
STUDIA IN FO R M A T ICA
Volume 23

 2002
N um ber 2A (48)

Jarosław FR A N C IK
Politechnika Śląska, Instytut Informatyki

QUANTUM SOFTWARE*

Summary. T he paper is an attem pt to look at quantum inform ation techniques
from the perspective o f an softw are engineer. Focusing on G rover’s quantum search,
we try to present quantum algorithm s using classical engineering m ethods: p seu­
docode, high-level program m ing language, softw are visualization. It is also analyzed
how the specifics o f quantum m echanics has to affect these m eans o f description.

OPROGRAMOWANIE KW ANTOW E

Streszczenie. Artykuł jest próbą spojrzenia na kwantowe techniki informatyczne z
perspektywy inżynierii oprogramowania. Koncentrując się na kwantowym wyszukiwaniu
Grovera podjęto próbę przedstawienia algorytmów kwantowych za pom ocą klasycznych,
informatycznych środków opisu: pseudokodu, języka programowania wysokiego pozio­
mu, wizualizacji oprogramowania. Przeanalizowano, w jaki sposób specyfika mechaniki
kwantowej musi wpłynąć na tego typu środki opisu.

1. Introduction

G ershenfeld and C huang in their popular paper published in Scientific A m erican [6] w rote

that a hypothetical quantum com puter “w ould look nothing like the m achine that sits on your

desk; surprisingly, it m ight resem ble the cup of coffee at its side” . H ow ever splendid as an

illustration for dum m ies, that com parison does not take into account the fact that the essential

puipose o f both traditional and quantum com puting m achinery is the sam e, w hat could not be

said about cups of coffee. The problem with quantum com puting is that so far it is m ostly a

The research was supported by KBN Project no. 7 T l 1C 017 21

J. Francik

dom ain o f physicists rather than com puter professionals. T he descrip tion is m ade on the level

o f quantum m echanics and appropriate m athem atical m odel. In this paper we will try to look

at the problem as a new branch of inform atics. T he object o f our interests is quantum soft­

ware: inform ation processing analyzed apart from its physical realization.

C urrently quantum com puting is a scientific concept rather than a technology, even an

em erging one. C om pared w ith traditional solutions, we are not even on the stage o f ENIAC.

On the o ther hand we have already started to develop pretty good algorithm s. In case o f elec­

tronic m achinery the com parable progress w as connected w ith developm ent o f first highfievel

languages, like Fortran (still m ost num erical algorithm s are traditionally available in this lan­

guage). These languages are supposed to be essential for any progress in softw are engineer­

ing. Yet m odern quantum algorithm s are m ost often designed on the level that is analogous to

operation of electronic gates. C onsequently, developm ent o f high level quantum languages is

indispensable. First attem pts have already been done [11], In this paper we will explore a

sam ple quantum algorithm - the G rover’s search - using typical tools o f a softw are engineer,

keeping in m ind all the factors that m ake the quantum com puting so specific.

2. Background

An im portant dem and in quantum com puting - resulting from the rules o f quantum me­

chanics - is that every operation must be reversible, so that no inform ation m ay be lost during

the computational process [2, 9, 12], In case an operation is defined by a m atrix, such matrix has

to be unitary (U U 1 = Uf U = / , where U* is the conjugate transpose o f U). It is really a strong

dem and, but not a constrain: Lecerf [10] proved that every function com putable with a classical

Touring m achine is also com putable with a reversible T ouring m achine - w ithin polynomial

time and m em ory com plexity (running tim e is in fact w ithin a constant factor from the classical

solution). A reversible m achine may be in turn directly sim ulated by a quantum Touring ma­

chine - as show n by B enioff [1]. So, every classical problem m ay be solved on a “quantum plat­

form” , what is an im portant conclusion, how ever not very surprising.

Speed-up in traditional computing is usually obtained by use o f parallelism . Its quantum coun­

terpart is superposition. The famous Schrodinger’s cat was both dead and alive in the sam e time:

we say that those two states were in superposition. Similarly, a given n-qubit register (a quregister)

may contain a superposition o f all the 2n possible values. W hat’s more, we can evaluate some

fu n c tio n /fo r all these values, obtaining a superposition of all the results. Problem is that once the

box is opened, the superposition is gone: the cat is just alive or dead (there is nothing mystical

about his experience!), and so is the quregister content: once the m easurem ent is done, ju s t a sin­

gle, randomly chosen computation result is available. In order to get all values o f / this way, the

Quantum Software 115

function should be called exponential number of times, what makes no gain over traditional solu-

tions.

W hat m akes the quantum com puting really pow erful is the interference. T hanks to super­

position, we can deal with all the function results sim ultaneously, each result represented by a

quantum state. T o m ake use o f interference, the focus is m oved from direct com putation of

function rather to transform ing the probability distribution over various states. T o precisely

describe it, instead o f probability , som e com plex values called probab ility am plitudes are

used for each state. T he probability in any state is given by the square of the absolute value of

the am plitude in this state (so, the sum of squares o f all the am plitudes m ust be equal to 1).

The key point o f quantum com putation is transform ing the am plitude vector. Perform ing a

single transform ation m eans that all the am plitudes change sim ultaneously and, w hat’s more,

all interfere - a new value o f each am plitude depends on the values o f all the o ther am pli­

tudes. From the com putational point o f view it m akes calculating n functions o f n variables

each in a single step, w hat m ay be show n as using a matrix operator O'.

where A,„ A„+/ are am plitude state vectors, and 0 is unitary.

The goal o f quantum com puting is to process - by clever use o f interference - the am pli­

tude vector so that to gain the probability o f the desired state. T he act o f m easurem ent o f this

state finishes a quantum algorithm .

3. Grover’s Search Algorithm: a computational view

In previous section superposition and interference o f quantum states have been pointed as the

essential factors for obtaining the “quantum speed-up”. G rover’s search algorithm [3, 7, 8] makes

great use o f these phenomena. The complexity o f classical search o f an unordered collection of N

items is o f 0 (N) . U sing the quantum algorithm we can reduce this factor to 0 (4 n) .

The algorithm uses a single quregister o f 2" qubits, w here 2" > N . For sim plicity assum e

that N is a pow er o f 2 and 2" = N. T he outline is as follows:

1. In first step a superposition o f all possible 2" states is generated.

2. A transform ation is perform ed that m akes the probability am plitude o f the desired

state d iffer from the o ther am plitudes (quantum oracle).

3. A nother transform ation (diffusion) is perform ed that gains the probability o f this state.

4. S teps 2. and 3. are iterated as many tim es as needed.

5. A lgorithm term inates when the probability o f the desired state is close to 1. Then the

m easurem ent is perform ed.

(I)

116 J. Francik

Superposition. T his is a com m on operation perform ed w ith standard quantum H adam ard

operator , w hich results in giving the sam e value to all the possibility am plitudes. In fig. la

this situation is depicted for a 4 -qubit register, that contains d ifferent 16 values. As the sum of

squares o f all the am plitudes is 1, the value of each am plitude «, becom es as follow s:

V / e (0 J V - l) a , : = - L = - 7L = 2 " ’' 2 (2)
■In V r

Q uantum oracle, the second step o f the algorithm , is the point in w hich the searched item

is identified. T he oracle function decides if its argum ent is the item being searched or not,

and it is sim ultaneously called for each item o f the scanned collection. T he operation has to

be reversible, so no inform ation m ay be lost. T his is obtained by sim ple negating the am pli­

tude of the searched item (fig. lb). G iven th a t* is the state being searched we get:

V ie (0 ../V -1) aj :=(i = x) 7 - a l :a, (3)

In the form ula above we borrow som e standard operator notation from the language C.

As the am plitude is com plex, the negating operation is described rather as rotation o f the

marked slate by a phase o f n. Anyhow, this operation w ould not change the possib ility of

detecting this state if a m easurem ent was done at this point.

a) 1 d) 1

BIHIWIBHBH
o o

■i -t •

b) 1 e) 1 ’ I

- t -- - i --

Fig. 1. Visualization of the G rover’s algorithm
Rys. 1. W izualizacja algorytmu Grovera

Diffusion operator, the algorithm ’s next step, is where the use o f interference is made. This

operator is often referred as the inversion about average, as, indeed, it is given as follows:

Quantum Software 117

_ 2 /v~l
V 7 e (0 ../V -1) a, := - a , + 2a = - a (. H— X a ./' (4)

W v=o

where a is the average o f all the am plitude values. N otice, that this operation is applied on a

vector in w hich all com ponents, except one, are equal to a value, say cc, the one com ponent

that is d ifferent is negative (fig. lb). T he average a is also approxim ately equal to a, so N -1

components do not change significantly as a result o f the inversion about average. T he one

component that w as negative becom es positive and increases by approxim ately 2 or (fig. lc).

Iteration. T he gain effect obtained by a single inversion about average is not enough, e s­

pecially if to notice that the m ore states we have the less is the gain. A fter som e num ber o f

iterations the possib ility am plitude becom es close to 1. It is alm ost never equal to 1 - it re­

sults from the fact, that G rover’s algorithm , as m ost quantum algorithm s, is a probabilistic

algorithm: the p roper result is obtained w ith high probability, but is not guaranteed. C onsecu­

tive iterations are show n in fig. lc - If. A t the 3rd iteration (fig. le) the am plitude o f the de­

sired state has its m axim um (for case o f 16 states); afterw ards it decreases (fig. If). This re­

sult is surprising only at first sight. The value o f the N - 1 com ponents, denoted a , slowly

decreases; once it exceeds zero the gain effect reverses. In fact both values are quantified val­

ues o f som e periodical function (the desired am plitude grow s again after iteration no 9, 15

and so on).

The problem is: how m any tim es should w e iterate to get the optim al result? Let or denote,

as above, the value o f all the am plitudes but one, and p is the am plitude o f the state being

searched ax. Then the average is given as:

a = ^ ((N - \) a - p) (5)

Using (4), (3) and (2) it holds:

= - a t + j j ((N - l) a i - P i) = ([- ~) a t - ~ A

A- =H-0t)+~HN- Da, - A) = (1 - A + “ T 2«* (6)
a 0 = p 0 = 2 - n

where cn and p k are previous states, and ctk+t and /?*+/ are the next states o f a and p.

The difference equation (6) leads to a characteristic square equation w ith com plex roots.

The analytic approach m ay be tricky, but one can notice that after a substitu tion ^ = earVA/ — 1

the equation (6) becom es an equation o f rotation a point (x, P) around the center o f the co ­

ordinate system by an angle Ax, s in A x = 2 p N - \ I N . The best result is achieved w hen the

angle reaches n/ 2, so the num ber o f iterations is:

118 J. Francik

_ k !2 __ n 12 _ k -Jn

~ A.v ~ 2-JW --1 / N ~ 4

A fter the last iteration the final m easurem ent is perform ed.

4. Presentation

In the previous section the G rover’s algorithm has been defined by observing ju s t what

happens w ith individual values o f probability am plitude vector. O ne can notice that some

elem ents o f m athem atical description that are com m on for m ost papers on quantum aigorith-

m ics have been om itted (for exam ple tensor notation). T he probability am plitudes are treated

ju s t as program variables. This m akes a tem ptation to notify the algorithm using som ething

sim ilar to high-level program m ing language.

The sam ple code presented in fig. 2 uses a pseudo-code form alism very sim ilar to C lan­

guage, and thus called quC. It introduces quregisters along w ith a special notation A< i> that

denotes the probability am plitude o f the i-th state o f A (triangle bracket being a sym bol of

state index). Special constructions have been also proposed to express quantum parallelism .

A new statem ent q u for have been added for a range o f operations sim ultaneously executed on

m ultiple quantum states. A nother new block instruction, qusum , allow s instantaneous sum ­

m arizing expressions, w hich is indispensable w hen m odeling the interference. T he qusum

instruction may appear in expressions in place o f a function call.

int qufunction Grover (int x)
(const N = 16;
quregister A[sqrt(N)];
int i , j ;

qufor (<i>=<0..N-l>) A<i> = 1 / sqrt(N); // superposition
for (j = 0; j < pi*sqrt(N)/4; j++)
{ qufor (<i>=<0.-N-l>) A<i> = (i == x) ? -A<i> : A<i>;
qufor (<i>=<0..N-l>) A<i> = -A<i> + 2 *

qusum(i = 0 to N-l) { return A<i>;}
)
return measure(A);

}
Fig. 2. G rover’s algorithm in quC pseudo-code
Rys. 2. Algorytm Grovera zapisany w pseudokodzie quC

T he quC pseudo-code resem bles a C program and m ay be easily converted - one has just

to unbound qufor/qusum statem ents and replace quregister am plitudes w ith floated-point ar­

rays. Such conversion has been done, and the resulted program has been visualized using a

D aphnis algorithm anim ation system [5]. T he im ages created by this tool have been presented

in fig. 1, that w as applied as an illustration in the previous section.

Quantum S oftware 119

5. Discussion and Conclusion

A pseudo-code notation as depicted in fig. 2 m akes a good explanatory tool for inform ati-

cians who w ant to understand the quantum softw are, forem ost because it is fam iliar in form.

The weak point o f this approach is that it is not consistent w ith the rules o f quantum m echan­

ics. It lacks a system o f coherent, internal verification o f such properties as reversibility , uni-

tarity and norm alization . These properties are crucial in term s o f com putability o f quantum

software, and should be incorporated into a quantum program m ing language as its integral

part. It is probably unavoidable in any language based on applying open m athem atical fo rm u­

las. W hat’s m ore, such a language could be extrem ely d ifficult in phase o f autom atic translat­

ing the source code into signals controlling a circuit o f quantum gates.

A nother possib ility is a language based on a m atrix notation o f operations. A ll the opera­

tions perform ed by any quantum algorithm m ay be expressed as m atrix operations - like (1).

The matrices o f G rover’s algorithm operations m ay be found in [3, 7, 8]. O nce a m atrix is

given it’s quite com fortable; an engineer m ay reconstruct all the operations perform ed; it is

also easy to check if an operation is reversible. M uch m ore difficult is to propose a proper

matrix representation w hen im plem enting a conceptually new algorithm .

M ost languages existing so far, as the Q C L [120], base on a predefined set o f ready-to-use

quantum transform ations, that the underlying equipm ent is supposed to support. This ap ­

proach m akes program s strongly tied to the hardw are, and although quite useful, it m ay re­

semble an assem bler language rather then a high-level one.

Real quantum program m ing will not be ju s t rew riting the G rover’s algorithm . A practical

need will em erge for not very sophisticated routines that will have to be im plem ented quan­

tum. A m ine o f exam ples is the query function for the G rover’s search oracle: w hatever

would be im plem ented, m ust be called in superposition, so m ust be quantum . A nd this is

where a practical, easy-to-use high-level quantum language will be essential.

M aybe the practical approach o f the future w ill be rather creating tools for m achine trans­

lation o f classical a lgorithm s into an assem bly-level quantum specification.

B IB L IO G R A P H Y

1. B enioff P. A.: Q uantum m echanical H am iltonian m odels o f T ouring m achines. Journal

o f Statistical Physics, 29(3), 1982, pp. 515-546.

2. Bugajski S., K lam ka J., W ęgrzyn S.: Foundations o f Q uantum C om puting. Part I. A r­

chiw um Inform atyki Teoretycznej i S tosow anej, Vol. 13 N o 2/2001, pp. 96-142.

120 J. Francik

3. Bugajski S.: Q uantum Serach. A rchiw um Inform atyki Teoretycznej i S tosow anej, Vol.

13 No 2/2001, pp. 143-150.

4. Colwel B.: Engineering, Science and Quantum M echanics, IEEE Comp. 35/2002, pp. 8 -

10 .

5. Francik J.: A lgorithm A nim ation U sing D ata Flow Tracing. In: S. D iehl (Ed.): Software

V isualization. LNCS 2269, Springer V erlag, 2002, pp. 73-87.

6. G ershenfeld N ., C huang I. L.: Q uantum C om puting w ith M olecules, Scientific A m eri­

can, June 1998 (reprinted in Polish in Św iat N auki No 8/1998).

7. G rover L. K.: A Fast Q uantum M echanical A lgorithm for D atabase Search. Proc of

STO C 1996, Philadelphia PA (A CM Press N ew Y ork), pp. 212-219.

8. Klamka J.: Quantum search algorithm. Seminarium Sieci Komputerowe, Zakopane 2002.

9. K oskela J.-P ., M ettinen K.: W hy do quantum algorithm s w ork? (D eutsch-Josza prob­

lem). Q uantum C om puting, D ept, o f Com p. Science, Univ. o f H elsinki 1998.

10. L ecerf Y.: M achines de T ouring réversibles. R écursive insolubilité en n 6 N de

l’équation u = 0 " où 0 est un isom orphism e de codes. C om ptes rendus de l ’A cadémie

française des sciences, 257, 1963, pp. 2597-2600.

11. O rner B.: Q uantum Program m ing in QCL. PhD thesis. Institute o f Inf. System s, T echni­

cal U niversity o f V ienna, A ustria 2000.

12. W ęgrzyn A., K lam ka J.: Q uantum System s o f Inform atics, ITTiS PA N, G liw ice 2000.

R ecenzent: Dr inż. R yszard W iniarczyk

W płynęło do Redakcji 30 kw ietnia 2002 r.

S treszczen ie

Problem z inform atyką kw antow ą polega na tym , że ciągle je s t to jeszcze bardziej dom e­

na fizyków niż inform atyków . A rtykuł je s t p róbą spojrzenia na tę now ą dziedzinę okiem in­

żyniera - program isty. Przedstawiono - w dużym skrócie - najistotniejsze pojęcia mające wpływ

na kształt algorytmów kwantowych: odwracalność, superpozycję, interferencję. Koncentrując się

na kwantowym wyszukiwaniu Grovera podjęto próbę przedstawienia algorytmów kwantowych za

pom ocą klasycznych, informatycznych środków opisu. Algorytm został poddany prostej analizie

numerycznej. Przedstawiono jego prostą wizualizację (rys. 1) oraz zapis w pseudokodzie (rys. 2).

Przeanalizowano przydatność i ograniczenia takich środków opisu, zasygnalizowano też istnienie

innych narzędzi, w tym języków programowania (np. QCL 11).

