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QUANTUM SOFTWARE*

Summary. T he paper is an attem pt to look at quantum  inform ation techniques 
from the perspective o f an softw are engineer. Focusing on G rover’s quantum  search, 
we try to present quantum  algorithm s using classical engineering m ethods: p seu­
docode, high-level program m ing language, softw are visualization. It is also analyzed 
how the specifics o f  quantum  m echanics has to affect these m eans o f description.

OPROGRAMOWANIE KW ANTOW E

Streszczenie. Artykuł jest próbą spojrzenia na kwantowe techniki informatyczne z 
perspektywy inżynierii oprogramowania. Koncentrując się na kwantowym wyszukiwaniu 
Grovera podjęto próbę przedstawienia algorytmów kwantowych za pom ocą klasycznych, 
informatycznych środków opisu: pseudokodu, języka programowania wysokiego pozio­
mu, wizualizacji oprogramowania. Przeanalizowano, w jaki sposób specyfika mechaniki 
kwantowej musi wpłynąć na tego typu środki opisu.

1. Introduction

G ershenfeld and C huang in their popular paper published in Scientific  A m erican  [6] w rote 

that a hypothetical quantum  com puter “w ould look nothing like the m achine that sits on your 

desk; surprisingly, it m ight resem ble the cup of coffee at its side” . H ow ever splendid as an 

illustration for dum m ies, that com parison does not take into account the fact that the essential 

puipose o f both traditional and quantum  com puting  m achinery is the sam e, w hat could not be 

said about cups of coffee. The problem  with quantum  com puting is that so far it is m ostly a
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dom ain o f physicists rather than com puter professionals. T he descrip tion  is m ade on the level 

o f quantum  m echanics and appropriate m athem atical m odel. In this paper we will try to look 

at the problem  as a new branch of inform atics. T he object o f our interests is quantum  soft­

ware: inform ation processing analyzed apart from  its physical realization.

C urrently quantum  com puting is a scientific concept rather than a technology, even an 

em erging one. C om pared w ith traditional solutions, we are not even on the stage o f ENIAC. 

On the o ther hand we have already started to develop pretty good algorithm s. In case o f  elec­

tronic m achinery the com parable progress w as connected w ith developm ent o f first highfievel 

languages, like Fortran (still m ost num erical algorithm s are traditionally  available in this lan­

guage). These languages are supposed to be essential for any progress in softw are engineer­

ing. Yet m odern quantum  algorithm s are m ost often designed on the level that is analogous to 

operation of electronic gates. C onsequently, developm ent o f  high level quantum  languages is 

indispensable. First attem pts have already been done [11], In this paper we will explore a 

sam ple quantum  algorithm  -  the G rover’s search -  using typical tools o f a softw are engineer, 

keeping in m ind all the factors that m ake the quantum  com puting so specific.

2. Background

An im portant dem and in quantum  com puting -  resulting from the rules o f  quantum  me­

chanics -  is that every operation must be reversible, so that no inform ation m ay be lost during 

the computational process [2, 9, 12], In case an operation is defined by a m atrix, such matrix has 

to be unitary (U U 1 = Uf U  = / ,  where U* is the conjugate transpose o f U). It is really a strong 

dem and, but not a constrain: Lecerf [10] proved that every function com putable with a classical 

Touring m achine is also com putable with a reversible T ouring m achine -  w ithin polynomial 

time and m em ory com plexity (running tim e is in fact w ithin a constant factor from the classical 

solution). A reversible m achine may be in turn directly sim ulated by a quantum  Touring ma­

chine -  as show n by B enioff [1]. So, every classical problem  m ay be solved on a “quantum  plat­

form” , what is an im portant conclusion, how ever not very surprising.

Speed-up in traditional computing is usually obtained by use o f parallelism . Its quantum  coun­

terpart is superposition. The famous Schrodinger’s cat was both dead and alive in the sam e time: 

we say that those two states were in superposition. Similarly, a given n-qubit register (a quregister) 

may contain a superposition o f all the 2n possible values. W hat’s more, we can evaluate some 

fu n c tio n /fo r all these values, obtaining a superposition of all the results. Problem is that once the 

box is opened, the superposition is gone: the cat is just alive or  dead (there is nothing mystical 

about his experience!), and so is the quregister content: once the m easurem ent is done, ju s t a sin­

gle, randomly chosen computation result is available. In order to get all values o f /  this way, the
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function should be called exponential number of times, what makes no gain over traditional solu-

tions.

W hat m akes the quantum  com puting really pow erful is the interference. T hanks to super­

position, we can deal with all the function results sim ultaneously, each result represented by a 

quantum state. T o  m ake use o f interference, the focus is m oved from  direct com putation of 

function rather to transform ing the probability  distribution  over various states. T o precisely 

describe it, instead o f probability , som e com plex values called probab ility  am plitudes  are 

used for each state. T he probability  in any state is given by the square of the absolute value of 

the am plitude in this state (so, the sum  of squares o f all the am plitudes m ust be equal to 1). 

The key point o f  quantum  com putation is transform ing the am plitude vector. Perform ing a 

single transform ation m eans that all the am plitudes change sim ultaneously  and, w hat’s more, 

all interfere -  a new  value o f each am plitude depends on the values o f  all the o ther am pli­

tudes. From the com putational point o f view it m akes calculating n functions o f n variables 

each in a single step, w hat m ay be show n as using a matrix operator O'.

where A,„ A„+/ are am plitude state vectors, and 0  is unitary.

The goal o f quantum  com puting is to process -  by clever use o f interference -  the am pli­

tude vector so that to gain the probability  o f the desired state. T he act o f m easurem ent o f this 

state finishes a quantum  algorithm .

3. Grover’s Search Algorithm: a computational view

In previous section superposition  and interference o f quantum states have been pointed as the 

essential factors for obtaining the “quantum speed-up”. G rover’s search algorithm [3, 7, 8] makes 

great use o f these phenomena. The complexity o f classical search o f an unordered collection of N  

items is o f 0 ( N ) .  U sing the quantum algorithm we can reduce this factor to 0 ( 4 n ) .

The algorithm  uses a single quregister o f 2" qubits, w here 2" > N . For sim plicity  assum e 

that N  is a pow er o f 2 and 2" = N. T he outline is as follows:

1. In first step  a superposition  o f all possible 2" states is generated.

2. A transform ation is perform ed that m akes the probability  am plitude o f  the desired 

state d iffer from  the o ther am plitudes (quantum  oracle).

3. A nother transform ation  (diffusion ) is perform ed that gains the probability  o f  this state.

4. S teps 2. and 3. are iterated as many tim es as needed.

5. A lgorithm  term inates when the probability o f the desired state is close to 1. Then the 

m easurem ent is perform ed.

(I)
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Superposition. T his is a com m on operation perform ed w ith standard quantum  H adam ard  

operator , w hich results in giving the sam e value to all the possibility  am plitudes. In fig. la  

this situation is depicted for a 4 -qubit register, that contains d ifferent 16 values. As the sum  of 

squares o f  all the am plitudes is 1, the value of each am plitude «, becom es as follow s:

V / e ( 0 J V - l )  a , : = - L = - 7L  =  2 " ’' 2 (2)
■In  V r

Q uantum  oracle, the second step o f the algorithm , is the point in w hich the searched item 

is identified. T he oracle  function decides if its argum ent is the item  being searched or not, 

and it is sim ultaneously  called for each item o f the scanned collection. T he operation has to 

be reversible, so no inform ation m ay be lost. T his is obtained by sim ple negating the am pli­

tude of the searched item  (fig. lb ). G iven th a t*  is the state being searched we get:

V ie  (0 ../V -1 ) aj :=(i =  x ) 7 - a l :a,  (3)

In the form ula above we borrow  som e standard operator notation from  the language C.

As the am plitude is com plex, the negating operation is described rather as rotation o f  the

marked slate by a phase o f n.  Anyhow, this operation w ould not change the possib ility  of 

detecting this state if a m easurem ent was done at this point.

a) 1 d) 1

BIHIWIBHBH
o o

■i -t •

b) 1 e) 1 ’ I

- t ------------------------------------------------------------------------------------------------  - i ----------------------------------------------------------------------------------------------------

Fig. 1. Visualization of the G rover’s algorithm 
Rys. 1. W izualizacja algorytmu Grovera

Diffusion operator, the algorithm ’s next step, is where the use o f interference is made. This 

operator is often referred as the inversion about average, as, indeed, it is given as follows:
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_ 2 /v~l
V 7 e (0 ../V -1 )  a, := - a ,  +  2a  = - a (. H— X a ./' (4)

W v=o

where a  is the average o f all the am plitude values. N otice, that this operation  is applied on a 

vector in w hich all com ponents, except one, are equal to a value, say cc, the one com ponent 

that is d ifferent is negative (fig. lb ). T he average a is also approxim ately equal to a, so N  -1  

components do not change significantly  as a result o f  the inversion about average. T he one 

component that w as negative becom es positive and increases by approxim ately 2 or (fig. lc).

Iteration. T he gain effect obtained by a single inversion about average is not enough, e s­

pecially if to notice that the m ore states we have the less is the gain. A fter som e num ber o f 

iterations the possib ility  am plitude becom es close to 1. It is alm ost never equal to 1 -  it re­

sults from the fact, that G rover’s algorithm , as m ost quantum  algorithm s, is a probabilistic  

algorithm: the p roper result is obtained w ith high probability, but is not guaranteed. C onsecu­

tive iterations are show n in fig. lc  -  If. A t the 3rd iteration (fig. le )  the am plitude o f the de­

sired state has its m axim um  (for case o f 16 states); afterw ards it decreases (fig. If). This re­

sult is surprising only at first sight. The value o f  the N  -  1 com ponents, denoted  a , slowly 

decreases; once it exceeds zero the gain effect reverses. In fact both values are quantified  val­

ues o f som e periodical function (the desired am plitude grow s again after iteration no 9, 15 

and so on).

The problem  is: how  m any tim es should w e iterate to get the optim al result? Let or denote, 

as above, the value o f  all the am plitudes but one, and p  is the am plitude o f the state being 

searched ax. Then the average is given as:

a = ^ ( ( N - \ ) a - p )  (5)

Using (4), (3) and (2) it holds:

= - a t + j j ( ( N - l ) a i - P i ) = ( [ - ~ ) a t - ~ A

A- =H-0t)+~HN- Da, -  A ) = (1 - A + “ T 2«* (6)
a 0 = p 0 = 2 - n

where cn and p k are previous states, and ctk+t and /?*+/ are the next states o f  a  and p.

The difference equation (6) leads to a characteristic square equation w ith com plex roots. 

The analytic approach m ay be tricky, but one can notice that after a substitu tion  ^  =  earVA/ — 1 

the equation (6) becom es an equation o f rotation a point (x, P) around the center o f  the co ­

ordinate system  by an angle Ax, s in A x = 2 p N - \ I N  . The best result is achieved w hen the 

angle reaches n/ 2, so the num ber o f  iterations is:
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_  k !2 __ n  12 _ k -Jn

~ A.v ~ 2-JW --1 /  N ~  4 

A fter the last iteration the final m easurem ent is perform ed.

4. Presentation

In the previous section the G rover’s algorithm  has been defined by observing ju s t what 

happens w ith individual values o f probability  am plitude vector. O ne can notice that some 

elem ents o f  m athem atical description that are com m on for m ost papers on quantum  aigorith- 

m ics have been om itted  (for exam ple tensor notation). T he probability  am plitudes are treated 

ju s t as program  variables. This m akes a tem ptation to notify the algorithm  using som ething 

sim ilar to high-level program m ing language.

The sam ple code presented in fig. 2 uses a pseudo-code form alism  very sim ilar to C lan­

guage, and thus called quC. It introduces quregisters along w ith a special notation A< i>  that 

denotes the probability  am plitude o f  the i-th state o f  A  (triangle bracket being a sym bol of 

state index). Special constructions have been also proposed to express quantum  parallelism . 

A new statem ent q u for  have been added for a range o f  operations sim ultaneously  executed on 

m ultiple quantum  states. A nother new block instruction, qusum , allow s instantaneous sum ­

m arizing expressions, w hich is indispensable w hen m odeling the interference. T he qusum  

instruction may appear in expressions in place o f a function call.

int qufunction Grover (int x)
( const N = 16;
quregister A[sqrt(N)]; 
int i , j ;

qufor (<i>=<0..N-l>) A<i> = 1 / sqrt(N); // superposition 
for (j = 0; j < pi*sqrt(N)/4; j++)
{ qufor (<i>=<0.-N-l>) A<i> = (i == x) ? -A<i> : A<i>;
qufor (<i>=<0..N-l>) A<i> = -A<i> + 2 *

qusum(i = 0 to N-l) { return A<i>;}
)
return measure(A);

}
Fig. 2. G rover’s algorithm in quC pseudo-code
Rys. 2. Algorytm Grovera zapisany w pseudokodzie quC

T he quC  pseudo-code resem bles a C  program  and m ay be easily  converted -  one has just

to unbound qufor/qusum  statem ents and replace quregister am plitudes w ith floated-point ar­

rays. Such conversion has been done, and the resulted program  has been visualized using a 

D aphnis algorithm  anim ation system  [5]. T he im ages created by this tool have been presented 

in fig. 1, that w as applied as an illustration in the previous section.
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5. Discussion and Conclusion

A pseudo-code notation as depicted in fig. 2 m akes a good explanatory tool for inform ati- 

cians who w ant to understand the quantum  softw are, forem ost because it is fam iliar in form. 

The weak point o f  this approach is that it is not consistent w ith the rules o f quantum  m echan­

ics. It lacks a system  o f  coherent, internal verification o f  such properties as reversibility , uni- 

tarity and norm alization . These properties are crucial in term s o f com putability  o f  quantum  

software, and should be incorporated into a quantum  program m ing language as its integral 

part. It is probably unavoidable in any language based on applying open m athem atical fo rm u­

las. W hat’s m ore, such a language could be extrem ely d ifficult in phase o f  autom atic translat­

ing the source code into signals controlling a circuit o f  quantum  gates.

A nother possib ility  is a language based on a m atrix  notation o f  operations. A ll the opera­

tions perform ed by any quantum  algorithm  m ay be expressed as m atrix  operations -  like (1). 

The matrices o f G rover’s algorithm  operations m ay be found in [3, 7, 8]. O nce a m atrix  is 

given it’s quite com fortable; an engineer m ay reconstruct all the operations perform ed; it is 

also easy to check if  an operation is reversible. M uch m ore difficult is to propose a proper 

matrix representation w hen im plem enting a  conceptually  new  algorithm .

M ost languages existing  so far, as the Q C L  [120], base on a predefined set o f  ready-to-use 

quantum transform ations, that the underlying equipm ent is supposed to support. This ap ­

proach m akes program s strongly tied to the hardw are, and although quite useful, it m ay re­

semble an assem bler language rather then a high-level one.

Real quantum  program m ing will not be ju s t rew riting the G rover’s algorithm . A practical 

need will em erge for not very sophisticated routines that will have to be im plem ented quan­

tum. A m ine o f exam ples is the query function for the G rover’s search oracle: w hatever 

would be im plem ented, m ust be called in superposition, so m ust be quantum . A nd this is 

where a practical, easy-to-use high-level quantum  language will be essential.

M aybe the practical approach o f the future w ill be rather creating tools for m achine trans­

lation o f classical a lgorithm s into an assem bly-level quantum  specification.
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S treszczen ie

Problem  z inform atyką kw antow ą polega na tym , że ciągle je s t to jeszcze  bardziej dom e­

na fizyków  niż inform atyków . A rtykuł je s t p róbą  spojrzenia na tę now ą dziedzinę okiem  in­

żyniera -  program isty. Przedstawiono -  w dużym skrócie -  najistotniejsze pojęcia mające wpływ 

na kształt algorytmów kwantowych: odwracalność, superpozycję, interferencję. Koncentrując się 

na kwantowym wyszukiwaniu Grovera podjęto próbę przedstawienia algorytmów kwantowych za 

pom ocą klasycznych, informatycznych środków opisu. Algorytm został poddany prostej analizie 

numerycznej. Przedstawiono jego prostą wizualizację (rys. 1) oraz zapis w pseudokodzie (rys. 2). 

Przeanalizowano przydatność i ograniczenia takich środków opisu, zasygnalizowano też istnienie 

innych narzędzi, w tym języków  programowania (np. QCL 11).


