
STUDIA IN FO R M A TICA
Volume 23

 2002
Num ber 2B (49)

Marek J. FIU K , Robert E. H A U SM A N , Siddartha R. D A L A L
Telcordia Technologies

Stanisław W ID EŁ
Politechnika Ś ląska, Instytut Informatyki

DEVELOPING A TOOLKIT FOR EXTRACTING AND
MAINTAINING DATA FROM WEB PAGES

S u m m ary . In this paper we presented a toolkit for extracting and maintaning data
from web pages. There are two situations in which the automation may prove useful.
First, for those W EB pages in which there is repeating structure, e.g ., a large table o f
data in which each row is a collection o f sim ilar attributes for a different object.
Second, those W EB pages in which the data changes often, but for which the structure
stays relatively unchanged.

METODY POZYSKIWANIA I AKTUALIZACJI DANYCH ZE STRON
WWW

Streszczen ie . W artykule przedstawiono metodę autom atycznego pozyskiw ania
i aktualizacji danych pobieranych w witryn WWW zapisanych w postaci H TM L.
W ramach prowadzonych prac autorzy opracowali szereg prototypowych aplikacji.
W zaprojektowanym oprogramowaniu wyróżniono warstwę bazodanow ą zależną od
zastosow ania oraz warstwę ekstrakcji danych. M etodę extrakcji danych oparto na
opracowanym specjalnie przez autorów zapisie nazwanym LPath (Location Path).

1. Introduction

Every day, more and more data is posted to the W EB. A las, m ost o f it is presented in a

manner that is optim ized for visual perusal rather than system atic structured analyses. One

approach to facilitating such analyses is to autom atically extract data from W EB pages and

use it to populate local databases upon which such analyses may be perform ed easily. Our

84 M .J. F iuk , R .E . H au sm an , S .R . D ala i, S . W ide!

objective was to create a robust tool for automating such data extraction from W EB pages and

then populating databases with as much ease as possible please find fig. 1.

Not all W EB data is equally amenable to such autom ated collection. If the data on the

page is relatively unstructured (e.g., numbers in a paragraphs o f text) and the contents o f the

page never change, then there is no point in training any automated system to go out and

collect the information. Any such training will be at least as tim e-consum ing as simply

copying the data into the database once.

On the other hand, there are two situations in which the automation may prove useful.

First, for those W EB pages in which there is repeating structure, e.g ., a large table o f data in

which each row is a collection o f sim ilar attributes for a different object. Second, those W EB

pages in which the data changes often, but for which the structure stays relatively unchanged.

In both these cases, it is the repetitive nature (repeating structure on the page in the first case,

and repeating structure over time in the second) on which we hope to capitalize. O f course,

the greatest benefits will accrue for pages that exhibit both form s o f repetitive structure.

One application that we constructed had both o f these attributes. Th is application tracked

bids and offers in various bandwidth auctions. The pages containing the data typically had

tables in which each row represented a bid or an offer. These tables had many rows and were

updated frequently. Our application would track the changes by frequently revisiting and

reanalyzing the pages.

It is important to notice that capitalizing on repetitive structure requires that the structure

be recognized by the automated procedures as repetitive. That is, the ability to recognize

structure must be robust. For exam ple, if a particular piece o f data m oves from one location

on a page on one day to another on the next day, we would like our procedures to recognize

that and continue to pick up that piece o f data correctly.

We began this work in 1999. In the future, we expect that X M L will m ake these goals

much easier to achieve. Data will often be labeled and easy to pick out. However, at this time,

most pages still consist sim ply o f text formatted by H TM L. Therefore, our methods were

designed to support any tree-structured format for documents and our implementation was

based on D O M 1 trees constructed from HTM L.

A lso, we were most interested in collecting numbers, often with units, and our work

reflects that orientation.

Finally, many o f the pages o f interest could not be accessed by sim ply providing a U RL.

For exam ple, many o f them required that a login procedure be executed before access was

1 The Document Object Model (DOM) is an API from the W 3C (W orld W ide Web
Consortium) for facilitating the manipulation o f H T M L and X M L docum ents. D O M trees
have nodes corresponding to the H TM L or X M L elements.

D eveloping a toolkit fo r extracting and m aintain ing data 85

granted. T o deal with this issue, we used a tool developed by Telcordia Technologies. To

train this tool to get to a particular page, the user sim ply navigates through whatever screens

or procedures are necessary while the tool keeps track o f the process. A unique ID is then

associated with this process and the process can be played back autom atically as needed by

simply supplying that ID to the tool.

2. Application Structure

Over the course o f this project, we considered and built prototypes for several different

applications o f the technology. Anticipating such evolution, we initially chose to split each

application into two pieces, 1) an application-specific database piece implemented in

Microsoft A ccess and 2) the data extractor itself, a D L L written in C + + . Although the data

extractor included a rudimentary means o f navigating to an arbitrary U R L , we found that to

be insufficient in that it did not provide a means for autom atically navigating through logon

screens and the like. A s a result, in the later applications, we integrated as a third piece a more

general web navigation engine developed by Telcordia.

The applications com prise two m ajor processes, training and retrieving. The training

process proceeds as follow s. Upon creating a new entry in the database, the user brow ses the

web using the web navigation engine to bring up the relevant page. The navigation engine

then stores the procedure to reach that page and returns a unique page ED to the main

application. That page ID is stored with the entry.

The web page is then passed to the data extractor and the user uses the m ouse to identify

fields on the page. The data extractor creates an LPath (Location Path) for each field and

returns it to the main application where it is stored with that field entry. The LPath specifies

where to find the data on the page. XPath is a sim ilar language, standardized by the W 3C, for

addressing parts o f an X M L document. We developed LPath as a sim pler alternative. LPath

has the ability to easily use information in one part o f the page to index am ongst entries in

another part o f the page. It also has a variety o f specialized text parsing operators.

The user also has an opportunity to edit the LPath, typically in an effort to make it more

robust against future m odifications o f the web page. Autom ating this aspect o f the process

remains an open issue. In addition, the user may replace an index by a special variable,

indicating that the LPath can be used to identify multiple sim ilar pieces o f information

(e.g., entries from the second column for each row in a table).

The retrieving process may be initiated manually, or in an automated periodic fashion.

Based on the data stored while training, it proceeds as follows.

86 M .J. F iuk , R .E . H au sm an , S .R . D alai, S . W ideł

The entry page ID is passed to the navigation engine, which opens a brow ser and

navigates to the appropriate page. The LPaths for each field are then passed to the data

extractor, which evaluates each one in the context o f the current page and returns the resulting

data for storage in the main application.

Fig. 1. Architecture o f the W EB data extraction system
Rys. 1. Architektura systemu pozyskiw ania danych z witryn WWW

3. LPaths

A s described in the previous section, LPaths are used to identify a unique DOM node or

block o f text. For exam ple, suppose that in the middle o f a web page, we have the following

table I.

Table 1
Exam ple o f the H TM L table

M id S ize C ars
M odel En gine W eight M S R P

Ford Taurus 3.01 3354 lb s, 1651 kg $21,500
A ccura Legend 3.21 3287 lbs, 1576 kg $26,000
F o rd F ocu s 2.6 1 2475 lbs, 1207 kg $14,250

D eveloping a toolkit fo r extracting and m aintain ing data 87

The H TM L code producing this table you can find on fig. 2.

<HTML>
<BODY>
<TABLE>

<CAPTION>Mid Size Cars</Bx/CAPTION>
<TR>

<TH>Model</TH>
<TH>Engine</TH>
<TH>Weight</TH>
<TH>MSRP</TH>

</TR>
<TR>

<TD>Ford Taurus</TD>
<TDxCENTER>3.0 l</FOOTx/CEJtfTERx/TD>
<TDxB>3354 lbs, 1651 kg</TD>
<TD>$21, 500</Bx/FONTx/TD>

</TR>
<TR>

<TD><CENTER>Accura Legend</CENTERx/TD>
<TDxBxFONT COLOR*"darkgray"><CENTER>3 .2 l</CENTERx/FONTx/Bx/TD>
<TD>3287 lbs, 1576 kg</TD>
<TDxBxFONT COLOR*"gray*>$26, 000</FONTx/Bx/TD>

</TR>
<TR>

<TD>Ford Focus</Bx/TD>
<TD><CENTER>2 . 6 l</CENTERx/FONTx/TD>
<TD>2475 lbs, 1207 kg</TD>
<TD>$<BxFONT COLOR*"black*>14, 250</FONTx/Bx/TD>

</TR>
</TABLE>
</BODY>
</HTML>

Fig. 2. H TM L implementation o f the exam ple table
Rys. 2. K od w języku H TM L dla przykładowej tabeli

If this is the third table on the page, then we can refer to the weight o f the Taurus as

/ T A B L E (2] / T R [1) / T D { 2 ! / T E X T / S T R ()

which means navigate to the third table (indices are zero-based), the second row, third cell

and select all text found there. This is the LPath that would be produced autom atically by the

data extractor.

This LPath would work fine on the web page described, but what i f the author were to

rearrange the tables on the page? We would like to make our specification o f the data robust

enough to adjust for such movements. S o rather than specify the table number, we would

rather specify the table o f interest as that with the caption “M id S ize C ars” . In LPath notation,

we write

/TABLE(CAPTION/TEXT/STR("Mid Size Cars“))/TR[1]/TDI2]/TEXT/STR()

88 M .J. F iu k , R .E . H ausm an , S .R . D ala i, S . W ide}

The m odifier for T A B L E (the condition expression) must be an LPath, in this case

C A P T IO N /T E X T /ST R ("M id S ize C ars"). This selects the first T A B L E node that has

a CAPTIO N with the text string " Mid S ize C ars". In general, the m odifying LPath will

evaluate to true or false and the table selected is the first for which it is true.

If the author were to rearrange the colum ns in the table, the LPath would need to include

a mechanism to determine the index o f the desired column by, for exam ple, using its heading.

This can be achieved using the query path mechanism as follow s

/TABLE [2] /TR [1] /TD [ATABLE/TR [01 /TH [?] /TEXT/STR (“Weight") 1 /TEXT/STRO

Instead o f indexing the cell explicitly with 3, we use an LPath that evaluates to that value.

That LPath, AT A B LE/T R [0]/T H [?]/T E X T /ST R ("W eight"), m ay be interpreted as “ move up

to the enclosing table, go to the first row and then try various cells in that row until you find

the string “ W eight” . Since that string is found in the third cell, a 2 needs to be used in place of

the ?, and so the LPath returns the value 2 which is used as the index to TD .

Very often information elements on the W EB page can be conveniently identified using

som e surrounding text or som e encom passing H T M L tags. For exam ple, the engine size of

the Taurus can be uniquely identified as the text in the third table that is enclosed in the

< C E N T E R > tag and is not enclosed in the <F O N T > tag. Th is description can be expressed as

the follow ing LPath.

/TABLE[21/(¡FONT)$CENTER/TEXT/STR()

The expression (!FO N T)$C E N T E R is interpreted to mean travel downward in the DOM

tree to the next C E N T E R node in a depth-first manner ($ denotes depth-first traversal)

without passing through any FO N T nodes on the way (which is denoted by the exclusion-

inclusion expression ¡F O N T).

LPath also includes mechanisms to identify information elements relatively to the

surrounding text using a predefined set o f higher level textual constructs, such as numbers

(can include sign and the decimal point), m easures (numbers with certain pre/post-fixes),

dates, money (numbers with currency pre/post-fixes), text lines etc. For exam ple, the path

/TABLE[2]/TEXT/MESRlPOSTFIX/STR("lbs”))[1]/NUMB/STR()

identifies the numerical part o f the 2nd measure that has postfix "lb s" and is contained in the

third table. In the context o f our exam ple, it will return the string "3287".

D evelop in g a toolkit fo r extracting and m aintain ing data 89

4. Database Application

A s the database applications have evolved, we have faced a variety o f design decisions.

The first was, obviously, the database structure. The first application was designed with

a particular set o f pages and fields in mind. Our tables were therefore very specific to that

particular need. A s is typical, over time, we have m oved to a much more general structure, in

which we have metatables that define the objects, object sets, fields, etc. used to capture the

end data. Thus, we can easily create a new application by merely changing the contents o f

those metatables rather than having to define new tables and relations and m odify the code

that manipulates them.

We refresh the data by revisiting the pages referenced by the database and performing the

extraction again. In order to minimize the effort, we keep a checksum for each page and only

perform the extraction if the checksum changes.

Depending on the needs o f the application, varying amounts o f history need to be

maintained. At a minimum, we sim ply keep the most recent data along with the date and time

at which it was obtained. At the other end o f the spectrum, we can retain the date and time o f

each visit to the page along with the values at that time. Typically, we opt for an intermediate

level at which we only store the date, time and values whenever the values change.

One other issue that arose in the design was at what level to integrate certain features, the

database application or the data extractor? For exam ple, initially we chose to have the

extractor return a single value in all cases. S o in order to return entries from all (sim ilar) rows

of a table, we used % ROW % in the stored LPath to represent an arbitrary row index. Then, in

order to update the database, the main application would call the data extractor repeatedly

with increasing integers substituted for % ROW % until the call failed. Later, we integrated

this iterative ability into the data extractor itself (see com m ents on % D E LT A % below).

5. LPath Wizard

As described previously, the LPath W izard is used to create the descriptions o f the

location o f the information elements on the W EB page (the LPaths). The LPath W izard is an

interactive tool built around the M icrosoft W EB Brow ser control. Fig. 3. presented the

screenshot o f the LPath W izard's main window.

90 M .J. F iuk , R .E . H au sm an , S .R . D a la i, S . W ideł

■ Tclcoiiłi.t HTML d-it<i «Ktirir.łm

M id Size Cars

M odel Engine Weight M SR P
Ford Taurus > 0 I 3354 lb*, 1651 k g $21,500

Accura Legend 3.2 1 g g S B S E S B $26,000
Ford Focut 2 I 2475 lbs, 1207 kg £14,250

Fig. 3. Screenshot o f the LPath W izard's main window
Rys. 3. Ekran programu kreatora ścieżki LPath

The sim plest way o f creating an LPath with the LPath W izard is to highlight the

appropriate information element (text) in the browser window and click the GetPath button.

This will produce an LPath that evaluates to the innermost H T M L node that encom passes the

selected text. This LPath can be further manually edited in the path edit control located under

the brow ser window.

In addition to a sim ple LPath pointing to a single information element, an IteratedLPath

can be constructed by replacing exactly one o f the indices with % D E LT A % . This

IteratedLPath can then be used to retrieve multiple information elements from the W EB page.

The LPath W izard also offers a mechanism for automated creation o f IteratedLPaths.

First, the LPaths for two exam ple information elements must be obtained (by highlighting) in

two path edit controls. Then pressing the Rule button will generate the corresponding

IteratedLPath in the third path edit control by replacing the single differing index with

% D ELTA % . For exam ple, selecting the two follow ing exam ple LPaths:

/ T A B L E [2] / T R [1] / T D [1] / T E X T / S T R ()
/TABLE[2]/TR[2]/TD[1]/TEXT/STR()

will produce (after pressing the 'Rule' button) the follow ing IteratedLPath:

/TABLE[2]/TR[%DELTA%]/TD[1)/TEXT/STR()

D evelop in g a toolkit fo r extracting and m aintain ing data 91

There are often cases in which the two exam ple LPaths are very sim ilar but differ by more

than ju st an index. The LPath W izard has built-in path transformation rules that allow it to

construct (in certain cases) an IteratedLPath despite the additional differences.

One such transformation rule is ignoring or dropping "ornamental" H T M L tags such as

I (italics) or B (bold). Another is to replace a one node traversal with a possibly multinode,

depth-first order, descendants only traversal (i$). If these rules are applied to the following

two exam ple LPaths:

/ T A B L E[2]/ T R [1]/ T D [2]/ B / T E X T / S T R ()
/ T A B L E[2]/ T R [2]/ T D [2]/ T E X T / S T R()

then the follow ing IteratedLPath will be produced:

/TABLE[2]/TR[%DELTA%]/TD[2]/i$TEXT/STR()

Yet another transformation rule is to combine the differing condition expressions. I f this

rule is applied to the follow ing two exam ple LPaths:

/ T A B L E [2] / T R [2] / T D (B) / i $ C E N T E R / T E X T / S T R ()
/ T AB L E [2] / T R [3 J / T D (FONT) / i $ C E N T E R / T E X T / S T R ()

then the follow ing IteratedLPath will be produced:

/TABLE[2]/TR[%DELTA%]/TD{B|FONT)/i $CENTER/TEXT/STR()

Another variation o f this rule is to combine the differing nodes using the exclusion-

inclusion expression. If this rule is applied to the follow ing two exam ple LPaths:

/TABLE [2] /TR (2] /TD/CENTER/ i$TEXT/STR()
/ T A B L E [2] / T R [3) / T D / B / i $ T E X T / S T R ()

then the follow ing IteratedLPath will be produced:

/ T A B L E [2] / T R [%DELTA%) / T D / (C E N T E R j B) i $ T E X T / S T R ()

It should be noted that these autom atically produced IteratedLPaths are the data wizard’s

best guess, though they may not always be exactly what is desired. For that reason, we have

implemented the Try Path button which will highlight the text indicated by the LPath (with

any % D E LTA % replaced by 0).

92 M .J. F iuk , R .E . H au sm an , S .R . D a la i, S . W ide!

5. Summary

Despite its power, the LPath specification is sim ple and an interpreter for it can be

implemented relatively easily.

While we implemented an LPath interpreter to work on H T M L web pages, the

specification can ju st as easily be applied to X M L , or, by extension, virtually any tagged tree-

based document representation.

Since LPaths are sim ply declarative strings, they are am enable to programmatic

manipulation. For exam ple, two sim ilar LPaths may be used to create an IteratedLPath.

It should also be stated that in an anticipation o f the need for the m echanized application

o f the path transformation rules we have designed the syntax o f the LPath notation to be

declarative in nature, so that automated analysis and com parison o f paths can be performed.

This may be more difficult with notations that take form o f the com puter program (multiple

statements).

Collection elements which appear sim ilar on the page (e.g., cells in a table row) are not

necessarily sim ilarly situated in the H TM L tree. For exam ple, an extra <center> ...< /cen ter>

tag pair within a table cell will lower the data o f interest by one level for that cell. It is

important that the specification o f data location be robust against such anom alies.

Som e form o f automated generation o f LPaths is necessary. Manual generation sim ply

takes too long and is extremely error prone.

In the future, there are several extensions that we would like to explore. The first o f these

is to integrate regular expressions into the T E X T section o f LPaths.

Secondly, we would like to allow indirect navigation through hyperlinks em bedded in the

document. For exam ple, in a table o f auction bids, one column might contain hyperlinks to

pages with more details on each bid. We would like to be able to construct an LPath that

would lead to one o f these hyperlinks and then continue from the top o f that linked page to a

particular piece o f information on that page.

Finally, we would like to further explore methods o f constructing iterated LPaths from

exam ple LPaths. In particular, we are interested in developing the concept o f equivalence

c lasses o f LPaths with or without respect to a particular tree.

R E F E R E N C E S

1. Azavant F., Sahuguet A.: W orld Wide Web W rapper Factory (W 4F) U ser M anual,

January 30, 2000.

D eveloping a toolkit for extracting and m aintain ing data 93

2. Hammer J „ Garcia-M olina H., Cho J., Aranha R., Crespo A .: Extracting Sem istructured

Information from the Web. In Proceedings o f W orkshop on M anagem ent o f

Sem istructured Data, June 1997.

3. Lim S .-J., N g Y .-K .: Extracting Structures o f H T M L Docum ents. In Proceedings o f the

13th International Conference on Information Networking (ICOIN '98), 1998.

4. X M L Path Language (Xpath) Version 1.0, W 3C Recom mendation 16 N ovem ber 1999.

Recenzent: D r inż. Lech Znamirowski

Wpłynęło do Redakcji 30 kwietnia 2002 r.

Streszczenie

W artykule przedstawiono metodę autom atycznego pozyskiw ania i aktualizacji danych

pobieranych z witryn WWW. M etodę ekstrakcji danych oparto na opracowanym przez

autorów zapisie LPath (Location Path). N otacja LPath je st relatywnie prosta w implementacji

i może być stosow ana zarówno do stron zapisanych w postaci H T M L ja k i język a X M L.

Najprościej notację LPath można sobie wyobrazić ja k o sposób adresow ania danych

w dokumentach H TM L. Poniew aż notacja je st ciągiem wyrażeń tekstowych jak o taka m oże

być przedmiotem przetwarzana i analizy. D la przykładu podobne dane zapisane w tablicy

HTM L m ogą być wskazane za pom ocą jednej ¡terowanej ścieżki (IteratedLPath). N otacja

została zaprojektow ana w celu umożliwienia dokonania autom atycznej analizy i porównania

ścieżek do danych. D la typowego zapisu program istycznego czyli sekw encyjnego ciągu

instrukcji wykazanie adresowania tych samych danych czy porównanie ścieżek m oże być

zadaniem bardzo trudnym.

Autorzy zd a ją sobie sprawę, że do praktycznego wykorzystania notacji LPath niezbędne

jest zastosow anie odpowiednich narzędzi wspom agających generowanie ścieżek, gdyż ręczne

ich wprowadzanie je st podatne na błędy i zabiera zbyt dużo czasu . W ramach prowadzonych

prac autorzy opracowali szereg prototypowych aplikacji. W zaprojektowanym

oprogramowaniu wyróżniono warstwę bazodanow ą zależną od zastosow ania oraz warstwę

ekstrakcji danych.

