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QUANTUM SEARCH ALGORITHM1

Sum m ary. Recently, it was realized that use o f  the properties o f  quantum 
m echanics m ight speed up certain computations. It now  appears that, at least 
theoretically, quantum computations may be much faster than classical computations 
for solving certain problems including for example search problems. In the present 
paper the fundamental Grover’s search algorithm o f  quantum computation is 
discussed. Fundamental quantum operators for Grover’s search algorithm are 
presented. M oreover, several remarks and comm ents concerning quantum 
computations are also given.

KWANTOWY ALGORYTM POSZUKIWAŃ

Streszczen ie. W ostatnim czasie wykazano, że zastosowanie pewnych wybranych 
metod mechaniki kwantowej m oże znacznie przyspieszyć niektóre czasochłonne 
obliczenia. Teoretycznie, obliczenia kwantowe m ogą być przeprowadzane znacznie 
szybciej n iż metodami klasycznym i, czego przykładem jest problem poszukiwania. W 
artykule przedstawiono algorytm poszukiwań Grovera stosowany w  obliczeniach  
kwantowych. Określono operacje kwantowe wykorzystywane w  algorytmie Grovera. 
Ponadto przedstawiono w iele uwag i komentarzy dotyczących zgadnień obliczeń  
kwantowych.
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1. Introduction

Recently, it was realized that use o f  the properties o f  quantum m echanics might speed up 

certain computations [1-10]. Interest has since been growing in the area o f  quantum 

computation. These quantum computations can be modeled formally by defining quantum 

Turing machine, w hich is able to be in the superposition o f  many states. It now  appears that, 

at least theoretically, quantum computations may be much faster than classical computations 

for solving certain problems [4], [5], [6], [7], including for example prime factorization [7], 

[5], Moreover, it should be pointed out, that the quantum computations offer powerful 

methods o f  encoding and manipulating information that are not possible within a classical 

framework.

Quantum computers are hypothetical machine that use principles o f  quantum mechanics 

for their basic operations. There are a number o f  differences between quantum and classical 

computers. In particular, a property o f  quantum system s that plays a crucial role is the so 

called entanglement or non-classical correlation between quantum system s [7]. In other 

words this means, that the quantum state cannot be written as a product o f  the state o f  two 

individual qubits. Another important property is the high dim ensionality o f  quantum systems. 

The dim ension o f  the joint quantum state space o f  n objects grows exponentially with n, 

whereas classically the dim ension o f  the joint state space objects only grows linearly. The 

quantum computation algorithms make critical use o f  this extra dim ensionality [7].

In the developm ent o f  computer science as a scientific field there was a time period 

during which experimental research were based on macrosystems like relays, then electronics 

tubes, transistors and recently large scale and very large scale integrated system s. Research 

studies directed towards computer nanosystems have been initiated by focusing attention on 

the possibility o f  using atoms and m olecules as coding sym bols for computer programs.

Complete definition o f  the state o f  a particle requires not only a specification o f  its space

time coordinates but also o f  the direction o f  the spin vector, specifying the direction o f  spin, 

either up or down. The particular behavior o f  atomic spin called nuclear magnetic resonance 

is a fundamental physical phenomenon taken into account in recent research on quantum 

computers [7], This phenomenon is based on resonance absorbency o f  electromagnetic 

energy taking place in som e solid bodies, liquids and gases placed in constant external 

magnetic field and perturbed by impulsive varying magnetic field w ith properly chosen 

frequencies. In the case o f  atoms creating m olecules the behavior o f  their spins depends on 

the neighboring atoms. It enables to create several logic quantum gates, which are used to 

organize quantum computation processes in quantum computers [7], [9],

Combinatorial search problems are among the most difficult computational tasks; the 

time required to so lve them often grows exponentially with the size o f  the problem. Many
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such problems have a great deal o f  structure, allow ing heuristic methods to greatly reduce the 

rate o f  exponential growth. Quantum computers offer a new  possibility for utilizing this 

structure with quantum parallelism, i.e., the ability to operate sim ultaneously on many 

classical search states, and interference among different paths through the search space.

In the present paper the fundamental Grover’s search algorithm [1], [3], [4] o f  quantum 

computation is discussed. Fundamental quantum operators for Grover’s search algorithm are 

presented. M oreover, several remarks and comments concerning quantum computations are 

also given.

2. Preliminaries

In a quantum computer, the logic circuits are represented by unitary matrices that act on a 

certain number qubits in each step.

Let F2={0,1) stands for the binary field with two elem ents 0 and 1, and F£ is the 

n-dimensional vector space over the binary field F2. Moreover, let / : F 2" F 2 be the 

Boolean function with n independent Boolean variables x i,X 2 ,...,X j,...,x n, where x ie F 2, for 

i= l,2 ,...,n  and let us shortly denote x =(X [,X 2 ,...,X i,...,x n) e F 2'’ .

The classical search problem can be formulated as follow s: find certain solution y e  F2" 

such that f(y )= l. Let k= {x e  F-,”: f(x) =  1} denotes the number o f  solutions. The Grover’s 

quantum algorithm for finding certain solution y e F 2" can be generally view ed as iterative 

amplitude amplification.

The quantum search algorithm is a sequence o f  unitary operations on pure quantum state, 

followed by a measurement operation. The three elementary unitary operations needed are 

the following. First is the creation o f  a superposition in which the amplitude o f  the system  

being in any o f  the basic states o f  the system is equal; second is the Hadamard transformation 

operation, and the third the selective rotation o f  the phases o f  states.

3. Quantum operators for Grover’s search algorithm

A s it was mentioned at the end o f  the previous section, in order to describe detaily the 

Grover’s quantum search algorithm it is necessary to introduce Hadamard transformation. 

First o f  all, let us recall, that the element x = ( x i , X 2 , . . . , X i , . . . ,x n) e F 2" has a very natural quantum 

representation by tensor product o f  n qubits |Xj)eC2, i= l,2 ,...,n ,

|X> =  |X i)® |x2)® ...® |X i) ® ...® |x n) =|X |)|X 2>...|Xi>...|Xn>eCr
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Hadamard transform H which is a linear transform acting on sim ple qubit |xj)eC2, can be 

implemented by the 2x2-dim ensional so called Hadamard matrix. Therefore, Hadamard 

transform H is given by

H|xi> =
1 1

1 -1 |Xi>

Let Hn=H ® H ® ...® H  (n-times) denotes tensor product o f  the Hadamard transform. Then, 

using the formula defining Hadamard transform, for |x) = |xi)|x2>...|xj)...|xn) s C 2" w e have the 

follow ing result:

V 2 .-c f;

where xz  denotes the standard scalar product in the vector space C" i.e.,

XZ=X i Z1+X 2Z2+ .. .+XjZj+.. .+XnZn.

M oreover, it should be pointed out, that for any natural number n, the 2 nx2"-dimensional 

matrix Hn is also called a Hadamard matrix.

The other quantum operator needed for the Grover’s quantum search algorithm is the so 

called query operator Vf, which encodes the value o f  the function f(x) in the sign. A  query 

operator V f is a linear mapping defined by

Vf|x>|2'0-5(|0)-| 1 » ) = |x ) |2 ’0,5( |0 ) - | 1 ))© f(x)) = (-1)™  |x> 2-°-5(|0>-|l>) 

where sym bol ©  means as usually the addition modulo 2, and 2'0,5(|0)-|1)) is the so called 

target qubit.

W e w ill also need a quantum operator Rn, which reverses the sign o f  |0) and is defined on 

n qubits, w hich represent elem ent x = ( x i,X 2 , . . . ,X i x n) e  F2" and operating as

Rn|0) = -|0) and Rn|x> = |x), i f  x*0.

It is w ell known, that w e can easily express quantum operator Rn as 2nx2"-dimensionaI 

matrix R„ defined as follow s

R .=

- 1  0 0 K
0 1 0 K
0 0 1 K
M M M 0
0 0 0 K

0
0
0

M
1

The basic quantum operator needed in  the Grover’s search algorithm is the quantum 

amplification amplitude operator 

G„ =  - HnRnHnVf
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working on n qubits, w hich represent element x=(xi,X2,...,xi,...,xrt) e F 2\  Linear operator 

HnRnHn can be written in quite a sim ple form as 2 nx2n-dimensional matrix o f  the follow ing  

form:

__2 
~ 2 

X  
2*
M

__2_

_  _2_

“ 2" 
— X  

2' 
- X  

2"
M

« x
2"

__x
2 s_x
2"

M
_ j_  

2"

K

K

K

0

K

_ x
2”_x
2'

_ x
2"

M
X  
2”.1

Quantum operator HnRnHn can also be expressed as 

H„RnHn = I - P„

where I is 2"x2n-dimensional identity matrix and P„ is 2"x2n-dimensional projection matrix, 

whose every entry is 2 1'n.

In fact, it is quite an easy task to verify that linear operator P" represents a projection into 

one-dimensional linear subspace generated by 2"-dimensional vector o f  the follow ing form:

v = - 7 =  S i * )
V2' x e l '{

The operator -HnRnHn is also called inversion about average: it operates on a single 

amplitude by m ultiplying it by -1 and adding two times the average.

4. Grover’s search algorithm

Quantum mechanical system  can be in a superposition o f  computational states and hence 

simultaneously carry out multiple computations in the sam e computer. In the last few  years 

there has been extensive research on how to use this quantum parallelism to carry out 

meaningful computations. In any quantum mechanical computation the system  is initialized  

to a state that is easy to prepare and caused to evolve unitarily. The answer to the 

computational problem is deduced by a final measurement that projects the system  onto a 

unique state. The amplitude (and hence the probability) o f  reaching a specified final state 

depends on the interference o f  all paths that take it from the initial state to the final state. 

Thus the quantum system  is very sensitive to any magnitude o f  phase disturbances that affect 

any o f  the paths leading to the desired final state. Therefore, as a result, quantum mechanical 

algorithms are very delicate, and it is generally believed that an actual im plementation would 

need an elaborate procedure for correcting errors [7], [8],

The Grover’s quantum search algorithm can be represented as searching an image o f  

computable B oolean function, w hich can only be computed forward, but w hose inverse
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cannot be directly computed. Problems o f  this type are very comm on. One important 

example, from cryptography, is searching for the key o f  the data encryption standard. Other 

exam ples are solutions o f  N P-com plete problems, w hich include virtually all the difficult 

computing problems in practice. Grover’s quantum search algorithm is mainly based on the 

follow ing fundamental result.

T heorem . Let Boolean function / :  F2 - »  F2 be such that there are k elements 

x=(X|,X2,...,Xi,...,xn) e  F f  satisfying f(x) = 1. Moreover, let us assume that 0<k<3'2n'2, and let 

0 os[O,n/3] be chosen such that sin20 o =  k2'n<0,75. Then after int[rc/40o] iterations o f  Gn, on 

an initial superposition

v * v f . 5 w

the probability o f  seeing a solution is at least 0,25.

From the general theorem stated above two corollaries follow  w hich show  the special 

cases o f  quantum search algorithm.

C orollary. If number o f  solution k =  1 and dimensionality n is large, then using O(20,5n) 

queries, w e can find a solution y e F 2 with nonvanishing probability, w hich is essentially 

better than any classical randomized algorithm can do.

C orollary. I f  k = 2n’2, then sin20o = 0,25, so 0o = n/6. Therefore, the probability o f  seeing 

a solution y e  F f  after one single iteration o f  linear operator Gn is

sin2(30o) = sin2(rc/2) =  1

Thus for k =  2"’2 w e can find a solution y e  F ” with certainty using linear operator Gn only 

once.

R em ark. It should be stressed, that in a typical situation w e, unfortunately, do not know 

the value o f  the solution k in advance. Therefore, in this case a certain sim plified version of 

the Grover’s search algorithm can be used. The main advantage o f  this m odified version is 

that it enables to find the required solutions y e  F2" even i f  the number o f  solutions k is not 

known.

Taking into account the theorem and corollaries given above it is possible to present step 

by step Grover’s quantum search algorithm.

Step 1. Compute the integer number r = int[7i/40o], where the angle 0oe [0 ,tx/3] is determined 

by the equality: sin20o=  k2'n< 0,75.

Step 2. Prepare the initial superposition
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by using Hadamard transform Hn.

Step 3. Apply operator Gn r times.

Step 4. Observe to get som e y e  F2".

Quantum search algorithm presented above is the basic version, w hich has been modified  

in several directions (see e.g., [2], [3], [7], [10] for more details).

The importance o f  Grover’s result stems from the fact that it proves the enhanced power 

of quantum computers compared to classical ones for a w hole class o f  computational 

problems, for w hich the bound on the efficiency o f  classical algorithm is known.

A large number o f  results follow ed the Grover’s quantum search algorithm. These include 

a proof that Grover’s algorithm is an efficient as theoretically possible [10]. Moreover, a 

variety o f  applications in w hich the algorithm is used in the solution o f  other problems is 

given in the monograph [7]. Recently an experimental im plementation o f  fast quantum 

searching algorithm using a nuclear magnetic resonance (NM R) techniques has been  

discussed in the paper [3],

Several generalizations o f  the Grover’s original search algorithm have been recently 

published in many papers. For example in the monograph [7] the case o f  more than one 

marked solution o f  the search problem is discused.

Moreover, in the recent paper [6] it was shown that the quantum search algorithm can be 

also implemented by replacing the standard Hadamard transformation by almost any quantum 

mechanical operation. Since all quantum mechanical operations are unitary, this means that 

almost any quantum mechanical system  can be used in quantum computations. A ll that is 

needed is a valid quantum mechanical operation and a w ay o f  selectively inverting the phase 

of states. M eaningful computation can hence be carried out on the basis o f  universal 

properties o f  quantum mechanical operations. This for example im plies that the quantum  

search algorithm is surprisingly robust to certain kinds o f  perturbations. Hence, this 

observation leads to several new  applications o f  quantum search algorithm where it improves 

the number o f  steps by a square root.

Moreover, it is possible to generalize the Grover’s quantum search algorithm by allowing  

for an arbitrary com plex initial amplitude distribution. The paper [2] presents an exact 

solution for the tim e evolution o f  the amplitudes under these general initial conditions. The 

case o f  an arbitrary initial amplitude distribution is particularly relevant in the presence o f  

unitary errors in the gates implementing the initialization step. Such errors can result in a 

deviation from the uniform initial amplitude distribution, which is assumed in the usual 

treatment o f  the Grover’s quantum search algorithm.
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5. Conclusions

In conclusion, designing a useful quantum computer has been a rather very difficult task 

for at least two reasons. First, because the physics to implement this is different from what 

most known devices use and so it is not clear what its structure should be like. The second 

reason is that once such a computer is built, few  applications for this are known where it will 

have a clear advantage over existing computers. This paper has given a general framework 

for the search algorithm where the quantum computer would have an advantage.
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Streszczenie

Podstawowym  zagadnieniem związanym z  obliczeniam i w ykonywanym i za pom ocą  

komputerów jest zaproponowanie odpowiedniego algorytmu obliczeniow ego. Komputer 

kwantowy przeprowadza obliczenia w  oparciu o specjalne algorytmy obliczeniow e nie 

stosowane w  informatyce klasycznej. Algorytm y te dostosowane do m ożliw ości 

obliczeniowych komputera kwantowego w  istotny sposób wykorzystują prawa mechaniki 

kwantowej, a w  szczególności zjawisko superpozycji stanów kwantowych.

Zasadniczym problemem klasycznej teorii algorytmów jest określenie złożoności 

obliczeniowej danego algorytmu. O gólnie klasyczne algorytmy obliczeniow e dzieli się na 

dwie podstawowe grupy: algorytmy o wielom ianowej złożoności obliczeniowej oraz 

algorytmy o ekspotencjalnej złożoności obliczeniow ej. W przypadku algorytmów  

kwantowych różnica pom iędzy tymi dwoma złożonościam i obliczeniow ym i nie ma tak 

istotnego znaczenia jak w  przypadku algorytmów klasycznych.

Do najważniejszych algorytmów kwantowych należą: algorytm faktoryzacji liczb  

naturalnych zaproponowany w  1993 roku przez Shora oraz algorytm poszukiwań 

opracowany przez Grovera w  1997 roku.

W 1997 roku Grover zaproponował kwantowy algorytm wyszukiwania informacji w  

dużych zbiorach danych. Problem polega na wyszukaniu określonego elem entu Xj=y w  

nieuporządkowanym zbiorze danych zawierającym N  elem entów  {Xi, i= l,2 ,3 ,...,N }. 

Przykładowo, m oże to być wyszukanie w  spisie telefonów  danego numeru telefonu nie 

znając nazwiska abonenta.

Klasyczne algorytmy poszukiwań potrzebują średnio N/2 kroków na wyszukanie danej 

informacji w  zbiorze danych zawierającym N  elem entów. Algorytm kwantowy poszukiwań  

zaproponowany przez Grovera jest w  tym przypadku znacznie bardziej efektywny i 

potrzebuje średnio jedynie -Jn  kroków na wyszukanie w łaściw ego elem entu w  zbiorze N  

elementów.

Algorytm Grovera m oże być uogólniony i zastosowany do jednoczesnego poszukiwania 

kilku wybranych elem entów  w  nieuporządkowanym zbiorze danych oraz do wyszukiwania  

największego lub najm niejszego elem entu w  zbiorze danych.


