STUDIA INFORMATICA 2002
Volume 23 Number 2A (48)

Jarostaw FRANCIK
Politechnika Slaska, Instytut Informatyki

QUANTUM SOFTWARE™*

Summary. The paper is an attempt to look at quantum information techniques
from the perspective of an software engineer. Focusing on Grover’s quantum search,
we try to present quantum algorithms using classical engineering methods: pseu-
docode, high-level programming language, software visualization. It is also analyzed
how the specifics of quantum mechanics has to affect these means of description.

OPROGRAMOWANIE KWANTOWE

Streszczenie. Artykut jest probg spojrzenia na kwantowe techniki informatyczne z
perspektywy inzynierii oprogramowania. Koncentrujac sie na kwantowym wyszukiwaniu
Grovera podjeto probe przedstawienia algorytméw kwantowych za pomocg klasycznych,
informatycznych $rodkéw opisu: pseudokodu, jezyka programowania wysokiego pozio-
mu, wizualizacji oprogramowania. Przeanalizowano, w jaki spos6b specyfika mechaniki
kwantowej musi wptynac na tego typu Srodki opisu.

1. Introduction

Gershenfeld and Chuang in their popular paper published in Scientific American [6] wrote
that a hypothetical quantum computer “would look nothing like the machine that sits on your
desk; surprisingly, it might resemble the cup of coffee at its side”. However splendid as an
illustration for dummies, that comparison does not take into account the fact that the essential
puipose of both traditional and quantum computing machinery is the same, what could not be

said about cups of coffee. The problem with quantum computing is that so far it is mostly a

The research was supported by KBN Project no. 7 Tl 1C 017 21

J. Francik

domain of physicists rather than computer professionals. The description is made on the level
of quantum mechanics and appropriate mathematical model. In this paper we will try to look
at the problem as a new branch of informatics. The object of our interests is quantum soft-
ware: information processing analyzed apart from its physical realization.

Currently quantum computing is a scientific concept rather than a technology, even an
emerging one. Compared with traditional solutions, we are not even on the stage of ENIAC.
On the other hand we have already started to develop pretty good algorithms. In case of elec-
tronic machinery the comparable progress was connected with development of first highfievel
languages, like Fortran (still most numerical algorithms are traditionally available in this lan-
guage). These languages are supposed to be essential for any progress in software engineer-
ing. Yet modern quantum algorithms are most often designed on the level that is analogous to
operation of electronic gates. Consequently, development of high level quantum languages is
indispensable. First attempts have already been done [11], In this paper we will explore a
sample quantum algorithm - the Grover’s search - using typical tools of a software engineer,

keeping in mind all the factors that make the quantum computing so specific.

2. Background

An important demand in quantum computing - resulting from the rules of quantum me-
chanics - is that every operation must be reversible, so that no information may be lost during
the computational process [2, 9, 12], In case an operation is defined by a matrix, such matrix has
to be unitary (UU1= UfU =/, where U*is the conjugate transpose of U). It is really a strong
demand, but not a constrain: Lecerf [10] proved that every function computable with a classical
Touring machine is also computable with a reversible Touring machine - within polynomial
time and memory complexity (running time is in fact within a constant factor from the classical
solution). A reversible machine may be in turn directly simulated by a quantum Touring ma-
chine - as shown by Benioff [1]. So, every classical problem may be solved on a “quantum plat-
form”, what is an important conclusion, however not very surprising.

Speed-up in traditional computing is usually obtained by use of parallelism. Its quantum coun-
terpart is superposition. The famous Schrodinger’s cat was both dead and alive in the same time:
we say that those two states were in superposition. Similarly, a given n-qubit register (a quregister)
may contain a superposition of all the 2n possible values. What’s more, we can evaluate some
function/for all these values, obtaining a superposition of all the results. Problem is that once the
box is opened, the superposition is gone: the cat is just alive or dead (there is nothing mystical
about his experience!), and so is the quregister content: once the measurement is done, just a sin-

gle, randomly chosen computation result is available. In order to get all values of/ this way, the

Quantum Software 115

function should be called exponential number of times, what makes no gain over traditional solu-
tions.

What makes the quantum computing really powerful is the interference. Thanks to super-
position, we can deal with all the function results simultaneously, each result represented by a
quantum state. To make use of interference, the focus is moved from direct computation of
function rather to transforming the probability distribution over various states. To precisely
describe it, instead of probability, some complex values called probability amplitudes are
used for each state. The probability in any state is given by the square of the absolute value of
the amplitude in this state (so, the sum of squares of all the amplitudes must be equal to 1).
The key point of quantum computation is transforming the amplitude vector. Performing a
single transformation means that all the amplitudes change simultaneously and, what’s more,
all interfere - a new value of each amplitude depends on the values of all the other ampli-
tudes. From the computational point of view it makes calculating n functions of n variables
each in a single step, what may be shown as using a matrix operator O

0]
where A,,, A,,+/ are amplitude state vectors, and 0 is unitary.

The goal of quantum computing is to process - by clever use of interference - the ampli-
tude vector so that to gain the probability of the desired state. The act of measurement of this

state finishes a quantum algorithm.

3. Grover’s Search Algorithm: a computational view

In previous section superposition and interference of quantum states have been pointed as the
essential factors for obtaining the “quantum speed-up”. Grover’s search algorithm [3, 7, 8] makes

great use of these phenomena. The complexity of classical search of an unordered collection of N
items is of 0 (N). Using the quantum algorithm we can reduce this factorto 0 (4n).

The algorithm uses a single quregister of 2" qubits, where 2" >N. For simplicity assume
that N is a power of 2 and 2" = N. The outline is as follows:

1 In first step a superposition of all possible 2" states is generated.

2. A transformation is performed that makes the probability amplitude of the desired

state differ from the other amplitudes (quantum oracle).

3. Another transformation (diffusion) is performed that gains the probability of this state.

4. Steps 2. and 3. are iterated as many times as needed.

5. Algorithm terminates when the probability of the desired state is close to 1. Then the

measurement is performed.

116 J. Francik

Superposition. This is a common operation performed with standard quantum Hadamard
operator, which results in giving the same value to all the possibility amplitudes. In fig. la
this situation is depicted for a 4-qubit register, that contains different 16 values. As the sum of
squares of all the amplitudes is 1, the value of each amplitude «, becomes as follows:

V/e(0JV-lI) a,=-L=-7L =2""2)
uln Vr

Quantum oracle, the second step of the algorithm, is the point in which the searched item
is identified. The oracle function decides if its argument is the item being searched or not,
and it is simultaneously called for each item of the scanned collection. The operation has to
be reversible, so no information may be lost. This is obtained by simple negating the ampli-
tude of the searched item (fig. Ib). Given that* is the state being searched we get:

Vie (0../V-1) aj:=(i= x)7-al:a, 3)
In the formula above we borrow some standard operator notation from the language C.

As the amplitude is complex, the negating operation isdescribed rather as rotation of the

marked slate by a phase of n. Anyhow, this operation would not change the possibility of

detecting this state if a measurement was done at this point.

a) 1 d 1
OBIHIWIBHBH o
] te
b) 1 e) I

-t -

Fig. 1. Visualization of the Grover’s algorithm
Rys. 1. Wizualizacja algorytmu Grovera

Diffusion operator, the algorithm’s next step, is where the use of interference is made. This

operator is often referred as the inversion about average, as, indeed, it is given as follows:

Quantum Software 117

_ 2 M
V7e(0../V-1) a, :=-a,+2a=-a(H- X a/ (4)
W =0

where a is the average of all the amplitude values. Notice, that this operation is applied on a

vector in which all components, except one, are equal to a value, say cc, the one component

that is different is negative (fig. Ib). The average a is also approximately equal to a, so N -1
components do not change significantly as a result of the inversion about average. The one
component that was negative becomes positive and increases by approximately 2 or(fig. Ic).

Iteration. The gain effect obtained by a single inversion about average is not enough, es-
pecially if to notice that the more states we have the less is the gain. After some number of
iterations the possibility amplitude becomes close to 1. It is almost never equal to 1- it re-
sults from the fact, that Grover’s algorithm, as most quantum algorithms, is a probabilistic
algorithm: the proper result is obtained with high probability, but is not guaranteed. Consecu-
tive iterations are shown in fig. Ic - If. At the 3rd iteration (fig. le) the amplitude of the de-
sired state has its maximum (for case of 16 states); afterwards it decreases (fig. If). This re-
sult is surprising only at first sight. The value of the N - 1 components, denoted a, slowly
decreases; once it exceeds zero the gain effect reverses. In fact both values are quantified val-
ues of some periodical function (the desired amplitude grows again after iteration no 9, 15
and so on).

The problem is: how many times should we iterate to get the optimal result? Let ordenote,
as above, the value of all the amplitudes but one, and p is the amplitude of the state being

searched ax. Then the average is given as:
a="((N-\)a-p))
Using (4), (3) and (2) it holds:

=-at+jj((N-Dai-Pi)=([-~)at-~ A

A- =H-0t)+~HN-Dg, - A)=(1- A+* T2« ©
a0=p0=2-n
where cn and pkare previous states, and ctk+t and /?*+/ are the next states of a and p.

The difference equation (6) leads to a characteristic square equation with complex roots.
The analytic approach may be tricky, but one can notice that after a substitution ~ = eartVA/ —1
the equation (6) becomes an equation of rotation a point (X, P) around the center of the co-
ordinate system by an angle Ax, sinAx=2pN-\IN . The best result is achieved when the

angle reaches n/2, so the number of iterations is:

118

k12 nl1l2 k-
~ AV ~ 2-JW--1/N~ 4

J. Francik

After the last iteration the final measurement is performed.

4, Presentation

In the previous section the Grover’s algorithm has been defined by observing just what

happens with individual values of probability amplitude vector. One can notice that some

elements of mathematical description that are common for most papers on quantum aigorith-

mics have been omitted (for example tensor notation). The probability amplitudes are treated

just as program variables. This makes a temptation to notify the algorithm using something

similar to high-level programming language.

The sample code presented in fig. 2 uses a pseudo-code formalism very similar to C lan-

guage, and thus called quC. It introduces quregisters along with a special notation A<i> that

denotes the probability amplitude of the i-th state of A (triangle bracket being a symbol of

state index). Special constructions have been also proposed to express quantum parallelism.

A new statement qufor have been added for a range of operations simultaneously executed on

multiple quantum states. Another new block instruction, qusum, allows instantaneous sum-

marizing expressions, which is indispensable when modeling the interference. The qusum

instruction may appear in expressions in place of a function call.

int qufunction Grover (int x)
(const N = 16;

quregister A[sqrt(N)]1;

int i, j;

qufor (<i>=<0..N-I>) A<i> =1 / sqrt(N);
for G = 0; J < pi*sqrt(N)/4; j++)
{ qufor (<i>=<0.-N-1>) A<i> =@

qufor (<i>=<0..N-1>) A<i> =

// superposition

== x) ? -A<i> : A<i>;
-A<i> + 2 *

qusum(i = 0 to N-1) { return A<i>;}

return measure(A);

Fig. 2. Grover’s algorithm in quC pseudo-code
Rys. 2. Algorytm Grovera zapisany w pseudokodzie quC

The quC pseudo-code resembles a C program

and may be easily converted - one has |

to unbound qufor/qusum statements and replace quregister amplitudes with floated-pointar-

rays. Such conversion has been done, and the resulted program has been visualized using a

Daphnis algorithm animation system [5]. The images created by this tool have been presented

in fig. 1, that was applied as an illustration in the previous section.

Quantum Software 119

5. Discussion and Conclusion

A pseudo-code notation as depicted in fig. 2 makes a good explanatory tool for informati-
cians who want to understand the quantum software, foremost because it is familiar in form.
The weak point of this approach is that it is not consistent with the rules of quantum mechan-
ics. It lacks a system of coherent, internal verification of such properties as reversibility, uni-
tarity and normalization. These properties are crucial in terms of computability of quantum
software, and should be incorporated into a quantum programming language as its integral
part. It is probably unavoidable in any language based on applying open mathematical formu-
las. What’s more, such a language could be extremely difficult in phase of automatic translat-
ing the source code into signals controlling a circuit of quantum gates.

Another possibility is a language based on a matrix notation of operations. All the opera-
tions performed by any quantum algorithm may be expressed as matrix operations - like (1).
The matrices of Grover’s algorithm operations may be found in [3, 7, 8]. Once a matrix is
given it’s quite comfortable; an engineer may reconstruct all the operations performed; it is
also easy to check if an operation is reversible. Much more difficult is to propose a proper
matrix representation when implementing a conceptually new algorithm.

Most languages existing so far, as the QCL [120], base on a predefined set of ready-to-use
quantum transformations, that the underlying equipment is supposed to support. This ap-
proach makes programs strongly tied to the hardware, and although quite useful, it may re-
semble an assembler language rather then a high-level one.

Real quantum programming will not be just rewriting the Grover’s algorithm. A practical
need will emerge for not very sophisticated routines that will have to be implemented quan-
tum. A mine of examples is the query function for the Grover’s search oracle: whatever
would be implemented, must be called in superposition, so must be quantum. And this is
where a practical, easy-to-use high-level quantum language will be essential.

Maybe the practical approach of the future will be rather creating tools for machine trans-

lation of classical algorithms into an assembly-level quantum specification.

BIBLIOGRAPHY

1 Benioff P. A.: Quantum mechanical Hamiltonian models of Touring machines. Journal
of Statistical Physics, 29(3), 1982, pp. 515-546.

2. Bugajski S., Klamka J., Wegrzyn S.: Foundations of Quantum Computing. Part I. Ar-
chiwum Informatyki Teoretycznej i Stosowanej, Vol. 13 No 2/2001, pp. 96-142.

120 J. Francik

3. Bugajski S.: Quantum Serach. Archiwum Informatyki Teoretycznej i Stosowanej, Vol.
13 No 2/2001, pp. 143-150.

4. Colwel B.: Engineering, Science and Quantum Mechanics, IEEE Comp. 35/2002, pp. 8 -
10.

5. Francik J.: Algorithm Animation Using Data Flow Tracing. In: S. Diehl (Ed.): Software
Visualization. LNCS 2269, Springer Verlag, 2002, pp. 73-87.

6. Gershenfeld N., Chuang I. L.: Quantum Computing with Molecules, Scientific Ameri-
can, June 1998 (reprinted in Polish in Swiat Nauki No 8/1998).

7. Grover L. K.: A Fast Quantum Mechanical Algorithm for Database Search. Proc of
STOC 1996, Philadelphia PA (ACM Press New York), pp. 212-219.

8. Klamka J.: Quantum search algorithm. Seminarium Sieci Komputerowe, Zakopane 2002.

9. Koskela J.-P., Mettinen K.: Why do quantum algorithms work? (Deutsch-Josza prob-
lem). Quantum Computing, Dept, of Comp. Science, Univ. of Helsinki 1998.

10. Lecerf Y. Machines de Touring réversibles. Récursive insolubilitt en n 6 N de
I’équation u = 0 " ot 0 est un isomorphisme de codes. Comptes rendus de I’Académie
francgaise des sciences, 257, 1963, pp. 2597-2600.

11. Orner B.: Quantum Programming in QCL. PhD thesis. Institute of Inf. Systems, Techni-
cal University of Vienna, Austria 2000.

12. Wegrzyn A., Klamka J.. Quantum Systems of Informatics, ITTiS PAN, Gliwice 2000.

Recenzent: Dr inz. Ryszard Winiarczyk

W ptyneto do Redakcji 30 kwietnia 2002 r.

Streszczenie

Problem z informatyka kwantowg polega na tym, Ze ciggle jest to jeszcze bardziej dome-
na fizykéw niz informatykéw. Artykut jest prébg spojrzenia na te nowg dziedzine okiem in-
zyniera - programisty. Przedstawiono - w duzym skrécie - najistotniejsze pojecia majace wptyw
na ksztatt algorytméw kwantowych: odwracalnos¢, superpozycje, interferencje. Koncentrujac sie
na kwantowym wyszukiwaniu Grovera podjeto probe przedstawienia algorytméw kwantowych za
pomocg klasycznych, informatycznych $rodkéw opisu. Algorytm zostat poddany prostej analizie
numerycznej. Przedstawiono jego prostg wizualizacje (rys. 1) oraz zapis w pseudokodzie (rys. 2).
Przeanalizowano przydatnos$¢ i ograniczenia takich srodkéw opisu, zasygnalizowano tez istnienie

innych narzedzi, w tym jezykéw programowania (np. QCL 11).

