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Stanislaw GMYREK1 1 

6. VOICED FRAME DETECTION IN AUTOMATIC SPEECH 2 

RECOGNITION 3 

6.1. Introduction 4 

A speech signal can be divided into voiced and unvoiced fragments. Voiced speech is 5 

associated with air impulses produced by vocal cords vibrating with frequency f
0
. One of the 6 

major issues in automatic speech recognition systems is the estimation of this frequency. With 7 

this aim, a number of methods have been developed, the most effective of which are correlation 8 

algorithms. In these algorithms, frame voicing is decided based on the normalized correlation 9 

coefficient and then pitch frequency is determined [1]. Such an approach entails high 10 

computational complexity since the autocorrelation function must be determined for each 11 

frame. In order to reduce this computational complexity, it is worth determining voicing in 12 

advance and then calculating the autocorrelation only for the selected voiced frames. Literature 13 

describes numerous methods of classifying speech signal frames [1, 5], including efficient and 14 

popular methods based on energy and zero-crossing rate [4]. They are not flawless though, and 15 

this is why this paper proposes an approach in which energy is determined based on four 16 

envelopes, and averaging and normalizing guarantees independence from signal level and the 17 

loudness of the speaker. 18 

6.2. Speech signal parametrization 19 

The analysed method employs quasi-quadrature filter banks, and then calculates envelopes 20 

for the obtained narrowband signals [3]. In the next step, envelopes are averaged in four 21 

frequency bands and energy is determined in a particular subband for each signal frame. 22 

A flowchart demonstrating this procedure is shown in Fig. 1. 23 
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 1 

Fig. 1. The algorithm of speech signal parametrization aimed at determining frame voicing  2 

Rys. 1. Schemat blokowy algorytmu parametryzacji sygnału mowy w celu podjęcia decyzji 3 

o dźwięczności ramki 4 

6.2.1. Band filtering of speech signals 5 

There is a speech signal x(t) with length N, registered digitally with sampling frequency 6 

fp = 12 kHz. At the first stage it is filtered into narrow frequency subbands with the use of 7 

a complex filter bank. Each filter has a single pole located on a complex variable plane z at 8 

point zk = ρ
k
ej2πfk, where fk: k = 1, …, K are middle frequencies in bands, and 9 

ρ
k
 = ρ : k = 1, …, K; ρ < 1 is the pole module determining the width of the filter passband. 10 

The closer the value of ρ is to 1, the narrower the filter passband is. The value of ρ = 0.97 was 11 

adopted in subsequent calculations. The middle frequencies in filters are spaced at intervals of 12 

50 Hz in the range from 200 Hz to c. 4500 Hz. The filtration process in subband k is recursive 13 

in character [3], i.e. 14 

 15 

 
xr,k(u) = x(u) + a1xr,k(u − 1) −  a2xi,k(u − 1); u = 1, …, N, 

(1)  

 xi,k(u) = a1xi,k(u − 1) + a2xr,k(u − 1); u = 1, …, N (2)  

with initializations 16 

 xr,k(0) = x(0), xi,k(0)  = x(0), (3)  

where a1= ρ cos(2πf
k
), a2 = ρ sin(2πf

k
), while xr,k(u) and xi,k(u) are respectively the real and 17 

imaginary parts of the signal obtained at the complex filter output. The filter bank is presented 18 
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in Fig. 2. Filter enhancement for middle frequencies f
k
 is stable and equals 1/1 − ρ2. The filter 1 

also introduces a slight time delay associated with the transient state [3]. 2 

 3 

Fig. 2.  Quasi-quadrature filter banks – filter transmittance modules 4 

Rys. 2.  Bank filtrów quasi-kwadraturowych – moduły transmitancji filtrówThe signal xi,k(u) can, with 5 

high accuracy, be treated as the Hilbert transform of a narrowband signal xr,k(u). Hence the signal pair 6 

xr,k(u) and xi,k(u) forms an analytic signal for a particular subband, making it possible to effectively 7 

determine the square of the envelope:  8 

 9 

 10 

 ek(u) = xr,k
2 (u) + xi,k

2 (u). (4)  

Examples of envelopes for four selected frequency bands in the uttered word „ćwikła” are 11 

shown in Fig. 3. 12 

 13 

Fig. 3.  Speech signal (word „ćwikła”) and the envelopes in four frequency bands 14 

Rys. 3.  Sygnał mowy (słowo „ćwikła”) i obwiednie w czterech pasmach częstotliwości 15 
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6.2.2. Envelope summation in frequency bands and averaging in speech signal frames 1 

In order to reduce the extensiveness of the problem given the properties of the human 2 

hearing organ, the envelopes obtained from relations (4) are ascribed to one of J = 4 mel-3 

frequency bands and then averaged within a particular band according to the relation: 4 

 

Ej(u) = 
1

nj

∑ ek(u)

kh

k=kl

, 

(5)  

where kl is the index of the lowest frequency band envelope ascribed to mel band j, kh – the 5 

highest frequency index, and nj – the number of components in a given band. The signals 6 

obtained in this way are shown in Fig. 4. 7 

In the next step, the signal x(t) and the envelopes Ej(u) were divided into frames with the 8 

length Nr = 25 ms and the step Ns = 10 ms, and then windowed with a Hamming window. As a 9 

result, signals Ej, t(m) were obtained, where m = 1, …, Nr, j is the frequency subband index,  10 

t = 1, …, T is the frame number and T – the number of frames. 11 

In order to make the discussed algorithm independent of signal level, total energy was 12 

calculated in each signal frame. 13 

 

Et
c= ∑ ∑ Ej, t(m)

Nr

m=1

J

j=1

  
(6)  

and normalized energies of the speech signal 𝜀𝑗,𝑡 were determined for each frame and frequency 14 

subband, i.e.:  15 

 
εj,t =

∑ Ej, t(m)Nr
m=1

Et
c . 

(7)  

The parameter Et
c from relation (7) can be interpreted as energy, as the signals Ej, t(m) were 16 

determined based on the square of the envelope ek(u) from the output of the quasi-quadrature 17 

filter. The parameters obtained in this way are representative of the frame in the process of 18 

learning and deciding about voicing. Each number εj,t is contained in the range [0,1] and 19 

∑ εj,t
J
j=1 =1. 20 

 21 
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 1 

Fig. 4.  A fragment of speech signal (word „ćwikła”) and four identified envelopes Ej(u) averaged in 2 

mel frequency bands 3 

Rys. 4.  Fragment sygnału mowy (słowo „ćwikła”) i wyznaczone cztery obwiednie uśrednione 4 

w melowych pasmach częstotliwościThe parameters determined for an exemplary speech signal are 5 

shown in Fig. 5. 6 
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 1 

Fig. 5.  Example - fragment of a speech signal (word „ćwikła”) and normalized energies in each frame 2 

for four frequency subbands 3 

Rys. 5.  Przykładowy fragment sygnału mowy (słowo „ćwikła”) i unormowane energie w każdej 4 

z ramek dla czterech podpasm częstotliwości 5 

The first graph represents the time course of the registered speech signal – a recording of a male 6 

voice (the word „ćwikła”). Status and phoneme labels are shown at the top and values of 7 

parameters calculated for each frame according to relation (7) are plotted underneath. It is 8 

noteworthy that a high value of energy was obtained for voiced phonemes in the low frequency 9 

band ε1, and a low value – in the high frequency band ε4, while the situation is exactly opposite 10 

for unvoiced phonemes, which is a distinctive feature of the analysed problem. 11 

6.2.3. Complementation of the parameter vector 12 

The parameter vector was complemented with the zero crossing rate (ZCR) of the signal. 13 

The energy of voiced fragments of speech signals is concentrated in the low frequency band, 14 

and that of unvoiced fragments – in the high frequency band. The voiced fragments are related 15 

to a small number of zero crossings, while the unvoiced ones – to a large number [4]. Thus, in 16 

recognition terms, this parameter is an indicator enabling effective classification. The ZCR is 17 

calculated from the following formula: 18 
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ZCR =

∑ sgn[x(m)] − sgn[x(m − 1)]N
m=1

N
, 

(8)  

where N represents the length of the signal, and 1 

 
sgn[x(n)] = {

1, x(n)≥0;
−1, x(n)<0.

 
(9)  

6.3. Research results 2 

The aim of the work is to select voiced frames of a speech signal by determining the values 3 

of detection thresholds. As a result, it is necessary to find a relationship between the input data 4 

and frame labels. With this aim, artificial neural networks (ANN) were used.  5 

6.3.1. Neural network architecture 6 

The database used for computational experiments consists of more than 10 800 recordings 7 

comprising individual words uttered by female and male voices. There were 725 000 speech 8 

signal frames, 70% of which constitute a training and validation set, while the others make a 9 

test set. The first architecture that was tested was the MLP (Multilayer Perceptron) neural 10 

network composed of three layers. The input layer and the hidden layer consisted of 8 neurons 11 

and a non-linear activation function RELU. As the problem discussed here concerns binary 12 

classification, the output layer was composed of one neuron with a sigmoidal-type activation 13 

function. This layer returns a number in the range from 0 to 1, which could be interpreted as an 14 

indicator of the probability of frame voicing. Subsequently, the value obtained from the output 15 

layer is compared with the detection threshold, whose value has been set as 0.5. Every value 16 

equal or larger than 0.5 is ascribed the label „1” (voiced frame), and every value below 0.5 - the 17 

label „0” (unvoiced frame). Binary mutual entropy was adopted as a loss function, as it produces 18 

good results in binary classification problems [2]. The input was a vector composed of four 19 

numbers, which were normalized energies εj,t. This enabled recognition efficiency of 90%. The 20 

result was unsatisfactory, so the input vector was complemented with the ZCR parameter in 21 

accordance with chapter 2.3. The architecture of the employed neural network is shown in 22 

Fig. 6. 23 
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 1 

Fig. 6.  Architecture of a neural network with an observation vector supplemented with a ZCR 2 

parameter 3 

Rys. 6.  Architektura sieci neuronowej z wektorem obserwacji uzupełnionym o parametr ZCR 4 

6.3.2. Simulation results 5 

The model training process was carried out with the use of 20 epochs and the batch size of 6 

64 samples. The efficiency of the trained model reached c. 95%. The normalized confusion 7 

matrix is shown in Fig. 7. 8 

 9 

Fig. 7.  The normalized confusion matrix 10 

Rys. 7.  Znormalizowana macierz pomyłek 11 

This matrix is an effective method of verifying neural network efficiency. Its rows correspond 12 

to real labels, and the columns – to the labels calculated by the network. To assess the 13 

effectiveness and the correctness of the classification, precision and recall metrics were 14 

adopted. Their calculation requires the following parameters: TP (True Positive) – the value 15 
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defining the number of frames correctly classified as voiced, FP (False Positive) – the number 1 

of frames incorrectly recognized as voiced, TN (True Negative) – the number of frames 2 

correctly classified as unvoiced, and FN (False Negative) – the number of frames incorrectly 3 

classified as unvoiced. The precision and recall measures are expressed by the following 4 

relations: 5 

 
precision=

TP

TP + FP
; 

(10)  

 
recall = 

TP

TP + FN
 . 

(11)  

Additionally, the balanced measure of score coefficient 𝐹1 was introduced, defined as the 6 

harmonic average of the precision and recall values: 7 

 8 

 
F1 = 2∙

precision ∙ recall

precision+  recall
=

2TP

2TP + FP  + FN
 . 

(12)  

The classification accuracy measures obtained in simulations are presented in Table 1. 9 

 10 

Table 1Parameters of neural network efficiency assessment 11 

Parameter value 

Precision 0.949 

Recall 0.950 

F1 score 0.949 

 12 

Fig. 8 presents the result of the algorithm’s operation for an exemplary recording of a male 13 

voice. The first graph represents the time course of the speech signal for the word „ćwikła”, the 14 

second one comprises true labels determined in the process of manual segmentation and 15 

labelling, while the last one depicts the decision about frame voicing taken by the neural 16 

network. The first phoneme „ć” is voiceless, so this fragment of speech signal was labelled as 17 

„0”. In the signal, one can distinguish voiced phonemes such as „i”, „ł”, „a”, associated with 18 

periodical stimulation of vocal cords. They were labelled with „1”.  19 

6.4. Conclusion 20 

The paper proposes an efficient method of determining the voicing of speech signal frames. 21 

Compared to classic methods based on energy, averaging and normalization guarantees 22 

independence of signal level. The high energy value in the low-frequency band, and low in the 23 
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high-frequency band indicate the voicing of the speech signal frame. In the first step, the 1 

classification accuracy reached 90%. In order to improve the recognition quality, zero-crossing 2 

rate was added to the parameter vector. The value of this parameter is low in voiced frames, 3 

and high in unvoiced frames. Thanks to this approach, the learning and classification efficiency 4 

rose to c. 95%. The proposed algorithm may be useful in many operations in automatic speech 5 

recognition systems. It saves time and reduces computational complexity in operations like 6 

estimating pitch frequency through preliminary selection of voiced frames and calculating the 7 

autocorrelation function only for selected frames. 8 

 9 

Fig. 8.  Time course of the word „ćwikła” and comparison of network-generated labels with real labels 10 

Rys. 8.  Porównanie etykiet wygenerowanych przez sieć z etykietami prawdziwymi 11 
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