem to the covering problem of G by conjugacy classes is the covering 

problem of G by the sets I \w = {g £ G : o(g) = u;} of elements of order w.
In the paper [3] it has been proved the following theorem

Theorem  3. I f  I< ts the real field R or K  =  GF(ps), p >  2, then On{K , / )  =  K 2I<2. I f  I< 
is the complex field C or I{ -  GF(23), then On( K ,f )  ±  K 2K 2, where On( K , f )  denotes a 
group of automorphisms of the vector space Vn(I\) which leave invariant a quadratic form  
f  o f determinant different from zero.

It also has been proved that P G L(2 ,K ) =  K2I<2 while PGL(n,I<) ^  I \2K 2 with n > 3, 
where P G L (n ,K )  =  G L(n,I<)/Z .
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IA -a u to m o rp h ism s o f  free  grou p s

Stylianos Andreadakis
Athens University, Greece

This talk is about some results which are not new but their interest lies in the fact that 
the relative problems have drawn again the attention of the algebraists. Let K  =  IA u t(F )  
be the group of the I  A.—automorphism of the free group F  of rank q. Thus I\ consists of 
all automorphisms of F  which induce the identity on the commutator group.

Two main main questions are examined:First to identify the lower central series of K  
and second to find the ranks of the lower central factors which are free abelian group.

The last problem is connected to the problem of finding the tame automorphisms of 
free nilpotent groups,i.e. automorphisms which are induced by automorphisms of the free 
group.
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L a ttic e s  o f  in te r m e d ia te  su b g ro u p s

Zenon I. Borewicz 
St. Petersburg State University, Russia

Let G be any group and Go a fixed subgroup of G. On the lattice of all intermediate 
subgroups Lat(Go,G) =  {/f|Go < H < G] we introduce the structure of a graph (of
normality). Verteces of this graph are all H , and between Hi and Hi we have the edge
iff H\ is normal in H i. The connected components of the graph of normality are called 
g a rlan d s of Lat(Go,G). If Go is normal in G then our graph of noramlity is connected 
and in this case we have only one garland. On the other hand if every H  is selfnormalised 
in G then each garland contains only one subgroup.

In the general case Go < G, we consider two operations (lifting and descent): for any 
H , Go < H  <  G, we put H' =  N g ( H )  and 'H = Gq . Iterations of this operations permit 
to introduce two sequences:

H < H '< H " <  ... (1)

and
H > 'H > " H >  ... (2)

Garland P is called bounded from the top iff for any H  € T the sequence (1) is finite. 
Similarly, by means of (2), we introduce the notion of garland which is bounded from the 
bottom. The garland is called of a finite type if it is bounded from the both sides. For 
any two subgroups Hi and Hi in the same garland if from Hi < Hi it follows H[ < H'2 
(condition of monotony for lifting) then there exists 1 — 1-correspondence between all 
garlands bounded from the top and all selfnormalized intermediate subgroups.

An intermediate subgroup F  is called full iff G$ = <  G(j|x 6 F >— F. All garlands 
of Lat(Go,G) which are bounded from the bottom are in bijective correspondence with 
all full intermediate subgroups. A subgroup Go is called polynorm al iff Gqx> is full for 
every x £ G (see [2]). For the polynormal subgroup Go in G all garlands of Lat{Go,G) 
are in bijective correspondence with all full intermediate subgroups F  and each garland 
coincides with the interval Lat(F, Ng(F)).

For example (see [1]), let K  be any field (or skew-field) for which |A'| >  7, G = 
GL(n, K ), Go — D(n, K )  the subgroup of diagonal matrices. Then Go is polynormal in 
G ( and even pronormal), the lattice Lat(Go, G) is finite and is independent from K , 
all garlands are in bijective correspondence with all topologies on n points, for each full 
subgroup F  the factor-group N g (F )/F  is isomorphic to a section in symmetric group S„, 
the subgroup of all monomial matrices over K  of degree n is maximal in G.

In the second example we take G =  GL(2, Q) (Q  is the rational number field) and G0 
a non-split torus which is isomorphic to multiplicative group of a quadratic field Q(Vd)
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(see [3]). In this example the subgroup Go is not polynormal for every d, the structure of 
Lat(Go, G) depends essentially on arithmetical properties of d, all garlands are bounded 
from the top and have property of monotony for lifting; therefore all garlands are in 
1 — 1-correspondence with all selfnormalized intermediate subgroups.

If in the quadratic field Q(\f(d)) we take 1, >J~{d) as the bases then for the nonsplit
torus Go =  T{d) we have the following representation in G =  GL(2, Q ):

T(J) = {(y

All garlands of Lat(T(d),G ) are of the finite type if and only if d =  l(mod4).
For any intermediate subgroup H, T(d) < H < G, we introduce the module of 

transvections

A(H) =  {a € (21 ^  J j  6 / /}

and the ring of coefficients

R(H) = {r € Q\rA(H) Ç A(H )}.

A subring R  in Q is called admissible if there exists a subgroup H  for which R(H ) = R. 
Also a submodule A  in Q is called admissible if .4 = A(H) for any H. For characterization 
of the ¿-admissible subrings and submodules we introduce the subring R(d) in Q:

R(d) = ring < € Q (yf(d)),z *  0 >

(here tr  and N  are trace and norm for the extension Q (\f{d))IQ ). The subring R(d) is
generated by A, p’s are odd prime with (A) =  1, and additionaly by A, if d = l(mod8). 
The subring R  in Q is d-admissible if and only if R(d) Ç R. For any garland T of 
Lat(T(d), G) all subgroups H  in T have the same ring of coefficients R. It follows that the 
lattice Lat(T(d),G ) contains continuum (that is 2K°) garlands. Let R  be a d-admissible 
subring. If number 2 is invertible in R  or d is even then each nonzero integer ideal in R  is 
d-admissible. If number 2 is not invertible in R  and d is odd, then nonzero integer ideal in 
R  is d-admissible if and only if it is even. Now we can get the description of all garlands 
in Lai(T{d),G ) and also to find the structure of each garland [3].

The last results may be extended to nonsplit tori connected with any quadratic ex
tensions of fields of characteristic ^  2.

Another examples of garlands may be found in papers [4] — [8].
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S o m e  p rob lem s o f  grou p  r in gs o f  
in fin ite  grou p s

A. A. Bovdi
Debrecen, Hungary

1. Free subgroups o f units in group algebras

Let K  be a commutive ring and t(G) the set of torsion elements of G.
The following problem is a very difficult and interesting one:
Problem  1. W hen does the group of units U(KG) not contain a free group 

of rank 2?
The first result have been obtained by B. Hartley and P. Pickel:

Theorem  Let G be a solvable-by-fimte group and suppose that U(ZG) does not contain 
a free group of rank two. Then the following conditions hold:

1. t(G) is a subgroup and every subgroup of t(G) is normal in G;

2. t(G) is an abelian subgroup or a hamiltonian 2-group.

We would like to deal with this problem for the group of units U(KG) of a group
algebra KG. J. Z. Goncalves (1984) gave necessary and sufficient conditions for this
problem in case G is finite, and, moreover, some extensions of this result to infinite 
groups.

We now define for an arbitary group G the normal subgroup

A(G) =  {g € G | [H : C„(g)} < oo}

for every finitely generated subgroup H of G.
Of couse, the torsion part A+(G) of A(G) is a normal subgroup and the factor group

A(G)/A+(G) is torsion free and abelian.

T heorem  Let K  be a field of characteristic 0 or p and suppose that U(KG) does not 
contain a free group of rank two. Then one of following conditions hold:

1. G is abelian;

2. G is a torsion group and K  is algebraic over its prime field GF(p);

3. K  is a field of characteristic 0 and

a) A+(G) is an abelian subgroup and each of its subgroups is normal in G;
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b) the centralizer Cg(A+(G) contains all elements of finite order of G;

c) for every a £ A +(G), which is not central in G, K  contains no root o f unity of
order equal to the order of a;

f .  K  is a field of characteristic p and

a) the subgroup A+(G) is a semidirect product of the p-Sylow subgroup P o f A+(G)
and an abelian group A;

b) i f  K  is not algebraic over its prime field GF(p), then the centraliser Cg (A + ( G / p )

contains all elements of finite order of G /P ;

c) if  A+{G /P) is noncentral in G /P  and G /P  is non-torsion, then the algebraic
closure L of GF(p) in K  is finite and for all g G G /P  and a € A P /P  there 
exists a natural number r such that gag~l =  apr. Furthermore, each such r 
satisfies condition that [L : GF(p)] divides r.

Theorem  Let K  be a field of characteristic 0 or p and G a locally nilpotent group. Then 
U (KG) does not contain a free group of rank two if and only if one of following conditions 
hold:

1. G is abelian;

2. G is a torsion group and K  is algebraic over its prime field GF(p);

3. K  is a field of characteristic 0 and

a) the maximal torsion subgroup t(G) is abelian and each of its subgroups is normal
in G;

b) for every a € t(G), which is not central in G, K  contains no root of unity of
order equal to the order of a;

f .  K  is a field of characteristic p and

a) the subgroup t(G) is a direct product of the p-Sylow subgroup P  o f t(G) and an
abelian group A;

b) i f  A is noncentral in G then the algebraic closure L of GF(p) in K  is finite and
for all g £ G and a £ A there exists a natural number r such that gag~x =  a?r. 
Furthermore, each such r satisfies that [L : GF(p)] divides r.

Problem  2. Suppose that U(KG) does not contain a free group o f rank two 
and A+(G) is not a central subgroup of G. If U (K) has an elem ent of infinite 
order then is it true that t(G) =  A+(G)?

The question has already been answered in the positive in case
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1. (Hartley and Pickel) K  is a field of characteristic 0 and G is a solvable-by-finite 
group;

2. (Goncalves) K  is a field of characteristic p not algebraic over its prime field GF(p), 
and if p =  2 then the degree of transcendence of K  over G F(2) is at least 2; G is a 
solvable-by-finite group without p-elements.

Problem  3. Let K  be a field of characteristic p. W hen does U(KG) contain  
a free product of two cyclic subgroups of order p?

For example, let i f  be a finite group and assume that its commutator subgroup is not 
a p-group. If G is a direct product of H and an infinite cyclic group then U(GF(p)G) 
contain a free product of two cyclic subgroups of order p.

Theorem  Let G be a finite nonabelian group which is not Hamiltonian 2 - group. Then

1. (Goncalves-Ritter-Sehgal) Every subnormal subgroup of U(ZG) containing G have 
a free group of rank two;

2. (Hartley) Let N  be a subnormal subgroup of U(ZG). There exists a normal subgroup 
H of finite index in U(ZG) such, that either N  contains a free group of rank two or 
N  fl H lies in the centre of U(ZG).

Problem  4. Let G be a torsion group which has no ham iltonian subgroups, 
and N  a (sub)norm al subgroup of U(ZG). Then either N  contains a free group 
of rank 2 or is a solvable-by-finite group.

2. T h e isom orphism  problem  for group rings o f in fin ite  groups

Concerning the isomorphism problem for finite groups deep and interesting results has 
been obtained recently (Roggenkamp, Scott, Weiss). As these are well-known, we shall 
examine the group rings of infinite groups.

Let L(G) be the lattice of normal subgroups of G and L/(G) the lattice of finite normal 
subgroups of G. Let K  be any integral domain of characteristic 0 in which no rational 

prime is invertible. Let G and H  be finite groups and suppose that K G  =  K H . Then 
there exists a lattice isomorphism

8 : L(G) -  L(H).

Several authors investigated the properties of 8, which gave lots of information on the 
isomorphism problem.
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At the early 70’s it was proved (Bovdi, Bass, Passman) that for an infinite group G, 
in ZG torsion units have trace 0. This allowed to transform the results on S for infinite 
groups G, which can be found in the books Group rings by Bovdi (1974) and Topics in 
Group Rings by Sehgal (1978).

T h eo rem  Let K  be any integral domain of characteristic 0 in which no rational prime is 
invertible. Let G and H  be arbitary groups and suppose that K G  = K H .

Then there exists a lattice isomorphism

6 : Lf(G ) -  Lj(H )

with the following properties:

1. The commutation of any two finite normal subgroup: if  G' is commutator subgroup 
of G and P, L are finite normal subgroups of G, then

6(P') = (S(P)Y  and 6((P,L)) = (6(P),6(L)y,

2. The isomorphism of normal abelian sections: if P, L are finite normal subgroups of 
G, P  C L and L /P  is abelian, then

L /P  = 6(L)/6(P).

Research on L(G) for infinite G was initiated by Ziegenbalg in 1975. He obtained some 
results for locally finite groups, which was later extended to arbitrary torsion groups:

T h eo rem  (Bovdi 1976) Let I\ be any integral domain of characteristic 0 in which no 
rational prime is invertible. Let G and H  be torsion groups and suppose that K G  =  K H . 
Then there exists a lattice isomorphism

6 : L(G) -  L(H)

with following properties:

1. The commutation of any two normal subgroups: if P ,L are normal subgroups of G, 
then

6(P') = (6(P))' and 6((P,L)) = (6(P),6(L)Y,

2. The isomorphism of normal abelian sections: if P , L are normal subgroups of G, 
P  C L and L /P  is abelian, then

L /P  = 6(L)/6(P).
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We do not know any result about 6 for non-torsion groups G.
It is very interesting that if K G  =  K H , then

1. if G is a locally finite group then H  is also is a locally finite group;

2. if G is a p-group then H  is also a p-group.

If G is torsion, then is it true that H  is also torsion?

Theorem  Let ZG) an integral group ring and ZG  =  ZH . Then

1. (Magnus and P. Cohn) I f G is an abelian group then G and H  are isomorphic;

2. ( Whitcomb) I f  G and H are torsion groups, then

GIG" = H/H"-

3. (Furukawa) I f  G and H are torsion groups, then

G/D<(G) 3  H/D<(H);

4. (Röhl) I f  G is the circle group of a nilpotent ring then G and H are isomorphic;

5. 5. (Strojnowski) I f  G is a u.p. group then G and H are isomorphic.

Hales and Passi proved that a nilpotent group G of class 2 is the circle group of a 
nilpotent ring of index 3 if

1. the centre ((G ) is 2-divisible and extraction of square roots is unique in ((G);

2. G /((G ) is a direct product of cyclic groups;

3. G /G' is divisible or torsion;

4. G /G ' is torsion free and completely decomposable.

They also showed that not every nilpotent group of class 2 is a circle group. Therefore 
there exists a nilpotent group of class 2 for which the isomorphism problem is open.

Let V(ZG) be the group of units with augmentation 1 of ZG and /  an ideal of ZG 
contained in the augmentation ideal. Then the normal subgroup

7+ =  {x € V(ZG) I x -  I 6 /}

is called a congruence subgroup of V'(ZG).
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T heorem  (Sandling 1974 and later reproved by Bovdi 1977) Let K  be a commutative 
ring and G the circle group of a radical algebra R over K . Then there exists a congruence 
subgroup / + such that

V(K G ) =  G tx/+.

Problem s

Let K  be a commutative domain of characteristic 0. Let G be the circle group of a 
radical algebra R  over K  and suppose that the order of any torsion element of G has no 
inverse in K . The following problems are open:

1. The isom orphism  problem for circle groups.

2. Is the congruence subgroup I + torsion free?

We remark that the congruence subgroup 7+ is torsion free provided

a. (Passman-P. Smith 1981) R  is a finite ring;

b. (Bovdi 1984) R  is a locally nilpotent ring.

c. (Furukawa 1987) R  is residually nilpotent.

3. T h e  Z assenhaus prob lem  for group rings o f  in fin ite  groups

If u g U [I\G ) and u G x U(K) then u is called a nontrivial unit of KG.
Let K  be a ring of characteristic 0. There is one obvious way to obtain a nontrivial 

torsion unit of U(ZG ): We conjugate a torsion element g g G by the unit a g U (KG) of 
the overring K G  such that a~'ga g U(ZG).

Zassenhaus conjected that this is the only way to obtain a torsion unit for a finite 
group G.

The Zassenhaus Conjecture has been proved for several classes of groups. The strongest 
result belongs to Weiss:

T heorem  I f  G is a finite nilpotent group and H is a finite subgroup in V (ZG ) then there 
exists a unit w g C(QG) such that w_1Hw  C G,

Roggenkamp and Scott constructed a metabelian group G for which the Zassenhaus 
Conjecture is not valid.
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A necessary condition for the existence of conjugation w_1uw =  ±g  can be expressed 
in terms of the Stallings-Bass functions tc(x). They are defined for each conjugacy classes 
C of G by the formula

c s d )  =  c g- 
g £G  g$C

The Stallings-Bass function tc(x) is additive and has the following trace property: 
tc (xy)  =  tc{yx) for all x .y  € KG.

Clearly, the number tc(u) = tc(w~luw) = ± tc(g) is nonzero only if g belongs to C. 
For finite groups this necessary condition is also sufficient.

A group G is said to satisfy the unique trace property if for each torsion unit u € ZG 
there exists a unique conjugacy class C such that tc{u) ^  0.

For an infinite group G little is known about the unique trace property.

Theorem  The Zassenhaus Conjecture is valid if

1. (Lichtman-Sehgal) G is a free product of finite cyclic groups;

2. (F. Levin-Sehgal) G is an infinite dihedral group;

3. (Bovdi-Marciniak-Sehgal) G is a direct product of a group with the unique trace 
property and an abelian torsion free group.

Sehgal and Zalesskii constructed an infinite group for which the Zassenhaus Conjecture 
is not valid.

Bovdi-Marciniak-Sehgal described some classes of groups with the unique trace prop
erty (for example groups residually by locally nilpotent groups).
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D e fin in g  r e la tio n s  for H u r w itz  g r o u p s

Colin M. Campbell 
University of St Andrews, Scotland

In this talk I will describe some recent joint work with E.F. Robertson (St Andrews) 
and M.D.E. Conder (Auckland). Much of the material is in a joint paper ‘Defining relations 
for Hurwitz groups' which will appear in the Glasgow Mathematical Journal.

The (2 ,3 ,7)-triangle group is the group with presentation

A (2 ,3,7) =  <i, y 11 2 =  y3 = (xy)7 -  1)

or, alternatively,

A (2 ,3,7) = {A ,B  | (A B )2 =  ( A ^ B ) 3 = B 7 =  1).

A Hurwitz group is any finite non-trivial quotient of A(2,3,7). John Leech, who sadly died 
on 28 September 1992, was interested in the situation when a fourth relation w (x,y)  =  1 
(or w (A ,B )  =  1) in the generators x and y is added. In this talk, as in the paper, I 
will describe some results on what is known for various fourth relations w(A, B ) =  1. In 
particular answers will be given to some questions raised by John Leech over twenty years 
ago.

When w = A k (or w =  [x,y]*), a complete picture now exists, the most recent results 
showing that the group with presentation

(A, B  | (A B f  = (A~lB )3 =  B 7 =  Ak =  1

is infinite when k > 9 [k — 10 and k > 12 being proved by Holt and Plesken (and also, 
independently, by Howie and Thomas) and the case k =  11 being proved by Edjvet].

We describe how we may then assume that the fourth relator w 
is of the form (Ar B ’)k where s € {2,4,6}, k > 2 and r > 2 i f s  =  2 o r 4  and r > 4 if 

s = 6. Examples tire given for various relators w of the form (ArB ’)k.
Some of Leech’s questions were relatively easily solved, some were deeper and some 

are still open. For example, an easily determined answer is that when w =  (A4B 4)3, 
the presentation defines an extension by SL (2,8) of an extra-special 2-group of order 
21S. More difficult is the case w =  (AJ£ 4)6 where the group is an extension of C® by 
P S L (2,7) x P S L (2,13) of order 11,741,184. When w =  (A3B 2)5 the question is still 
open.
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S em ig ro u p  id e n tit ie s  in  v a r ie tie s  o f  grou p s

Piotr W. Gawron 
Silesian Technical University, Gliwice, Poland

Let F  be a free group generated by set X  = {xt , x2, ...}  and $  be a free semigroup 
generated by the same set X .  Let a group G =  F /N  be a qoutient group of F. An identity 
Wx =  w?, for u>i,W2 £ F , is called a semigroup identity if w i,w i € $.

By S  we denote a cancellative semigroup with a nontrivial identity u =  v. It follows 
from Ore’s theorem that S  is embeddable in a group of fractions G = S~ lS  =  S S ~ l . We 
call 5  a base semigroup of G.

Since in any group xy =  yx, implies xy~l = y~lx, it follows that if S is commutative, 
G then is also commutative. It is known from [3] that if 5  is nilpotent of class n, then 
G is also nilpotent of class n. Does the same hold in the case of an arbitrary semigroup 
identity? This question was posed by G. M. Bergman in 1981 [1], and another formulation 
of it can be found in a work of Shevrin and Volkov [4].

Definition: A semigroup identity u =  v is called transferable when if the semigroup 
5  satisfies u =  v then the group of fractions G also satisfies u = v.

Since every periodic cancellative semigroup coincides with its group of fractions, the 
identity xn+1 =  x (giving periodicity) is transferable. Moreover, since for a semigroup S  
with this identity one has S = G, obviously each other identity of S  is the identity of G. 
So the identity xn+1 =  x has a property of being transferring.

Definition: The semigroup identity u =  v we call transferring if any other identity 
wx = w2 which is satisfied in 5  is necessary satisfied in G under condition that S  satisfies 
u = v.

Proposition: The set of transferring semigroup identities forms a modular lattice. 
This lattice is not closed to infinite sums.

Although for a semigroup 5  with the identity xnyn =  ynx n one has usually S  ^  G, it 
is shown in [2] by J. Krempa and 0 . Macedońska that the identity x nyn = ynx n is both 
transferable and transferring.

Proposition: The identity (xy)n(yx)n is transferring.
Proposition: A variety with semigroup identities has a transferring identity if and 

only if any group in the variety having a relatively free base semigroup is a relatively free 
group.

Question: Does there exist identities which are transferable but not transferring and 
are transferring but not transferable?

1. Bergman G. M. Hyperidentities of groups and semigroups. Aequat. Math. 23 (1981), 
55-65.
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2. Krempa J., Macedoriska 0 . On identities of cancellative semigroups. Cont. Math. 
131 (1992), 125-134.

3. Malcev A. I. Nilpotent semigroups (Russian). Uchen. Zap. Ivanovsk. Ped. Inst. 4 
(1953), 107-111.

4. Shevrin L. N., Volkov M. V. Semigroup identities (Russian), Izv. Vuzov, Matematika 
11 (1985), 3-47.

G ra d in g s , d er iv a tio n s an d  a u to m o r p h ism s o f  so m e  
a lg eb ra s  w h ich  are n ear ly  a sso c ia t iv e .

Piotr Grzeszczuk 
University of Warsaw, Bialystok Division

We examine a class of algebras which includes Lie algebras, Lie color algebras, right 
alternative algebras, left alternative algebras, antiassociative algebras and associative al
gebras. We call this class of algebras (a ./3, 7 )-algebras and we examine gradings of these 
algebras by groups with finite support.

We generalize various results on associative algebras and finite - dimensional Lie alge
bras.

Two of our main results are
Theorem  A. Let A be a G—graded left (a ,/? ,7 )-algebra and V = ©seG ^ a G—graded 

left A—module with finite support, where G is a torsion free abelian group. If Ao acts 
nilpotently on V , then A also acts nilpotently on V.

Theorem  B. Let A be a G—graded (a ,/? ,7 )—algebra with finite support, where 
G — T  x Zm and T  is a torsion free abelian group. If the identity component A(o,o) acts 
nilpotently on A on both sides, then A is solvable.

These results can be used to examine the invariants of automorphisms and derivations. 
In particular we have

Corollary 1. Let L — © j6gL3 be a Lie color algebra over a field K  of characteristic 
0 and let D be a finite - dimensional nilpotent Lie algebra of homogeneous derivations of 
L which are algebraic as A'—linear transformations of L. If the subalgebra of constants 
LD =  {xgL|<5(x) = 0 ,V 5 eD }  is zero then L is nilpotent.

Corollary 2. Let L =  ©s€gLj be a Lie color algebra over a field K  and let a be a 
homogeneous automorphism of L which is algebraic as a A'—linear transformation of L. If
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either I f  — 0 or I f  acts nilpotently on L where a satisfies a separable polynomial, then 
L is solvable. Furthermore, if L” =  0, where the order of u is prime, then L is nilpotent.

These results generalize old works of G. Higman ([H]), N. Jacobson ([J]), V. A. Kreknin 
and I. A. Kostrikin ([KK, Kr]) and D. Winter ([W]).

This is joint work with Jeffrey Bergen (DePaul University).

R e fe r e n c e s

[1] Graham Higman, Groups and rings having automorphisms without non - trivial 
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[2] N. Jacobson A note on automorphisms and derivations of Lie algebras. Proc. AMS 
6 (2), (1955), 281 - 283.

[3] V. A. Kreknin and I. A. Kostrikin, Lie algebras with a regular automorphism. Dokl. 
Akad. Nauk SSSR 150 (1963), 467 - 469.

[4] V. A. Kreknin, Solvability of Lie algebras with a regular automorphism of finite 
period. Dokl. Akad. Nauk SSSR 150 (1963), 467 - 469.

[5] David J. Winter, On groups of automorphisms of Lie algebra. J. Of Algebra 8 (1968), 
131 - 142.

V a r ie tie s  o f  grou p s w ith  no sem ig ro u p  id e n t ity

Barbara Har§zlak 
Silesian Technical University, Gliwice, Poland

The question we consider is: which groups satisfy nontrivial semigroups identities. 
From Zorn’s lemma it follows that each variety of groups which has no semigroup 

identities contain the minimal subvariety with this property.
In his article Shevrin calls such varieties ” nearly satisfying ” a semigroup identities. 
The known example of such varieties %p • Qt. The first proof of the fact that in the

variety of all metabelian groups there is no semigroup identity was given by Malcev.
We give hare a sketch of our own ( easier ) proof of the same fact.
Let F be a free group on two generators.
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Theorem:
There is no a semigroup identity in the group F/F".
Sketch of the proof:
Let’s assume that in F /F "  there is a semigroup identity. We may find then a binary 

one:

x k'y l'...x k-yk- = x m'y n'...xm'y n‘, (1)

where

k{ = m < and ¿  U =  n• ■
1=1 ¿=1 t = i  ¿=1

We shall prove that it is the trivial identity. If apply s times the commutator equality 
ab = 6a[a, 6] to both side of (1), we get:

X> XX £ '• X X. ¿*1 XX £ '.  X >1f XX XX
x , = l  y .  = l  [ y . =  l  j X > = 2  ] [ z . . 2  , ¿ , . = 2  ] [ y . = 2  j X . = 2  ] [ X - =  3 ^ . = 3  ] . . .

t  t  t t
i i . . , r  mi 7  Hi T  ni r  m,

=  !/.=■ [ y -  ] . . . [ x m',y " '] (2)

We show that modulo F" the left-hand and right-hand sides are equal so the identity 
is trivial in F /F ".

S y m m e tr ic  w ord s in  grou p s

Waldemar Holubowski
Silesian Technical Univerity, Gliwice, Poland

An n-ary word w is called n — symmetricword  in a group G (or simply symmetric 
word if there is no ambiguity) if

(*) w (9i,---,9n) =

for all gi, — , g„ from G and all permutations o from symmetric group Sn.
Symmetric words in a given group G are in a close connection with fixed points of

the automorphisms permuting generators in the corresponding relatively free group, with 
symmetric operations in universal algebra and symmetric identities.

The n-sym m etric words in G build a group S [n)(G) introduced by E.Plonka in [PI],
We consider with G a sequence {5(fl)(G)}n>i of its groups of n —symmetric words.

We concern here with the following general
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P ro b lem . For a given group G describe a sequence .
In our talk we give a survey of results on symmetric words in nilpotent, soluble and 

finite groups, on generation of groups of n —symmetric words and pose some open ques
tions.

R e fe r e n c e s
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1977, 95-103.
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O n  r in g s w h ich  are su m s o f  tw o  su b r in g s

Marek Kępczyk 
Białystok Technical University, Poland

More than 30 years ago Kegel, motivated by some results on groups, proved that a ring 
which is a sum of two nilpotent subrings is nilpotent itself. This result inspired further 
fruitful studies of rings which are sums of two subrigs.

The aim of the talk is to present some problems and new results in the area. It seems 
to be interesting to ask whether they have their counterparts in the theory of groups.

A  p ro b lem  o f  S eh ga l

B. Kiraly
Hungary, Eger

Let R  be a commutative noetherian ring with identity, and let /  be an ideal with 
I  R. The Krull intersection theorem states that if z € lTSS=i f"  then there exists a t in 
I  such that x = xt.
The object of this paper is to generalize this result to group rings, (see [2], problem 38).

Let R  be an integral domain, G a group and RG its group ring and let A(RG) denote 
the augmentation ideal of RG. We shall say tha t the intersection theorem holds for 
A(RG) if there exists an element a £ A(RG) such that flS i j41(^2Gr))(l — a) =  0.

Sufficient conditions for the intersection theorem to hold for certain RG  are given in
[1], In [1] neccessary and sufficient conditions are given in the cases when G is finitely 
genereted with a nontrivial torsion element and R — Z  is the ring of integers, or if G is 
finitely genereted and R  =  Zp is the ring of p— adic integers.

In this paper we give neccessary and sufficient conditions for the intersection theorem 
to hold for an arbitrary group ring over a commutative integral domain.

Let Dn(RG) be the n th dimension subgroup of the group G, and let 
Dn(RG) = n?=lDn(RG),

WV(G) =  n ~ i  Gp 7 n(G), where 7„(G) is the nth term of the lower central series of G.
We use the following notations for group classes: N v — nilpotent p—groups o f finite 

exponent, jV’n =  Upen^"p> where Q is a subset of primes.

T H E O R E M . Let R  be a commutative integral domain. The intersection theorem 
holds for A(RG ) if  and only if  DU(RG) is the largest finite subgroup o f order invertible 
in R and at least one of the following conditions holds:
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G /D U(RG) is a residually torsion free nilpotent group;
there exists a subset fl of the primes such that G /D u;(RG) is discriminated by the class 
of groups 77 q, flpgn Jp(R) =  0 arid for arbitrary subset A of fl the ideal f |PeA 'h (R )  =  0 

or G /D U(RG) is discriminated by the class of groups 77q\a ; 
the set of the elements of finite order of G forms a finite normal subgroup T (G ) and for 
every prime divisor p of |T(G)| which is non-invertible in R, the group WV(G/ DU(RG)) 
is finite with no p—elements and JP(R) =  0.

R e fe r e n c e s

[1] Parmenter M. M., Sehgal S. K., Idempotent elements and ideals in group rings and 
the intersection theorem, Arch. Math., 24 (1973), 586-600.

[2] Sehgal S. K., Topics in group rings, Marcer-Dekker, New-York-Basel, 1978.

W rea th  P r o d u c ts  in  th e  U n it  G rou p  o f  M o d u la r  
G rou p  A lg eb ra s o f  2 -grou ps o f  M a x im a l C lass

Alexander Konovalov 
Institute of Mathematics, AN Ukraine Kiev

Let G is a finite p-group, K  is a field of characteristic p and U(KG) denotes the group 
of normalized units of KG, namely U(I<G) = 1 +  A(G), where A(G) is the augmentation 
ideal of KG.

In [1] A.Shalev stated the question whether the wreath product of a group of order p 
and the commutator subgroup of G is always involved in U(KG).

In [2] he gave a positive answer to this question for the case of odd p  and a cyclic 
commutator subgroup of G.

We consider 2-groups of maximal class, namely, the dihedral, semidihedral and gener
alized quaternion groups, which we denote by D n, S n and Q n respectively.

We give positive answer for Dn and S n for every n.

Theorem  1: Let K  is a field of characteristic two, G is a dihedral or semidihedral
2-group. Then the wreath product C2 wr G ' of a cyclic group of order two and the 
commutator subgroup of G is involved in U(KG).
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The theorem was proved by constructing of the subgroup of U (I\G ) which homomorfic 
image is isomorphic to the wreath product.

For the generalized quaternion group we show by direct calculation, then such wreath 
product is involved in U (I\G ) when \G\ < 32. The proof for general case is now being 
in consideration. Clearly, in general case we can involve in U(KG) wreath product of C2 
and a cyclic group of order j|G '|.

R e fe r e n c e s

[1] A. Shalev. On some conjectures concerning units in p-group algebras. Proceed
ings of the Second International Group Theory Conference (Bressanone, 19S9). 
Rend.Circ.Mat.Palermo (2), Suppl. 23(1990), 279-288.

[2] A. Shalev. The nilpotency class of the unit group of a modular group algebra I. 
Isr.J.Math. 70(1990), 257-266.

R in g s  w ith  p er io d ic  u n it g ro u p s

Jan Krempa 
Warsaw University, Poland

Let A be a torsion free abelian group and let G be the group of its automorphisms. 
Hallett and Hirsch proved that, if G is finite then G has to be a subdirect product of some 
copies of 6 explicitly distinguished small groups.

Our aim here is to extend this result to the case when G is periodic. We proceed in the 
context of rings and their groups of units. In particular integral group rings with periodic 
group of units will be described.

R e fe r e n c e s

[1] L. Fuchs, Infinite abelian groups”, vol. 2, Academic Press, New York 1973.

[2] J.T . Hallett, K.A. Hirsch, Torsion-free groups having finite automorphism groups, J. 
Algebra 2(1965), 287-298.



Konferencja „Groups and Group Rings’’ 161
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morphismengruppen, J. Reine Angew. Math. 241(1970), 32-46.

[4] K.A. Hirsch, H. Zassenhaus, Finite automorphism groups of torsion-free groups, J. 
London Math. Soc. 41(1966), 545-549.

[5] G. Lallement, “Semigroups and combinatorial applications”, Wiley - Interscience Pub
lications, New York, 1979.

[6] S.K. Sehgal, “Units in integral group rings", Longman, Essex 1993.

[7] C.L. Siegel, Discontinuous groups, Annals of Math. 44(1943), 674-689.

O n grou p  a lgeb ras w ith  m eta b e lia n  u n it  g ro u p s

Janos Kurdics 
Department of Mathematics 

Bessenyei Gy orgy Teachers’ College 
Nyiregyhaza, Hungary

Let G be a finite group and F a field of positive characteristic p. Although the problem 
of its solvability has formerly been resolved, few facts are known of the derived length of 
the group of units (7(FG) of the group algebra FG. In [1] Shalev showed that U(FG) is 
metabelian if and only if G is abelian provided p > -3; moreover, if and only if G is abelian 
or nilpotent with a commutator subgroup of order 3 provided p = 3. Our aim is to treat 
the case p — 2.

T h eo rem  Let G be a finite group and F a field of characteristic 2. The group of units 
U(FG) is metabelian if and only if one of the following conditions holds:
(i) G is abelian;

(ii) G is nilpotent of class 2 and has an elementary abelian commutator subgroup of order 
2 or 4;

(iii) F =  Fa, the field of two elements, and G is an extension of an elementary abelian
3-group H  by the group (b) of order 2 with b~lab =  a -1 for every a € //.
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R e fe r e n c e s

[1] Shalev, A. Meta-abelian unit groups of group algebras are usually abelian . J. Pure 
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O n g ro u p  an d  sem ig ro u p  id e n tit ie s

Olga Macedońska 
Silesian Technical University, Gliwice, Poland

Let T  and F  denote respectively the free n-generator semigroup and the free 
n-generator group, both generated by n elements x , y , z , . . .  ,t .

Let G be a group generated by gi, ■ ■ ■ ,gn, and 5  be a semigroup generated by the 
same g i , . . . ,g n. The group G is called the group of fractions for 5  if G =  S S - l  =  S~l S. 
The necessary and sufficient condition for this situation is the Ore condition satisfied in 
S, that is: for each a, 6 6 S  the intersections aS  0  bS and Sa fl 56 are not empty.

Elements of 5  in G can satisfy an identity i. which is not necessary a semigroup 
identity s.i. The question, we consider, concerns possibilities for 5  and G to satisfy an 
identity or even a semigroup identity.

The possibilities can be described by a table

s.i. i.
G ± ±
S ± ±

We prove that not more then fife different possibile tables exist, give some examples and 
formulate problems. These fife tables are:

s.i. i. s.i. 1. s.i. i.
I. G + + , II. G - - , III. G - +

S + + S - - S - +

s.i. i. s.i. i.
IV. G - - , V. G - +

S + + S + +
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We note first that if G satisfies a s.i. then we have the case I.
E xam ple  1 Each group with a semigroup identity provides an example with the table I. 
It is enough to take 5  nilpotent [3], or with the identity xnyn = ynx n [2], which imply the 
same semigroup identities in G.
E xam ple  2 If 5  satisfies no identity, then we have the case II. To have an example 
we denote by 7k(F) the fc-th member of the low central series in F , then define G =  
U*F/'yk(F), the infinite direct product of free nilpotent groups of classes k =  1 ,2 ,3 ,.. 
and S  — n x5jt, where Sk is the image of T  in F/-fk(F). Since by [3] F/~/k(F) has a s.i., it 
is the group of fractions for Sk, and hence G =  5 S _1 =  S~lS. However 5  has no identities 
because OyjtjF) =  1 [4].
Q u estion  1 Does there exist a finitely generated example for the table II?

We shall show that a situation with the table

s.i. i.
G - -
S - +

is impossible. It follows from the 
T h eo rem  If S  satisfies an identity w =  1 then S  satisfies a semigroup identity.

E x am p le  3 To have the situation as in the table III, we define

G = n xF /(F " 7k(F)).

Here G satisfies a metabelian identity. Similarly to the Example 2, G is locally nilpotent 
and hence G = S S _i =  S~lS. If 5  has a semigroup identity u =  v, say, then uv 1 €
n F " 7fc(F ). By [4] this intersection is equal to F". It follows from Malcev [3] that uv-1 =  1.
So 5  has no semigroup identity and hence G also does not have one.
Q u estion  2 Does there exist a finitely generated example for the table III?
Q uestion  3 Does there exist an example for tables IV and V? This is a well known 
question of G.M.Bergman [1], posed in 1981.

R e fe r e n c e s

[1] G.M.Bergman, Hiperidentities of groups and semigroups, Aequat. Math. 23 (1981), 
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[3] A.I.Malcev, Nilpotent semigroups, Uch. Zap. Ivanovsk. Ped. Inst. 4 (1953), 107-111.
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O n d is tr ib u tiv e  grou p  r in gs

Ryszard Mazurek
Warsaw University, Białystok division, Poland

Let R  be a ring, G a group and RG  the group ring of G over R. We are going to survey 
some known results (for example from [1], [2], [3]) concerning necessary and sufficient 
conditions on G and R  under which RG has a distributive lattice of right ideals.

R e fe r e n c e s
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S em ig ro u p s o f  m a tr ices

Jan Okniriski
Warsaw University, Poland

The aim of this talk is to present a general approach to the study of linear semigroups, 
that is, subsemigroups 5  of the full monoid Mn(K ) of nxn  matrices over a field K  (and 
more generally, over a division ring K). First, we discuss the general structure theorem for 
such semigroups, obtained in [1]. It describes S  in terms of so called uniform components, 
which are semigroups that can be viewed as orders in completely 0-simple semigroups 
M (G ,X , Y ; P) over certain linear groups G. This allows to reduce several problems on 5 
to the study of cancellative semigroups SC D , where D are maximal subgroups of M n(K ), 
the study of the linear groups S d  Q D  they generate and of the sandwich matrices of the 
uniform components of S.
In order to apply the structure theorem, exploiting the powerful results on linear groups, 
one needs to be able to transfer properties from the nonempty intersections S  Cl D to the 
groups So- In this direction, we present the ‘generalised Tits alternative', recently proved 
in [2], which asserts that for a finitely generated semigroup 5  C Mn(K ) the following 
conditions are equivalent:
1) S  satisfies an identity, 2) S  does not have a free noncommutative subsemigroup, 3) each 
nonempty S  D D  is generates an almost nilpotent group. Consequences for the general 
philosophy of studying linear semigroups via the structure theorem are discussed. Finally, 
examples of combinatorial and structural applications are given. They are concerned with 
the growth problem for semigroups of matrices and certain problems in the theory of 
graded rings (extending known results on group-graded rings and semigroup rings).

R e fer en ce s
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Q u o tien ts  o f  fin ite  e x p o n e n t  
for h y p erb o lic  g rou p s

A. Yu. 01’ shanskii
Moscow State University, Russia 

The following statement answers to Gromov’s question.

T h eo rem . Let G be any hyperbolic group that is not cyclic-by-finite. Then there exists an 
integer n — n(G) such that G possesses an infinite quotient of exponent n.

F in ite ly  p r e se n te d  grou p s an d  se m ig ro u p s

Edmund F. Robertson 
University of St Andrews, Scotland

We consider generalising Nielsen-Reidemeister-Schreier theory for finitely presented 
groups to finitely presented semigroups. Since a subsemigroup of a free semigroup is not 
necessarily free, the semigroup results must look different.

T h eo rem  (Campbell, Robertson, Ruskuc, Thomas). Let F  be a free semigroup. Then

(a) a proper ideal of F  is never free;

(b) a proper right ideal R o f F, where R is finitely generated as a semigroup, is always 
finitely presented and never free;

(c) F contains infinitely generated free right ideals.

Next we ask whether a subsemigroup T  of finite index of a finitely presented semigroup 
S  is necessarily finitely presented. But then we have to specify what is meant by “index” . 
We follow Jura and define the index of T  in S  to be |S — T\ +  1, the justification for this 
being that if T  is an ideal |S — 7j +  1 is the order of the Rees quotient S /T .  Thus, T  has 
finite index in 5  if and only if 5  — T  is a finite set.

T h eo rem  (Campbell, Robertson, Ruskuc, Thomas). A right ideal of finite index of a 
finitely presented semigroup is finitely presented (+an explicit presentation).

One may also try to find presentations for some subgroups of a given semigroup. The 
most obvious first candidates are the group of units and the maximal subgroups of a 
minimal ideal.
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T h eo rem  (Zhang). Let S  be a finitely presented special monoid, i.e. a monoid defined 
by a finite number of relations of the form w =  1. The group of units of S  is finitely 

presented and has a solvable word problem if and only if  S  has a solvable word problem.

T h eo rem  (Campbell, Robertson, Ruskuc, Thomas). Let S  be a finitely presented semi
group, and let I  be a minimal ideal of S  which is a completely simple semigroup. I f  I  has 
finitely many minimal left ideals or finitely many minimal right ideals then I  is finitely 
presented and any maximal subgroup of I  is finitely presented (+ an explicit presentation).

Let us suppose that the semigroup S  is defined by a presentation II, 
that G is the group defined by the same presentation, and that S  possesses a minimal 

ideal I  which is a completely simple semigroup. The computer evidence, obtained by using 
an implementation of the Todd-Coxeter enumeration algorithm for semigroups, suggested 
that in many cases I  is a union of groups isomorphic to G. A necessary and sufficient 
condition for this to happen is

T h eo rem  (Campbell, Robertson, Ruskuc, Thomas). The ideal I  is a union of groups 
isomorphic to G i f  and only if  the idempotents of I  are closed. In particular, this is the 
case if  I  has a unique minimal left or unique minimal right ideal.

Q uestion . Is a subsemigroup of finite index in a finitely presented semigroup necessarily 
finitely presented?

O n so m e u n d ec id a b le  p ro b lem s  
in  var ie tie s  o f  grou p s

A.L.Shmelkin
Moscow State University, Russia

It will be a report about results of my former students Yu.G.Kleiman and M.I. Anokhin. 
The results are a part of Anokhin’s PhD thesis. In 1979 Kleiman constructed an example 
of finitely based variety with undecidable word problem in free groups. Consequently the 
problem of implication is not decidable for group identities. One of the most interesting 
statement of these works is the following

T h eo rem . There exists a soluble finitely based variety in which the free group of rank 2 
has decidable word problem but it has undecidable problem of implication of identities.
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O n to r s io n -fr e e  grou p s w ith  tr iv ia l c e n te r

Andrzej Strojnowski
Warsaw University, Poland

Let T be a Bieberbach group which means that T is a to rsion free group and it 
has a free abelian normal subgroup A of finite index. If A is maximal it is called the 
translation subgroup, and then T/ A  is called the point group of I \  We will show a series 
of examples of Bieberbach groups with trivial center and with the translation group A 
of minimal rank. Such groups are of interest to differential geometers, since they arise as 
fundamental groups of primitive, compact flat Riemannian manifolds. All these groups 
are torsion free but not right orderable. Some of them does not satisfy the unique product 
condition. Hence the group rings over such groups are good for testing the Kaplansky’s 
conjecture about units in group rings.

D ir e c t  l im its  o f  fin ite  sy m m e tr ic  g ro u p s  
w ith  d iagon a l e m b ed d in g

V. I. Sushchanski 
(joint work with N. Kroshko)

Kiev, Ukraine

Subgroups of infinite symmetric groups which are direct limit of finite symmetric 
groups with diagonal embedding [1, ch 6] are investigated.

We prove, that such subgroups form a complete upper semilattice with natural sup
plement to the lattice. This lattice is isomorphic to the lattice of subgroups for additive 
group of rational numbers, containing group of integer numbers.

Every subgroup is simple or contains the simple subgroup of index 2. Conjugacy classes 
are described. We obtain the characterization of stabilizers of partition on integer numbers. 
Such a characterization gives a simple criterion of isomorphism for subgroups from the 
semilattice.

We can identify minimal elements if this semilattice as finitary birational automor
phism group over locally finite fields. We have the description of Sylov subgroups for this 
groups.



Konferencja „Groups and Group Rings” 169

R e fe r e n c e s

[1] O.H. Kegel, B.A. Wehrfritz. Locally finite groups / /  Amsterdam-London: North Hol
land. -  1973. -  210 pp.

O n th e  ad jo in t grou p  o f  a  rad ica l r in g

Yaroslav Sysak 
Kiev, Ukraine

An associative ring R is radical if the set of all its elements forms a group under the 
operation r o s  =  r  +  s +  rs (r and s are of R) which is called the adjoint group of R  and 
is denoted by R0.

The basic problem which will be considered refers to the study of relations between 
the structures of a subgroup G of R 0 and the subring [G] of R generated by G.

Our purpose is to present the recent results and indicate the various approaches to 
the problem.

In particular, we will show that if R  is a nil ring and G is a subgroup of finite Pruefer 
rank in the adjoint group of R, then the subgroup G and the subring [G] of R  are locally 
nilpotent.

As a corollary we obtain that if G is a group in which every finitely generated sub
group has a finite Pruefer rank and the augmentation ideal of the group ring K G  over a 
commutative ring K  with unity is a nil ideal, then the group G is locally nilpotent.
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U n ita r y  su b g ro u p  o f  th e  S y low  p -su b g ro u p  o f  th e  
g ro u p  o f  n o rm a lized  u n its  in  a c o m m u ta t iv e  grou p  

ring

Attila Szakacs
Hungary, Eger

Let G be an abelian group, K  a ring of prime characteristic p and let V(KG) denote 
the group of normalized units of the group ring KG. An element u =  J2g<=c ag9 6 V(K G ) 
is called unitary if u~l coincides with the element u ' — J2geG ag9~l■ The set of all unitary 
elements of the group V{KG) forms the unitary subgroup V.(KG) of V (K G ).

S. P. Novikov had raised the problem of determining the invariants of the group 
V,{KG) when G has a p-power order and K  is a finite field of characteristic p. This 
was solved by A. Bovdi and the author in [1] Here we give the invariants of the unitary 
subgroup of the Sylow p-subgroup of V(A'G) whenever G is an arbitrary abelian group 
and K  is a commutative ring of prime characteristic p without nilpotent elements.

Let Gp denote the subgroup {gp \ g € G} and ui an arbitrary ordinal. The subgroup 
Gp“ of the group G is defined in following way: Gp° =  G, for non-limited ordinals (that 
is if lj =  «/ -f 1): Gp — (Gp )p, and if w is a limited ordinal, then Gp“‘ =  O k u  G’’". The 
subring K p“ of the ring K  is defined similarly. The ring K  is called p-divisible if I \ p = K .

Let G[p] denote the subgroup {g 6 G \gp =  1} of G. The factorgroup 
GpJ[p]/Gp“+1[p] can be considered as a vector space over the field of p elements. The 
cardinality of a basis of this vector space is called the w-th Ulm-Kaplansky invariant 
/u(G) of the group G concerning to p.

T h eo rem . Let u> be an arbitrary ordinal, K  a commutative ring of prime characteristic 
p without nilpotent elements, P the maximal divisible subgroup of the Sylow p-subgroup S  
of an abelian group G, Gw =  G’’", Su = 5 P“ and Ku =  K p“. Let, further on, Vp =  VP(KG) 
denote the Sylow p-subgroup of the group of normalized units V (K G ) in the group ring 
K G  and W  = W (K G ) the unitary subgroup of

Vp(KG). In case P  /  1 we assume that the ring I(  is p-divisible, and i f  p =  2 then K  
without zero divisors.
1) I f  Gu = Gu+1 or Sw = 1 then f u{Wp) = f u(Vp) = 0.
2) I f Gu ±  Gu+1 , Su ^  1 and at least one o f the ordinals \KU\ and \GU\ is infinite then

fu(Vp) = max{|Gu,|, |A'W|}, when p > 2,

U w p) =
max{|G|, |A '|}, when p = 2 and u> — 0,

fu{Vi) =  max{|Gu |, |A'„|}, when p = 2,u  > 0 and Gw+i /  1,

fu(G ), when p =  2,ui > 0 and G„+i =  1.
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3) I f Su 1, the ring A'w and the group Gu are finite then

M W ,)  =

\[GU : 5„](|5„| -  2|5„+i| +  | ^ +2|)logp |ff„ |, when p > 2,

t0 -  2t\ + t2 -  f i(S )  +  (|S[2]| -  1) log2 I,

tw — 2<U/+I + t„+2 +  fu (S) — fu+l(S), 
where tu =  j([G w : SJdSu,! -  1) -  |5u,[2]| +  l)log2 |ff„|.

when p =  2 and u> — 0, 

when p — 2 and w > 0,
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O n th e  fixed  p o in ts  ser ies  
for p e r m u ta tio n s  o f  g en era to rs

Witold Tomaszewski 
Silesian Technical University, Gliwice, Poland

Let F  be a two-generated free group and let a be the automorphism which per
mutes generators. If the subgroup N  C F  is cr-invariant, normal then we define S (N )  =  
gpn(s; s -1s'T € N ). In another words, S(N )  is the normal closure of a preimage of the sub
group of fixed points for d in F /N  (where a is the automorphism of F /N ,  induced by a). 
We will be considered the ascending fixed points series: N  <  S(N )  <J S 2(N ) <  S3(N ) < .. . .  
We describe the behaviour of such a series in some cases, we give some examples and we 
discuss some questions.
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O u ter  a u to m o r p h ism s  grou p  m a y  b e c o m e  in n er  
in  th e  in teg ra l grou p  r in g

Alexander Zimmermann 
Stuttgart, Germany

For a group G and a commutative ring R  the group ring RG  is the ring with the free 
i?-module on the set G as additive structure and multiplication induced by the group 
structure of G. It has the universal property that every group homomorphism of G to the 
unit group of an R-algebra S  extends uniquely to an Ti-algebra homomorphism from RG  
to S.

In [2] the question is raised by Jackowski and Marciniak if there is a finite group G and 
a non inner automorphism of G that extends to an inner automorphism of the integral 
group ring 7ZG.

This question is closely related to the isomorphism problem for integral group rings: 
Does Z G ~  ZZH imply G ~  H I  The isomorphism problem is open in general, however, 
a conjecture of Zassenhaus states that if the isomorphism of the rings is an isomorphism 
as augmented algebras, then the group H  is conjugate in the rational group ring QG to 
H. Since the augmentation condition can always be assumed the Zassenhaus conjecture 
implies a positive answer to the isomorphism problem. Roggenkamp and Scott proved a 
much stronger statement for p-groups in [5]. In general the Zassenhaus conjecture is false, 
Roggenkamp and Scott gave a metabelian counterexample in [6].

The methods developed for the counterexample to the Zassenhaus conjecture are 
strong enough to construct a finite, solvable group G and a group automorphism a  such 
that for each semilocal Dedekind domain R  the automorphism a  extended to RG  is inner
[8]. Standard techniques (cf. [3]) involving class field theory can be applied to give a global 
Dedekind domain S  of finite degree over 2Z such that a  is inner in SG. Up to now it is 
not known how to construct a counterexample over 2Z.

The principal method used in the proof is a version of Clifford theory as described in 
(7, Chapter Xj. To apply the Clifford theory it is necessary to examine the structure of 
the group very explicitely. We need for example that the inertia groups are normal, that 
the action of the automorphism on the normal subgroup to apply Clifford theory is trivial 
and that the automorphism varies each group element by an element of the inertia group.

The group G is given by successive extensions of a 2-group having a non inner class 
sum preserving automorphism of order 2 (cf. [2]) to a group of order p2 ■ q2 ■ 128 with two 
different odd primes p and q. The 2-Sylow subgroup has a normal complement and the 
automorphism acts as identity on the 2-Sylow and the p-Sylow subgroup and as inversion 
on the ę-Sylow subgroup. In the whole the group G is an extension of a combination of 
the group mentioned in [2, 4.9 ffj.
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The fact that the automorphism is non inner is easily proven and purely group theo
retical. The statement that the automorphism becomes inner in the group ring is proved 
a prime at a time using a result of Fröhlich [1, Theorem 6]. Using the Noether Deuring 
theorem we may assume that the ground ring R  contains enough roots of unity. Locally, 
fixing a prime p  of R, Clifford theory can be applied to the various p-blocks and the 
automorphism is realized to be inner in R PG. Fröhlich’s result then allows us to see that 
the automorphism is inner in RG.

Jan Krempa proved (cf. [4]) that the square of a non inner group automorphism that 
becomes inner in 7ZG has to be inner in G, a property that is shared by our automorphism. 
Jackowski and Marciniak proved in [2] that the group G has to have a non normal Sylow 
2-group, a requirement that is satisfied by our G. Therefore there is hope to be able to 
prove that a slight modification of or even the group itself constructed in [8] can lead to 
an example for an outer group automorphism of a finite group G that becomes inner in 
7ZG.
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