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J. K. L U B A Ń S K I  

Obituary notice by L. ROSENFELD, Manchester.

The circle of L u b a ń s k i’s friends was not large. During the 
wartime which was so difficult for him he lived very retired and he 
was rather shy and taciturn. But those who were in closer contact 
with him have been able to discover his sensitive and refined person
ality. After the liberation a striking change came over him, that made 
us only then understand, how much he had suffered during the war. 
He surprised us by an unknown alacrity and optimism. His new  task 
in Delft gave him great satisfaction and he fulfilled it with an enthu
siasm and energy that authorised the greatest expectations for his 
scientific and personal future. This made the shock the more violent 
for his friends when the news reached them of his unexpected death 
on the 8-th December 1946, after only a very short illness.

Jozeph Kazimir L u  b a ń s k i  wras born in 1914 in Rumania from 
Polish parents. He spent his youth in Russia; only in 1926 did he 
come to Poland where he studied Physics at the Universities of Wilno 
and Kraków. In Kraków he worked under the direction of the very 
original theoretician M a t h i s s o n  (who died in England during the 
war); his first paper in 1937 is based on Mathisson’s theories. Until 
the autumn of 1938 L u b a ń s k i  was assistant at the Institute of 
Theoretical Physics at Wilno. In December 1938 he came to Leiden 
with a stipend from the Polish Government to work under the di
rection of Professor K r a m e r s .  Since that time he lived in Holland, 
where he was greatly helped during the war by the Lorentz Fund. 
As a Polish citizen he was forced already in 1940 to leave the coastal 
region and after a short stay in the country-side he settled in Utrecht, 
where he stayed until his appointment at Delft in October 1945.

In Leiden he worked with K r a m e r s  and B e l  i n f a n t e  on 
the Theory of Particles writh arbitrary spin. His investigations on this 
subject are set-out in three papers, published in the Dutch journal 
P h y s i c a .  These papers witness his profound knowledge of the 
abstract theories of m odem  algebra and his mastery in applying them 
to fundamental problems of theoretical physics. The same qualities 
characterize his further publications wdiich contained the results of 
the work he did in Utrecht.
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He was for me a true and inspiring collaborator. His answers 
were always considered and to the point. His remarks revealed refined 
understanding of the problem under discussion. Our conversations 
were not limited to physics, and I must always admire his many- 
sided interests and the originality of his judgement. He was a great 
lover of French literature.

Thanks to his allround knowledge of mathematics and physics 
he could adapt himself without difficulty to his new function, as 
assistant to Professor J. M. B u r g e r s  at the Laboratory for Aero and 
Hydrodynamics at Delft. To this fascinating domain of theoretical and 
experimental research he devoted his whole energy. In November 
1946 he had been promoted Chief Assistant.

After a long separation he had just renewed contact with his 
family in Poland and he was considering the possibility of offering 
his talent to the service of his country.

For us who had learned to know and love him his untimely 
death is a very heavy loss indeed. He continues to live in our memory 
not only as a distinguished physicist, but also as a modest and good 
man.

Papers published by late J. K. Lubanski
1. Neue Bewegungsgleichungen materieller Systeme in Minkowskischer Welt. 

Acta Physica Polonica VI, 356 (1937).
2. (w ith II. A. K r a m e r s  and F. J. B e l i n f a n t e )  Über freie Teilchen mit 

nichtverschwindender Masse und beliebiger Spinquantenzahl. Physica VIII, 
597 (1941).

3. (with L. R o s e n f e l d )  Sur la représentation des champs mésiques dans 
l ’èspace à cinq dimensions. Physica IX, 117 (1942).

4. Sur la théorie des particules élémentaires de spin quelconque. I. Physica IX, 
310 (1942).

5. Sur la théorie des particules élém entaires de spin quelconque. II. Physica IX, 
325 (1942).

6. Remarque sur la théorie des champs m ésiques composés. Arlc. Math, Astr. Fys. 
30 B, Nr 7, 1 (1944).

7. On the Desintegration of the Deuteron by Electron Impact. Experientia I, 6 
(1945).
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KON S T A N T Y  Z AK R ZE WS K I  
1876-1948

Obituary notice by Tadeusz PIECH, Physical Laboratory of the 
Mining Academy, Kraków.

Professor Ko n s t a n t y  Z a k r z e w -  
s k i was born in Warsaw, on the 14-th 
of January 1876, where he also received 
his primary education. His secondary stu
dies at the Stale School Nr. 5 were inter
rupted in 1893 by his being arrested for 
belonging to secret youth organizations. 
After having spent a short time in the' 
Warsaw prison of Pawiak and in the 
fortress of St. Petersburg, Z a k r z e w -  
s k i  was set free with a so-called «wolf- 
ticket«, depriving him of the right of 
studying in any educational establishment 
of the Russian Empire; he was sentenced 
to a forced sojourn in the country, in 

the province of Kielce. Wishing with all his heart to continue his 
studies, he crosses illegally the frontier of Galicia (Austria) and 
finishes, in 1895, his secondary studies in Lwów. In the same year 
he enlists as undergraduate at the Faculty of Philosophy of the Kra
ków University, choosing physics as his speciality. His devotion to his 
task drew the attention of prof. W i t k o w s k i ,  a prominent peda
gogue, who entrusted him with the functions of demonstrator. His 
studies at the Kraków University terminated by a doctors degree 
obtained for his study «On the electromotive'force generated by the 
motion of a liquid in a silver-plated lube». Z a k r z e w s k i  conti
nues his work abroad, at the Gottingen University with Prof. Y o i g t  
and R i e c k e  — later on at Leyden with Prof. K a m e r l i n g h -  
0  n n e s. He stays at Leyden for two years, during which he is also 
assistant at the laboratory. On his return home, in 1904, he is appointed 
assistant at the Institute of Physics/of the Kraków University. In 
1908 he becomes lecturer and in 1911 professor extraordinary of 
experimental physics. He leaves Kraków for a couple of years in
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1913 and becomes professor of theoretical physics at the University 
of Lwow. After the sudden death of Prof: S m o l u c h o w s  k i, in 1917, 
the chair of experimental physics being vacant, the Senate of the 
Kraków University nominates Z a k r z e w s k i  for this post and 
entrusts him with the directorship of the Institute of Physics, which 
had already, thanks to the works of such remarkable individualités 
as Prof. W  r  ó b 1 e w s k i, W  i t k o w s ki and S m o l u c h o w s k i ,  
a considerable reputation in the international scientific world.

Owing to his research work, chiefly on optics, Z a k r z e w s k i  
got to be known as one of the most prominent Polish experimental 
physicists. At that period the electron theory of metals was flourishing, 
and it was most important for proving its assumptions to measure 
experimentally the dispersion of the refractive index and the ex
tinction coefficient of metals. Z a k r z e w s k i  undertook that difficult 
work, carried out simultaneously in different physical laboratories, 
with his habitual conscientiousness. He sacrificed mueh of his time 
in  getting familiar with these difficult measurements and constructed 
at the same time a half-shadow< elliptical analyser, known in scientific 
literature as the analyser of Z a k r z e w s k i .  This instrument, which 
serves to measure the elliptical elements of light reflected from me
tallic mirrors,, is based on the half-shadow principle and is therefore 
more precise than all other similar instruments formerly used, set on 
the maximum of darkness of the field of vision. Z a k r z e w s k i ’s 
analyser has the advantage of not needing a calibration required by 
the others. In his following research work Prof. Z a k r z e w s k i  
measures the dispersion of optical constants of platinum, graphite, 
nickel and zinc. The rich experimental material accumulated by thal 
time enables him to take a critical attitude towards the basic prin
ciples of the electron theory of metals then current; he foresaw the 
necessity of a revision of its foundations and of applying, while so 
doing, P  1 a n c k’s quantum theory. This was accomplished, many 
years later, by S o m m e r f  e l d .

This successful period of his life was interrupted by his depar
ture for Lwów and by the events of W orld  W ar I. On coming back to 
Kraków, this time definitively, Z a k r z e w s k i  endeavours to create 
his own «school», so indispensable in the Polish conditions of that 
time. The foundation of such a school at that period was most impor
tant because of the arrears in Polish scientific culture, due to the 
years of occupation by foreign powers, which had to be made up. 
Disposing of extremely modest means, he organizes a most important 
research work on dielectric constants, known and appreciated in Po
land and abroad — it concentrated a large number of young scientists.
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In this laboratory were started a*nd carried through many investiga
tions on the dielectric behaviour of liquids and solids, which enabled 
him to discover the up till now unexplained phenomenon of a «dipole
like» behaviour of some elements of the chlorine group. A new type 
of condenser was then constructed, generally in use nowadays, in 
which the substance under examination Ls separated from the elec
trodes by a dielectric layer; this renders possible the testing of bodies 
which attack the plates of the condenser. Besides the above mentioned 
problems, questions concerning the absorption of electromagnetic 
waves, diffraction of electrons, and viscosity were examined. Z a- 
k r z e w s k i  besides guiding the research work of his pupils pursued 
his investigations on the Kerr effect and the production and absorption 
of electromagnetic waves.

Prof. Z a k r z e w s k i ’s pedagogical activity did not consist 
entirely of his functions as lecturer and manager of the physical labo
ratory. The Polish scientific literature is indebted to him for several 
excellent reference books, which have not been surpassed till now. 
The whole contemporary generation of Polish physicists and natura
lists was trained on Z a k r z e w s k i ’s manual «Elements of Phy
sics» written in collaboration with A. W i t k o w s k i  and reedited 
five times. His book on radioactivity for the use of university stu
dents, was, up till recent times, the only detailed reference book in 
Polish language on this topic; the manual of physics for secondary 
schools written in collaboration with W. N a t a n s o n  contrasts lar
gely with the customary standards. The numerous publications which 
he issued in different scientific periodicals attest not only of his talent 
in the way of expressing himself, but also of his literary abilities. 
The Polish Academy of Science conferred upon him in recognition of 
his scientific merits the title of correspondent member in 1920 and 
that of active member in 1930. He was decorated, in 1932, with the 
Commander Cross of the Polish order of «Polonia Restituta».

The part he played in the organization of Polish research work 
in physics forms a new chapter of his activity. He put all his soul 
and energy at the service of every endeavour in that domain. Before 
W orld  W ar I he was for many years an active member of the Board 
of the Polish Copernicus Society of Naturalists; later on, during the 
re-organization of the Polish State, he helped to build up, as one of 
its leading members, the Polish Physical Society — he stood, for some 
time, at the head of the Kraków Section of that Society. He was one 
of the promoters of the idea of organizing a Commission of the Sta
tions of Research on Cosmic Rays, attached to the Polish Academy 
of Science. In 1947, after its formation, he became its first chairman.
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Z a k r z e w s k i ’s main feature was a great modesty, which led 
him to refuse any University honours or honorific functions. Once 
only, in 1927/28, he consented to accept the position of Dean of the 
Philosophical Faculty. In tihat capacity he is remembered by all as 
a man of great tact and justice, who had a way of treating official 
questions very leniently, with a heart full of understanding. His rela
tions with his colleagues, co-workers, and pupils were friendly and 
excellent, his manners most winning. All those who have met him 
will never forget his personal charm, which claimed their sympathy.

During the German occupation, in spite of tragic personal expe
riences, he was always full of optimism and hope for the future. At 
the end of the w ar he started rebuilding the devastated Krakow Insti
tute, putting all his energy at the service of that work, which he con
tinued until the very last days of his life. He died suddenly, in the 
midst of his activities, on January 19, 1948.

Papers published by late Konstanty Zakrzewski

1. Sur la force électromotrice produite par le mouvement du liquide dans un 
tube argenté. Bull, de l’Acad. d. Sc. d. Crac. 225—227 (1900).

2. Über die elektromotorische Kraft, welche durch die Bewegung einer Flüssig
keit in  einer versilberten Glasröhre hervorgebracht wird. Phys. Zs. 2, 
146—147 (1900).

3. Sur les oscillations d’un disque plongé dans un liquide visqueux. Bull, de 
l’Acad. d. Sc. d. Crac. 235—242 (1902).

4. Contributions to the knowledge of Van der Waals surface IX. The condi
tions of coexistence of binary mixtures of normal substances according to 
the law of corresponding states. Comm, from the Phys. Lab. Leiden, Suppl. 
No 8 to No 85—96, 885—896 (1904).

5. The determination of the coexistence of vapour and liquid phases of mixtures 
of gases at low  temperatures. Ibid. No 92, 191—206 (1904).

6. The validity of the law  of corresponding states for mixtures of methyl chloride 
and carbon dioxide. Ibid. No 92, 207—211 (1904).

7. Sur. la position des axes optiques dans les liquides déformés. Bull, de l’Acad. 
d. Śc. d. Crac. 50—56 (1901).

8. (w ith K. K r a f t )  Une m éthode pour déterminer les directions principales 
et les constantes optiques dans le cas de biréfringence combinée avec le 
pouvoir rótatoire. Ibid. 508—533 (1904).

9. (writh K. K r a f t )  Sur les directions principales dans les liquides biréfringents 
par effet du mouvement. Ibid. 506—520 (1905).

10. Sur un analyseur elliptique à pénombre. Ibid. 1016—1026 (1907).
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11. Teoria elektronowa metali. Kosmos XXXIII, 190—202 (1908).
12. Sur les propriétés optiques des métaux. Bull, de l’Acad. d. S e  d. Crac.

734—741 (1909).
13. Über die Dispersion einiger Metalle im sichtbaren Spektrum. Ibid. 77—89 (1910).
14. Über die Dispersion einiger Metaille im sichtbaren Spektrum. II Mitt. Ibid.

110—125 (1910).
15. (w ith S . L o r i a )  Über die optischen Konstanten einiger das magneto-optische 

Kerr-Phänomen aufweisenden Substanzen. Ibid. 270—278 (1910).
16. Über die optischen Eigenschaften der Metalle. II Mitt. Ibid. 314—329 (1911).
17. Das Hai bschatt en i.n terf erom eter als Photometor. Ibid. 545—547 (1912).
18. Über die Dispersion einiger Metalle im sichtbaren Spektrum. III Mitt. Ibid. 

842—849 (1912).
19. O dyspersji i ekstynkcji światła w metalach. Prace Matematyczno-Fizyczne 

XXIV, 353—‘122 (1913).
20. O życiu i działalności naukowej śp. A. W itkowskiego. Kosmos XXXVIII, 136— 

155 (1913).
21. Bemerkung zu der Abhandlung des Hrn Georg J o f f  e u. d. T.: «Zur Theorie 

der Lichtabsorption in Metallen und Nichtleitern». Ann. d. Phys. 49, 456 
(1916).

22. über die spezifische W ärme der Flüssigkeiten bei konstantem Volumen. 
Bull, de l’Acad. d. Sc. d. Crac. 33—41 (1916).

23. (with A. W i t k o w s k i )  Zarys Fizyki. Lwów 1916.
24. Über die spezifische Wärme der Flüssigkeiten bei konstantem Volumen.

II. Mitt. Bull, de l’Acad. d. Sc. d. Crac. 86—101 (1917).
25. O działalności naukowej śp. Mariana Smoluchowskiego. Kosmos XLII, 233— 

252 (1917).
26. Remarques sur l’hélium et ses applications. C. R. de la Soc. Pol. de Phys. 

2, 8—12 (1921).
27. (w ith M. J e ż e w s k i )  Sur l’emploi du galvanomètre d’E i n t h o v e n  comme 

galvanomètre de résonance. Bull, de l’Acad. Pol. d. Se. 45— 46 (1922).
28. (wiith M. J e ż e w s k i )  Sur la prétendue dépendance de la conductibilité 

électrique des électrolytes de la fréquence du courant. Ibid. 25—33 (1923).
29. (with W. N a t a n s o n )  Nauka Fizyku W arszawa 1923.
30. Sur la réfraction et l’absorbtion des ondes électriques dans les électrolytes. 

Bull, d e l’Acad. Pol. d. Sc. 489—503 (1927).
31. (with T. N a y d e r )  Sur la réfraction des ondes électriques (1 =  12 cm) dans 

quelques électrolytes. Ibid. 30—41 (1930).
32. (with D. D o b o r z y ń s k i )  Quelques remarques au sujet de la polarisation 

diélectrique des corps simples. Ibid. 300—308 (1930).
33. O Promieniotwórczości. Kraków 1930.
34. (with M. M i ę s o  w i c  z) Kurze, wenig gedämpfte elektrische Wellen. Bull, 

de l ’Acad. Pol. d. Sc. 248—256 (1932).
35. Historia skroplenia składników powietrza. Przegląd Techniczny 17, 1—23 

(1933).



70 Tadeusz Piech

36. Der elektrische Kerr-Effekt in Nitroverbindungen. Acta Phys. Pol. 3, 291—  
295 (1934).

37. Nowe metody w technice niskich temperatur. Fizyka i Chemia w Szkole VI, 
127—145 (1935).

38. (with D. D o b o r z y ń s k i )  O skropleniu wodoru przyrządem R u h e  m a n n  a. 
Fizyka i Chemia w Szkole VIII, 38— 42 (1936).

39. (with A. P i e k a r  a) Über die Theorie der dielektrischen Polarisation von 
L. O n s a g e r .  Bull, de l’Acad. Pol. d. Sc. 168—175 (1946).

W e regret to announce the following deaths of members of the 
Polish Physical Society:

Prof. Konstanty Z a k r z e w s  k i, professor of experimental 
physicks at the Jagellonian University, Kraków, on January 19,1948.

Prof. Jan B 1 a t o n, professor of theoretical mechanics at the 
Jagellonian University, Kraków, on Mai 17, 1948.
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RELATIVISTIC INTENSITIES OF MULTIPOLE RADIATION 
IN THE LYMAN SERIES

By Jan RZEWUSKI, Institute of Theoretical Physics, University
of Lublin.

(R eceived  March 15, 1946).

In this paper the intensities o f m ultipole radiation in the Lyman series 
are calculated on the basis o f D i r a c ’s relativistic theory of the electron. In 
the non-relativistic case the corresponding calculations w ere carried out by 
R u b i n o w i c z .  It was possible to work out the selection rules, the Zeeman 
effect, and the sum rules for the radiation considered. In the particular case 
of magnetic dipole and electric quadrupole radiation our form ulae are in 
agreem ent w ith the formulae o f R u b i n o w i c z .  Finally, an exam ple is d iscussed: 
the probability is calculated o f an inversion of the spin vector under the 
influence o f a magnetic field, assuming that the electron is in the state n =  1.

§ 1. Introduction

In this paper we shall calculate the intensities of multipole 
radiation in the Lyman series. The calculation is based on the rela
tivistic theory of the electron and on the theory of multipole radia
tion as given by J. B l a t o n  (1, 1937).

In a one-electron relativistic problem the state of an atom is 
given by three quantum numbers: n, k, m j. (2, 1939, p. 28 and 
following); n is the main quantum number with possible values: 
1, 2, 3 , . . .  etc. It is connected with the radial quantum number and 
with k, as follows

n =  n r +  jk|. (1)

The possible values of the quantum number k are: 1, + 2 ,  +  3,
 Hh (n — 1), +  n; k and the rotational quantum number 1 satisfy
the equations

for k >  0 k =  1 + 1, for k <  0 k =  -  1 , (2)

1 corresponds to the orbital angular momentum of the electron, 
whereas the quantum number j corresponds to the total angular 
momentum of the electron. We have

. „ , 1
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nij is the projection of j on a certain direction and can vary within 
the limits

— (4)
—► —y —y

We have the vector equation: j =  1 -f- s and the algebraic equation: 
mj =  mi +  m s, where irq, nu, ms, are the projections of j, 1, s re
spectively on a certain direction, s* is the spin of the electron.

ms may in a one electron problem take the values + ^ .

The relativistic one-electron problem is fully described by 
D i r a c ’s equations

i/E  +  eV 
M c

i IE +  eV
if

m0c U, +
d_

3x 9y +  ^  =  °

i /E -f-eV - \ , I 3 . . S \ 9 _T(— j —  +  m.c)+, +  - 3 j t . =  0

m0c H s + ( - - ■\3x dyC —»-/ -  ■ yyx - gy j

i /E -f- eV \ i / 9 , . 9 \
t (— --------- "’» T '  +  f e + ' s ï )

+ s ł '

9_
9z

(5)

where i ==V— 1; k is P l a n c k ’s constant divided by 2tc, E is the total 
energy of the system in the relativistic sense, e is the electric charge 
of the electron, c is the velocity of light, — eV is the potential
energy of the electron.

Equations (5) have two solutions which we shall denote with
(a) and (b). Solution (a) corresponds to k > 0  (k =  1 -f- 1), solution
(b) to k < 0  (k =  — 1). These solutions are

'V
(a)

- i o r + V R i

(b)
•k, =  — i(l +  m) T»;1̂  t R', 

LIt +2 =  i (1— m — 1 ) 1R']
i  Ik

p4 =  <i»;,1 + 1 r '.

iE.
(6 )

The number m in (6) is connected to mj by the equation
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(I>!) is a spherical harmonic function according to D arw in 's  definition

h /  d \v+^(cos2-9 - - iy  i
2y v !

Rj, R3, and R'„, R's satisfy the equations (3, p. 48 ) 

E +  eV
c

E +  eV

1 E 4- eV
_  ÎT c

E + e V

— m0c 

+  nioC

— m0c 

+  m0c

« • + i s + ‘4 2 Rj = 0

R . + dr

(9)

R' - + ( s - ~ r ) R ‘ = °

1 +  R
R i + l a F +  r

(10)
Rs =  o,

Equations (9) correspond to the solutions (a) and therefore to 
k =  1 -f-1, equations (10) to the solutions (b) and therefore to k =  —1. 
By putting k — 1 instead of 1 in case (a) and — k in case (b), we 
get identical equations for both cases

1[E 4- eV
h c

E + e V

m0c

+  m0c Ri + ( -\dr
k — 1 (11)

R.i =  0.

The density of the electric charge and the electric current are 
given by (3, p. 458).

P =  e {44i +  dyV2 +  3  4 - 4 4 4> 4- conj.

jx =  — ce 44 4- '4'4s +  4>42 4- 44i} 4- conj. 
jy =  — ice {— 44* 4- 44s — 442 4- 44 i}4- conj. 

j* =  — ce {44s — 4 4 i  4- 4 4 1 — 4 4 2} 4- conj.,

(12)

(13)

where 4  are solutions corresponding to the stationary state with the 
quantum numbers n, k, m, and ’4 ' solutions corresponding to the 
stationary state with the quantum numbers n', k', m'. The addition 
of the conjugate imaginary value in (12) and (13) is equivalent to 
multiplication by 2 (2, 1939, p. 58). We shall therefore neglect this 
part of the sum and multiply our results by 2.



The total intensity of the electric and magnetic radiation respecti
vely is given by

00 + v

w el= ^ ^ w :i  e u )
V =  1 |X =  — V

00 + v

w ma= ^  2  W 7  (15)
V =  1 [X =  — 1

(cf. 1, 1937), where W.^ is the intensity of the p-th component of the 
electric multipole radiation of the order 2V and W™a is the intensity 
of the p-th component of the magnetic multi pole radiation of the 
order 2V. These intensities are

w f ,  2c k - ^ + y , ; v  ; i n : . „! I p j *  (16)

w ” * - 2ck’' ^ ± l ) (v +  IX )!  ( v - p ) !  Iq.jJ*, (17)

/ 9 Ttv
where k is the wave number of the emitted radiation (k =  -— ,c
v =  frequency of the radiation); pV[J. and qva are given by
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1 2v + 1  1
ik' (v-f-p)! (v—p)! v(v-fl) k r ) ^ d x (18)

a = -  3V+J 1— / - | v j ± ^ W | i r ) dx (19)
1̂  2k'(v+p)!(v—p)! v(v+l)J \ c T v +  c J- v CJ3 r trc^iy; 

where
oo

I _  V  (— l ) x (k'r)v + 1 + 2x /om
+v( vi ) — 2 j 2x x! 1 -3 - 5 ..........(2v +  2x +  l ) ’  ̂ ^

x = 0

and j r is the radial component of the current density. Further

jl =  jx +  ijy ; j2 =  jx — ijy ; js =  jz. (21)
It may be easily seen from these formulae that to calculate the 
intensities (14) and (15) we need only to know p,/a and qv[J.

§ 2. Normalization factor

Before beginning the calculation of pVUL and qvu we must know 
the normalization factor for the solutions of D i r a c ’s equations. The 
normalization factor is calculated e. g. in S o m m e r f e l d ’s Atombau



und Spektrallinien (2, i939, p. 293). We must only adapt his results 
to our definitions and notations. In case of the (a) solution, taking 
into account ( 1, 6), we get

N 2/ ( 4'1>}'i+4'2<l'2+ 4'3<!'3+ 4v W d T = N 2*4TC-(l+m+l)! (1—m )!^ R J+ R |) r* d r= l
0

and in case of the (b) solutions

N '2/(^ i4'1+ ^ 2+^-l'3+ ^ A ) d T = N '2-47i ( l+ m ) ! ( l - m - l ) ! / ( R 12+ R 32)r2d r= l ,
o

as may be easily seen fpom the following orthogonality relations 
for the *r>V(A-functions

2 k  k

J  dtp j" sin 0- dO- cp)4> (̂0, cp) =  Svv' 8^ '  • 4tt . ( 1)
o o

But in case (a), 1-f- 1 =  |k| and in case (b), l =  |k|. We get therefore
the same result for both cases

N2 • 4n • (|k| +  m)l (|k| — m — 1)!/ ( R ? +  R|) r 2dr =  1.
o

Denoting N2 =  N |? N2 and
t2 1

4tc (|k| -{- m}! (|k| — m — 1)! ’ ^

N =  4tc (¡k| -J- m)! (|k| — m — 1)! ’
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we get finally

where
CO

± 2 =  j  (Ri -f- R3) r2 dr.
0

W e shall consider the last integral later, when dealing with the ra
dial parts of the solutions. It should be remembered that Nr, as well 
as Nj?, depend 011 k. We obtain the normalization factor for the 
(a) and (b) solutions by putting k =  1 — 1 or k =  — 1 respectively.

§ 3. Calculation of pV|i and qv!Jl. The angular parts of the integrals

Let 11s pass now to the calculation of pv[i and qV|1 for transitions 
in the Lyman series. Here the lowest state is characterized by the 
quantum number n = l .  From  the remarks in § 1 we infer that 
k admits the only value - f -1. Therefore only the solution (a) is
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admissible in the lowest state. For this state 1 =  0, j =  V2, mj =  +  + ,  
and according to (1, 7) m =  — 1 or m =  0. Thus we obtain four 
possible types of transitions: a (n, 1, m ) -* a ( l , 0, 0), b(n, l,m) -*■ a (1, 0, 0), 
a (n , l ,m )— a(l ,0 ,  — 1) and b (n,.l, m) -> a (1, 0 ,— 1). We put now the 
corresponding solutions of D i r a c ’s equations in (1, 18) and (1, 19) 
(cf. (1, 6)), carry out the integration over the angles, using (2, 1) and 
the following .relations

and insert finally the results in (1, 16) and (1, 17). The simple but 
rather tedious calculations yield the following selection and polariza
tion ru les :

For the transition a (n, 1, m) -*■ a (1, 0,0) there exists only the 
component p =  m of the multipole radiation of the order 2V, where 
v =  1. The corresponding intensity is

For the transition b (n ,l ,m ) — a ( l ,0 ,0 )  we get the same component 
and the same order as in (2). The intensity is

For the two other transitions (n ,l ,m )-*  a ( l ,0 ,  — 1) and b (n ,l ,m )  — 
-►a (1, 0, — 1) there appears only the component p =  m +  l of the 
multipole radiation of the order 2 with v = l .  The corresponding 
intensities are

+  (v — p) (v + p )  ^  ,

(1)

(1) Electric multipole radiation

8 c c 2 1 +  m  +  l  N . N o y ( - l ) x y i  + i + 2*
1 ( 1 + ] )  ( 2 1 + 1 )  r r̂ o 2 xx! 1 •3- -- (21 +  2 x + l )

(2)

(3)
[(i + 1 +  2x) (i'i +  r2) — (k'(i'3 — i^)] j2 •

1 (1 +  1) (21 +1)1  r r^  2xx! 1 ■ ä • • - (21 +  2 X + 1)X = o

[(1 +  1 +  2x) (Ij + 12) — k (13 — I4)J 2
(4)



and

1 +  m +  1 [ Mbiv° Jy1 ( —  l ) -  kM + 1 + 2x
x  =  o

(5;
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W el I b -  gee2 1 +  m +  1 1 Nbm° V  L ~ .
im+il - 1  j _j_ j ) (2 1 -j— 1) | r T 2*x! 1 -3 ■ • - ( 2 1 - f  2x  +  l )

[(1 + 1 +  2x) (i'j +  r 2) -  k '(rs — r 4)] }2 
respectively.

In the above formulae, the indices «0» and «— 1» on W  indi
cate the value of m in the final state. The notations «a» and «b» denote 
transitions from states of type (a) or (b) respectively, «el» denotes 
«electric». The numbers 1 and m or in + 1  give the order and the 
component of the radiation. N? and Nr denote the normalization 
factors belonging to the states a (n ,l ,m ) and b (n ,l ,m ) respectively. 
Nr is the common normalization factor for both final states a (1 , 0 , 0 )  
and a ( 1 , 0 , - 1 ) .  The I s  are the following integrals over the radial 
parts of the solutions

I , + I s =  / (R:RS +  R3R3°)rv+2x+2dr ; I3- 1 * = / (R? R3 -  R° R,)rv+2x+3dr ;
o o

I'l+1'* = / R ' i R 3 +  R'3R3)rv+2x+2dr ; I , — I*=/(R®  R's -  R»R'i)rv+2x+3dr.

(2) Magnetic multipole radiation
For the transition a(n,l,m )'-> a ( l , 0 , 0) there exists only the compo
nent (x =  m of the radiation of the order 2V with v =  1—|— 1. The co r
responding intensity is

W ; " a J n a = 8 c e J + 2  1  m + 1
n 'ST'f — 1 ]r'J + 2+ 2x

N '-N r^  2xx! l-3-(21+2x+3) ^ 8 +  ^
x  =  0

'• ( 6)

For the transition b (n ,l ,m )-* -a ( l ,0 ,0 )  there appears only the com
ponent p. =  m of the radiation of the order 2V, where v =  l — 1, with 
the intensity

W ma i b= 8 c e 2̂ LLt™lj\TbN'° y i  1)1— j5.!.t .2x...___ rrR+r«i
1 - 1 ,mlo öce } 2 1 - 1  r 2xx! l - 3 - ( 2 1 + 2 x —1 ) L 8 eJ

x =  0

(7)

For the transition a (n,l,m) -» a (1,0, — 1) there appears only the com
ponent |i =  m + - l  of the radiation of the order 2V, where v — 1-f-l, 
with the intensity

21+2 l+ m + 2 L T„Mo y ( - l ) -  k,1 + 2 + 2»w m a  l a  _ _ q  l t m f ^ j v . a . , 0  - V V ~ - * 7  K  [ i  i t  I

w I+lm+i | - i  ö c e i + i '  2 1 + 3  r' 2 xx! 1 -3• • • ( 2 1 + 2 x + 3 ) L 61
x  =  0

(8)
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Finally, in the transition b (n , l ,m ) -* a ( l ,0 ,  — 1) there exists only the 
component |Jt =  m + l  of the radiation of the order 2V with v =  l — 1. 
The corresponding intensity is

„ 1 - 1  l - m - l L b „ o  ^ ( - l ) x k '1 +  2*w ma ib =8ce2—- m   NbN° Y + —- — - — r-— [Tb+ ivi
1-1, m -f l |~ l  O L t  1 2 1 - 1  I r r 2 * x l  1 - 3 -  - ■ ( 2 1 + 2 x — 1 ) L 6 6 1

x =  0
• (9)

The indices on W  and N have the same meaning as for electric 
radiation; «ma» denotes «magnetic». The I-s are the following in
tegrals over the radial parts of the solutions:

15+ 1« = /(R? R 3+  R 3 R 1 )ry+2x+2dr ; r 6+ l ’6=/°(R?R'3+ R 3R'i)rv+2,t+2dr.
0 0

Summing up, we come to the following results:

(t)  For electric radiation

la)
l=n-l (W j a n - j

j ' n }

Itch'S

n -
(a)

t -2  (b)

(a )

h t  jW 

h o  «

n:! , h o (o)

- ' + + Ikhl

< i - i

J ’ t
Fia. 1

To every state n, 1, m corresponds a multipole radiation of the 
order 2 1. The order is independent of the value of k, which may be 
either 1 +  1 or — 1. For 1 =  0 there is no radiation at all. The cor
responding transition 1 =  0-» 1 =  0 is forbidden. For 1 =  1 we have 
simple dipole radiation from both states (a) and (b), (both possible 
values for k). For 1 =  2 we have quadrupole radiation, etc.

In Fig. 1 the splitting of the terms in a magnetic field is not 
marked. We shall consider this question later. Here it may be observed 
that the transition from any state irq to the state m 2 =  0 is connected
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with the component |jL =  mi of the radiation and the transition from any 
state mi to the state m2= —1 is connected with the component p.=m-f-l 
of the radiation. The formulae (2), (3), (4) and (5) include therefore 
the polarization rules of the radiation emitted.

(2) For magnetic radiation

l-.n-l

1 - 2 .

1--I 

I ~0

m l .1=0

M
(b)

taI 
lb)

(a)
(bl

fa)

(ai

1-i
.1J- .n

j ' - i
J ' l  

j ‘ f

J - i

j --i

Fig. 2

The transition from an arbitrary state n, 1, m to the state n — 1 
is accompanied by a magnetic multipole radiation of the order 2 1 + 1 
if the transition occurs from the level (a) ( j= 1  —j— x/2) and of the order 
2 1-1 if it occurs from the level (b) ( j = l —V2). Thus, there is a difference 
between the magnetic and the electric radiation, the order of the latter 
depending only on 1; the correspondence between the components 
p of the radiation and the magnetic quantum number m is the same 
for both x’adiations.

Finally, some remarks have to be done concerning Fig. 1. All 
energies with the same |k] and nr are identical, as follows from (2, 
1939), p. 279, formula (50):

E
m0c2 1 +

cc2Z2
(nr +  yk2—a 2Z2)2 (10)

The real levels are drawn on the right. The same remark concerns 
the next figures.

It is important to emphasize that all our considerations up to 
now are valid also for an arbitrary'potential function depending only

Acta Physica Polonica 6
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on r: V =  V(r). Only when calculating the radial parts of the integrals, 
we shall have to assume a special dependence of V on r, namelv 
V =  Ze/r.

§ 4. Intensities of the Zeeman components. Sum rules

The formulae (3 ,2 )  to (3 ,9 )  give directly the intensities of the 
Zeeman components of the radiation emitted. Denoting

00

C =  1(1+1) (21+l)(Nr Nr 2  2xx! 1 -3- • -(21+2x+l/ (1 +1+2x) (1‘+Isi) ~ k 1 ^
x  =  0 

00 f

K K 2  fe x n -3 -k<27r2x+l)[(1+1+2x)(ri+r2)~k<(r3~r ^ f

x  =  0 

. .  °°
c = 1(1+1) (21+1)

8ce2(l+2) [XTaxTo W ' 1 ) 1 k'> + 2 + 2‘

x =  0 

00
r  = _oce_u+^2_| a 0 y t~ Q  , ,

1 (l+l)(21+3)i r 2xx! l -3 - (2 1 + 2 x + 3 )L 5 eJ
x  =  0

c '  =  NbN° v (~ 1)x k ' l+2x r r  4- r  112 (4i
1(21-1) I r 2xx! l - 3 - ( 2 1 + 2 x - l ) L 5 +  fl||  ’ ’

x  =  0

we obtain

el l a  /i i i 1 \ /”• xircl lbW "  |o =  0 4 - m  +  l )C  W?; I o =  (I — in) C' (5)

W f  B + I | 1 1 =  0  — m) C W fm+11 ^  =  (I +  m + 1 )  C' (6)

r ina  l a  / i  i 1 \  \ x r m a  | bW ” . . „ i ; - < l - m + l > C ,  jo =  (1 +  m) C', (7)

w ;™ ,m +1| l 1 =  ( l + m + 2 ) C 1 w r : i, „ + , | ‘ , = ( l - m - l ) C ' „  (S)

where the C-s do not depend on m. Thus the formulae (5), (6), (7) 
and (8) give the dependence of the intensities on m.

As an example we shall calculate the special cose of the electric 
quadrupole radiation (v —2) for transitions from the energy levels (a). 
We know that transitions may occur only from the energy levels 
with 1 =  2, j =  5/2. In a magnetic field, according to (1,4) the energy 
level splits into 2j —{- 1 == 6 levels (cf. Fig. 3).

From the first of the formulae (5) we have

Wjfm I o =  (m +  3) C (9)
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t-.2

t=i

1 = 0

n=l 1=0

(a) J - !
ft) j ' i

fa) j ' i
ft) j  • s'

fa) J ' i

fa) j - i

i 2 
Ï > 
1 0 

-Î *I
-i -2 
i -3

I
-1

F ig . 3

Instead of the notations «a» and «0» we will introduce now 
the quantum numbers j and nij of the upper state as upper indices 
and the corresponding numbers of the lower state as lower indices. 
The intensities are
v y e l  I 5/ ! 5/* , - p
VV22|‘/!>/2 ’ w 21

w cl
2 - 1

7 . - 7 ,  
7» 'It 2C, w :2-2

.7«. 
i'It'

7
'It1

1C, W el !s,i 1/2 =  3C
2 0  ! V2 It

c , w él
2 - 3

7 . - 7 «  . 
‘It'h ‘ =0 ,

(10)

in conformity with the limitation of m within the range — l -< m < ;+ l .  
This limitation can be deduced from the fact that the radiation of the 
order 2V has 2v -j- 1 components only, because of the restriction 
— v < p <  +  v (cf. /, 1937).

We have considered the transition to the level m = :/2- For the 
transition to the level m =  — '/2 we get from the first of the for
mulae (6)

(11)W2Ô1+1 1 - 1  =  (2 — m) C,

and for the particular transitions:
\ v el I ’/« 'It —  n r  
'21 */»-'/. ’w el VV 22

17. 7»_
I 7.-7» c ,

w t I 7 .-7 . 
1 1 7 ,-7 . = 4C,

Here the transition mj = 5/2 -

w:el j 7 ,-7 «  
20 I 'I t— lh ■ 3C;

! 7«—V« 
■2 ! 7s—7, • :5C.

(12)

nij =  — lj2 is forbidden according to 
the same restrictions as above for the transition mj =  — 6/2 -*■ mj =  1fi . 
We thus get the well known selection rules for electric quadrupole 
radiation: A  mj < 2  (cf. 5, 1932, p. 195, formula (41)). The intensi
ties ( 10) and ( 12) are in agreement with those calculated by R u b i -

6 *
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n o w i c z  (5, 1932, p. 197). Analogous calculations would give us the 
intensities of particular components of radiations of higher orders.

The general formulae (5), (6), (7) and (8) enable us to deduce the 
sum rules. By adding all relations corresponding to the same upper 
state, we get

w f j : + w £ j l , - < 2i+ i) c , W ! | ; + < M.f-1- ( a + i) C ',  (13)

w r ; j . ‘+ w r +,, .„+j : , - ( 2 i + 3 ) c „  w r _ - . i s + w r , . m+j i , - ( 2 i - i ) c , . ( i 4 )

These formulae show that the sum of the intensities corresponding 
to transitions from the same upper state to two lower states differing 
only in m does not depend, on the quantum number m of the upper 
state. Formulae (13) and (14) give directly the total intensities W  con
nected with the transition probabilities A between two unsplit states 
through the formula W  =  Ahv.

For quadrupole radiation the formulae (13) and (14) are partic
ular cases of formulae given by R u b i  n o w i c z  (5, 1932, p. 198).

§ 5. The radial parts of the integrals

The only unknown quantities in the intensities (3,2) to (3, 9) are 
the integrals It , I2, I3, I*, I6, I6 and fj,  I'2, I 3, 1'4, ]'6, I'0. The second 
set does not differ from the first one when 1 is expressed in terms 
of k. We shall therefore make use in general of the number k 
and obtain the first set by putting k =  1 -{— 1 according to the so
lutions (a) and the second set by putting k =  — 1 according to the 
solutions (b).

The radial parts of the solutions (a): Ri and R3, and of the so
lutions (b): R'j and R 3 satisfy the same differential equations (1, 11). 
We rewrite here these equations putting eV  =  Ze2/r (Ze =  electric 
charge of the nucleus)

From now on we shall.have to do with the special case of a Coulomb 
potential. These equations are solved for instance in S o m m e r f e l d s
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Atombau und Spektrallinien (2, 1939, p. 276 and following). The so
lutions are

R ,

R 3j 

where

- - k -  - Y - l
e [ F ( -  nr + 1 , 2 y  + 1  ; p) +  A • F (— nr, 2 y  +  1 ; p)]J 

F  (— nr + 1 , 2 y  +  1 ; p) — A  • F  (— nr, 2 y  +  1 ; p) )
(2)

P = » r - - l / E o ^  p; - 
F E o + E ’ L °'

= m0c2, (3)

1 —  e 2
Y +  “ Z ~ ^ • k  —  a Z 1 - f - e 2

2e

— k —j— ocZ1 - f - s 2
2s y  — aZ-

-2 > y  =  / k 2 — a 2Z 2 ,

2s

iv +  T =  f « z ( i - a ) ,

v i  1 I a p a ( a -f- 1) P2 . a (a  +  l ) ( a - f  2) p3
F(a>c ;p)— 1 +  c • n  +  c (c +  1) - 2! +  c (c _(-1) ( c +  2 ) '3 !  +

(4)

(5)

(6)

We remind that the solutions (2) correspond respectively to the gen
eral solutions (a) and (b) depending on whether k = l - f l  or k = — 1. 
For the lowest state n = l  we have (2, 1939, p. 290):

R ?

R °

? --- S0 Ao
=  e  V ° _1

- A d
, where To =  ( ï X  = i =  V1 — (7)

Here the factor A0 is infinite ((4) and (5)), but when multiplied by 
the normalization factor it becomes finite. I he normalization factor 
of the radial parts of the solutions was calculated by B e c h e r t  
(b, 1930). We cannot however use his results in their original form 
since his definition of the radial parts'differs from that accepted in 
this paper. The normalization factor adapted to our functions is:

1 1 2 E 0 | 2 y  -f- n r —  1 j  ~~2 r  (2 y  -f- n r) . 2 « ' . E 0 (k  -f- a.' E 0)
N 2r (2X)3 E 0 +  E ( 2T +  nr) - n r ! (8)

Using (3), (4) and (5) and taking into account that a =  a Z / /E 2 — E 2 we 
can give to this factor the form obtained previously by S o m m e r f e l d  
(2, 1939, p, 760).



Let us pass now to the calculation of Ix + 12, I3 — I4 and I5 -f-le- 
From (2) and (7) we get

Ii +  Ii = / (Ri R? +  R3R3) r v+2*+2 dr =
(2X0)To-J(2X)T->/ e - ( W rr+To+v+2xAoj(eeo_ 1)F(_ nr+1) 2y+ ]; 2Xr)+

+  (se0 +  1) * A • F  (— n „  2y +  1; 2Xr) ¡dr

and similar expressions for I3— 14 and I6 +  I6, where the index «0» 
indicates the lowest state. Using the formula
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0

where

/ e  " rP F ( — n , c ; P i - ) d r = I ^ ± 4 F (— l ' . P + (9)

F  (a, b,c; 8) - 1  +  ̂ 8 + î i î ± l i .  . . . .

and denoting
9X

b =  T +  To +  v +  2x +  l;  c =  2y - f  1 ; h =  (10)

we obtain finally

I-+I-=<î r a P :MA“!(SE"-1,F(- n''+,'b'c; 8)+ (I1)
4“ (£So 4-1) AF (nr, b, c ; S)},

I, - 1, =  (2X)r" ! f 4 J 4 (,b + 1 )  A .[ fe  -  . )  A - F ( - n r, b + 1, c;8) -
V I 0 )  ( 1 2 )

- ( s 0 +  s ) F ( - n r + l J b +  1, c; S)j,

Is + =  <2X>?-(; 4 Y ; 11»  * . ( ( . -  s„) F  (— nr + 1 ,  b, c; 8) 4- 

+  ( s 4 - s 0) A F ( — nr, b, c; S)|.

If these expressions are to be used in the formulae concerning tran
sitions from a state (a) we must replace everywhere k by 1 4 - 1. 
Otherwise k has to be replaced by — 1.

At last, we shall apply our formulae to. the transition from the 
energy level n =  l, 1 =  0, m =  — 1 to the level n =  l, 1 =  0, m =  0. 
I his is a transition where only the magnetic quantum number chan
ges. As we already know, such a transition is permitted only for
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magnetic dipole radiation. In our theory (cf. (3, 10)) states with iden
tical n and |k| belong to the same energy level. Therefore the tran
sition probability must be 0. This follows from k' =  0. In a magnetic 
field, however, an energy level splits into 2j +  1 levels. In this case 
for the considered transition k' is very small indeed but does not 
fall to nought. With this k' we will calculate the intensities.

Our transition is characterized by v ===== 1 -f-1 =  1, ¡j, =  m =  — 1,
k =  l +  l =  l, n,. =  0. With these values we gel from (11)

t ! t =  a 2 oc r  +  2) .. .
I5 +  Jo Ao • 2-0 (2X„)2x + 4  ̂ ^

and from (8)

l l _ Y = _ L - J L L p - r ° + ” - h - 2 1 rf-  , 2a Z E W , , ° ZE» \
I n ; /  (2X,)j E „+eI np — 1 L . i 2 Y 1 w / E p r E5r  V 'E p T 5/ ^ i '

It follows from (3), (4) and (5) that

, , l +  £2 , .  2 E0 1 , 2 Eqk +  aZ 2„ , l +  s2 Eo +  E > £ + s  yEa_ E2

and
f2To +  nr - l ) - 2J  

nr — 1 n, :(2To)2.

Inserting this in (15) we obtain

(n ; )  (2X0)3(1 +  £2)2T° r(2^ )aZ t  1 + aZ i + i 3 '

Because of (3) and (3, 10) we get for the special case nr = 0 ,  k =  l 
(cf. 2, 1939, formula (08))

E 1 2
E0To’ s  £  aZ ^ llr
1 2 v 1 +  s2 v l  — e* E0 0— £ =  — . y0 , aZ - =  aZ - =  2,

and finally
. 2

( s ; ) ! = p i p  (1 +  s’> r(2r .  + 1) • d o

(16) and (14) yield
i n — 1 2g° r <2T o + 2x + 2)

' 8 ■ (2?vo)2x+i 1 +  s02 r (2y0 +  1) • i ;

We could have obtained the same results much easier by calculating 
N? and I6 +  IG directly for the particular case (7).
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Inserting (17) in (3, 6) and considering that 2s0/(l-f- 3o2) =  aZ, 
we obtain

w»» |a= - i ce>t'!®'(2Y»+i)’l y f c K  5___ p - y M\2r.+2x+2)r27 \K / T" ' 1 ^  2>x! 1,3..,!2k+3)UxJ  1’(2y,+2) [ • <18)
x =  0

Let us consider the first term of the series (18) neglecting aZ
against 1. W e get

W  =  | c e 2k'2i | y .  (19)

To obtain the probability per unit of time for the transition between
the states considered, we must divide (19) by hv.

Now let us calculate k' on the basis of the theory of the Zeeman
effect

j . . _ 2rcv__2 k  eH ePI
c c 27im c me*’

on the other hand K =  mc/K. W e have therefore

' =  )5- Ą - H 3~ l ,  75 .10-22.H 36tc \m I c8

The next approximation contains

&) “(I) 5Ä5 = (sib) (é,y / w 2 
I \ z

and can be neglected for fields experimentally obtainable. For fields 
of the order 10* Gauss we have

P 2 • 10~10sec_1
and for fields of the order 106 Gauss we have

P 2 • 10- 1 sec- 1 .
The life-time of an electron in the state n =  l, nij =  V2 is therefore 
in such a field 5 • 103 sec or about 83 min.

The present work was suggested by Professor B 1 a t o n, to 
whom the author is also indebted for helpful advice and discussions.
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ON THE DIVERGENCE PROBLEM IN THE THEORY 
OF QUANTIZED FIELDS *

By Jerzy RAYSKI, Institute of Theoretical Mechanics, Warsaw
University, Warsaw.

(R eceived April 10, 1947)

By a suitable change o f the definition o f the four-vector o f charge and cur
rent density a Lorentz-invariant form factor has been introduced w hich  rem oves  
the w ell known divergencies in the theory o f quantized fields. Physically, this 
am ounts to the introduction of an elem entary length connected with the finite 
dim ensions o f particles. Connections are shown to the problem  of field equations 
with higher derivatives.

It is well known that quantum mechanics of fields yields diver
gent results when higher degrees of perturbation calculus are applied. 
F o r example, the self-energy of elementary particles becomes infinite 
whatever reasonable coupling term between the two fields has been 
assumed.

Let us consider the interaction between electrons and the 
electro-magnetic field. The energy density is

H, =  H(c) H(p) -f- H(c>p), (1)
where H(e>, H(p) are the well known energy densities of the electron 
field and the el-magn. field and H(e’p> is Jhe energy density of interaction

H<c-p) == — hs<P {(acp) — cp0) — pcp0j, (1')

where <fk, <p0 are the e. m. potentials and si<, p are the current and 
charge densities. The corresponding field equations are the Dirac 
equation

j ( ^ + i s9°) +  y f a (grad — ^ p ))  +  nic2§,il' =  0 (2)

and the equation for the electro-magnetic potential

□9[x =  — V  (3)
The expression for the coupling of the two fields has been taken over 
from the classical theory of the movement of a charged p o i n t  —

* Presented ad a m eeting of the W arsaw Section o f the Polish Physical 
Society on May 4, 1946.
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particle in the e. m. field <p|Jt which leads to the well known rule that 
the momentum of a particle in the field <p;i has to be replaced by

Pi* — 7?|x(x)> (4)
where cp̂  (x) is taken at the point actually occupied by the particle. 
The theory of fields in vacuo yields satisfying results and is supposed 
to be correct. Thus, we have to pay attention to the coupling term 
(1') which seems to be responsible for the divergencies. But every 
modification of (T) will generally cause some modification of the cor
responding field equations. Equations (2) or (3) or both of them will 
thus be modified. It may be desirable to introduce sucb a modifi
cation of the interaction term, which would change only (2) without 
modifying (3) and the Maxwell equations. The beauty and advantages 
of the latter are generally acknowledged, while classical ideas concer
ning the movement of a point particle in the field, leading to (4), seem 
suspicious.

It has been obvious from the very outset that this problem is 
connected with the question of the radius of elementary particles. In 
order to take account of this radius one used to introduce (1, 1933) 
a factor D (x — x') different from zero for x' in the neighbourhood of x 
(expressing the proper density of mass of the particle) and to replace 
e<pa (x) by e / D( x  — x') cp̂  (x') dx'. Such a factor diminishes the action 
of the field on the particle and removes the divergencies but on the 
other hand it spoils the relativistic invariance of the formalism; besides, 
it means an inconsistency, since in the expression for the interaction 
(1') there appears already a density function Sp,. Thus, we had to deal 
with two sorts of densities: an «external» and an «internal» one (p(x) 
and I)(x — x')), which does not seem convincing at all. Sometimes one 
used to introduce «par force» a formfactor e _0(k or e ~ a’kJ when 
applying the perturbation calculus. This is in principle equivalent to 
the introduction of a factor D (x — x )  and it spoils also the relati
vistic invariance of the formalism. We shall discuss here the possi
bility of introducing Lorentz invariant formfactors.

1. New Definitions of Densities of Charge, Current etc.

In order to simplify our formulas we shall deal in this Section 
with the scalar meson field in vacuo. Such a field is usually described
by the aid of the Lagrangian function

L =  — c2 i » E » Ł + | l V ł l.
V 2 x v 3 X „

(5)



The corresponding Lagrangian equations are the Schrodinger-Gordon
ccjUcitions

□  - ^  =  0 , □  — p2,4'‘ =  0. (6)

The energy-impulse tensor is in this case
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Th

The current density is

9<3?* 9<\> 9 ^  9'b
3x^ 3xv 2xv 3x^1 p

s,. — — ieo- ( + | |-  — (8)

The quantization of the field is introduced by the well known com
mutation relations

t'), <Kx, t ) ] = r D ( x ' - x , f - t ) .  (9)

In order to obtain the eigenvalues of energy, momentum, and charge, 
we may represent the field functions as a superposition of plane waves1

< " - ?  V ê - „  M ‘k : - k- ">, (io)' v s i K a ^ r * '
where ak, bk are the well known matrices verifying

K . « \ ] = 8U. lbk. b \ ] = 8kl, ( 11)

all other commutators of ak, a*k bk, b ‘k vanishing. The impulse- 
energy tensor and the current four-vector satisfy the continuity equations

28 9s„
2 ^  =  0, ^ 3 ^  =  0- (12)|i SXjj (X SXj!

Little attention has been paid as yet to the fact that there exist
plenty of other expressions which satisfy also continuity equations
and yield the same eigenvalues for energy, charge etc. as 8^ ,  s .̂ If 
we take an operator 0  which is a scalar with regard to Lorentz trans
formations, commuting with the operator Div, then the new expression

Sjx =  0  Sjj, (13)

preserves the vector character and satisfies the continuity equation. 
Particularly interesting are the following operators

(«), e - ‘D' (¡I), (T), (8), (14)

1 Which means sim ply, working in the Heisenberg picture in a system  
w here the energy (without interaction) is diagonal.



where □  is the d’Alembert operator, a  is a constant (dimension length).

e " ' ° = r l +  «!D + ? S  +  . ..  (15)

and ^ a^O  ma^ k0 defined as reciprocal of 1 — a 2Q. The vector

s^ is quadratic in the field variables L 41* and their derivatives. By 
developing the field functions into plane waves it becomes

90 J e r z y  R aysk i

— „(¡xlpiW-Ox—(ko-Mcl} 
V , . kl ( 1 6 )V kl 

As

□  e1 et} =  _  —T)2—(k0—10)2] ei^ J Î)" - (k» -’-) ct̂  (17)
we get

e“,D s„ =  i  2 e -  '*’ . aM  el & -Î)  *-<ko-*.) ct} (lg)
1 \  k!

Thus, all the coefficients akl in (16) have been multiplied by the ex-

ponential factor e ~ a*l(k_l>’_(k“~ .Similarly, when using the operator

(14(3) or (14 y) we get multiplication by the factor e - a‘{(k_1>,- 0<<>-io>’)

o r  — zr • 11 we calculate with the aid of these
l _ a *{(k _ l ) 2_ (ko_ ] o)s} 

modified expressions the values of the corresponding observables by
integrating over the volume Y, then all terms with k=4=l vanish as usual

—► —►

and there remain only the terms with k =  l. But in this case the

factors etc... become unity and we get the same
result as in the case of the usual definitions of densities:

j p'dV =  J pdV . (19)

Thus, the eigenvalues of the charge remain the same as in case of 
the usual definition (8). It is easily seen that there exists a lot of oper
ators with the desired qualities: each operator 0  which yields

0  e i{ ( lT - t )  X-(k„ -  lo) Cl} _  f  j ( k  - 1 ) 2  _  ( k<) _  ]0)2J _ 6 i{(k - T )  X-(k„ -  l0i Ct} ( 2 0 )

will give correct eigenvalues of the observables (if only f {0} =  1 ) and 
thus the modified theory of fields in vacuo will give identical results 
with the usual one. We could apply the same modification of density 
definition to other observables (namely the energy-impulse tensor T [JV
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and the angular momentum vector M) without modifying the eigen
values of energy (without interaction), momentum and spin. However, 
this modification is not essential and seems to have no physical 
meaning. W hat we really need is only a modification of the charge 
and current density four-vector.

2. On the physical properties of the introduced modification

Suppose there is given a certain function p(x) which may be 
regarded as the classical density of charge. What will be the influence 
of introducing the operator (14¡3) ? Let us develop p(x)as a Fourier 
series

p — 2 ak eikx.
k K

In case a +  0 for kt <  k <  k2 the density may be made different from
1

zero in the region A  x =  pj {77 (we have taken the one dimen-
I K2 |

sional case for simplicity). It is well known that for |kx— k2 | - * c o  we
may build a point charge: the density function p(x) tends to infinity
in a certain point (x =  o) and is zero elsewhere; we have only 

1
to take a ( k ) =  ~  and to integrate from — oo to -f- oo

1 / '+ k.
lim p =  lim x— / eikxdk =  S(x), r k_> oo27cJ_k '

where 8 (x) is the Dirac function. The corresponding p'(x) is in this case
„ , 1  r  k r+ c o

lim p '= l im  e / eikxd k = /  e _a‘D’eiks d k .
k —*oo A T Z J - k  J  -oo

Assuming (what is certainly allowed in the classical case) that the 
density p(x) is independent of time, we get

whence

9*
e- ÆJ'eikx =  e ~ “4pT* eikx =  e~® k eikx,

,. , 1 /"+00 _  a»k‘ ikx iilim P — k— e e dk,
r 2 tc/ _ co

which is a regular function of x. Since e is a damping factor, we 
may put also with sufficient accuracy

lim P ==^ / _ > " a‘k‘eikXdk



that is A k  =  —• Thus, the density is surely different from zero in 
1 octhe region A

— A  k — 2

The introduced modification causes a softening of the singular
ities and the constant a determines the region where the density is 
different from zero.

Let us now consider a particle in a (one dimensional) box of

lenght L. Its momentum be k =  ~ .  The wave function is in this

case ^ =  s in k x e lk“ct and the «density» is

p =  4* =  sin2 kx =  ~  (1 — cos 2 kx).

It represents a «frozen» wave with the ratio of the amplitude to the 
wave length increasing to infinity for k - » c o .  By modifying this 
density e. g. with the aid of the operator (14 a) we get

i l
p =  e*2 5x’ p =  i  ( l  -  e_a’(2k)! cos 2k x).

The above mentioned ratio has in this case a maximum for 8a ‘~k2=  1.
2 tc

The wave length X =  corresponding to this maximum is thus of

the order of a. The frozen wave representing the density is the re
sult of interference of the waves of probability. Since the interfering 
waves are represented by the wave vectors k and — k, we see that in 
the modified theory the effects of the interference diminish with

increasing difference k — ( —k) =  2k. If this difference is > > ^  the

waves practically cease to interfere.

J erzy  Raysk i

2

3. On the interaction between electrons and the el.-magn. field

For the energy density of the el.-magn. field interacting with the 
electrons we assume the usual expresión (1) but, according to the 
definitions proposed in section 1, we introduce the modified density 
(T). Assuming that the Fourier coefficients au(t) of the expansion

*b =  2 a k( t)u b e,(kx- k*cl)
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are slowly varying functions of time, we may omit the time 
differentiations of the ak (in the first approximation) and replace
s'a =  e - ^ ’sj* by

SW =  S s(jt)fii2 e - ^ - 7 ) > - ( k 0- lo)>;>s^>(t), (21)

where s ^  are the Fourier terms of the non-modified charge and current 
densities. We are certainly allowed to omit the time differentia
tions provided by the introduction of the operator e-c<4|:iS for those

a k a i  (or S k i) ,  where (k .̂—l^)2 is small compared with since the

effect of the e_“4|:|2 is negligible in these cases. But, as we shall see 
later, we may also omit the time derivatives of akai for (k^—l^)2 very

large, since in the latter cases the exponential factor will
sensibly diminish the probability of transition between the states 
k and 1. The approximation is poor only for (k^—l^)2 of the order

of ^2 • However, this cannot affect the general argument of the con

vergence of this formalism since this convergence depends only upon 
the terms with (k^—l .̂)2 which tend to infinity.

We see that the problem has remained unchanged with respect 
to the variables We may thus take over the whole electromagnetic 
part of the usual theory: define the Lagrangian function of the el.-magn. 
field as a function of the variables i ^ ,  deduce the Lagrangian equations

□  =  —  s 'p , (2 2 )

and, with the aid of the well known initial conditions, we may get 
the Maxwell equations in the operator form. The only difference is 
that the current-density four-vector appearing in (22) is defined 
according to (21). The problem is quite different, however, with regard 
to the variables <K <|>* of the electronic field. In the interaction energy 
(1') there appear terms of the type (21) multiplied by the function

^ ( x ) .  If we integrate over the volume V, the terms with k+1 do not
. - ►  .

vanish and the factors etc... appearing in consequence
of the modified definitions of current and charge densities remain 
essential. These factors cause here important complications: it may 
be seen that in this case the Dirac equations in the presence of the 
field 4»̂  are no more valid. We are obliged to consider the equations
(2) as only approximatively valid, namely in cases when with suf
ficient approximation we may put oc =  0. Fortunately, the existence
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of some equations of field like (2) is not indispensable for obtaining 
definite quantitative results. In order to get definite answers we 
need only to know (a) the Schrödinger equation (i. e. the energy 
function given by (1) and (1') together with the corresponding defi
nition of s'jJ, (b) the zero-order functions (i. e. the field without 
interaction, which is identical with the one in the non-modified 
theory y), (c) a perturbation theory enabling us to find higher appro
ximations. We shall show now that in the modified theory (at least 
in the cases corresponding to the operators (14 ß) and (14 8)) the 
coupling energy cannot increase indefinitely.

According to (21) the interaction energy splits into a sum of terms 
H'ki which differ from the terms Hki of the usual theory approximatively 
by the factors

e _ a * { ( k _ 7 ) ’ - ( k 0- l ) » } J . ( 2 3 )

In the system of coordinates in which li =  0 (i =  l ,2 ,3) we get

(k -T )2- (k o  - 10)2 =  2(1 ( / i^ + k 1 - v )  >  o.

This corresponds to the case of an electron at rest (1 =  0 ,10 =  p) 
which gets the momentum k by absorbing or emitting a quantum of 
light (with momentum k). If k is very large (k2> > p 2) then we may 
omit p and get for the exponential factor (23)

e -4«V,k*. (24)
We see that in the system of rest the coupling term has been 
multiplied by a factor which decreases exponentially with increasing 
energy of the interacting photon. Hence, the modified theory yields 
a form factor which causes a damping of high energy interactions2.

As yet we have limited our considei’ations to positive energy states 
only. The transitions between two negative states are similar to those 
between two positive ones, but transitions between a positive and 
a negative state are different. In this case k^—1̂  is not a space-like 
but a time-like four-vector

k,=(£ i/p W }, y=(T, -i/pHT2), 2( ^ - 1̂ = (k-02- ( ^ W + / iH T ) 2.
H-

F o r  large impulses we get (in a system where 1 =  0)

2 (1 ^ — lp)2^  — 2pk — 2p2, whence (14 ß) yields e“ a‘(2li k + .
P

* A first attempt to introduce a Lorentz-invariant damping factor w as  
made by W a t  ha g in  (Zeits f. Physik. 88 (1934)), but his article has been  
com pletely overlooked.
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where we may neglect p2 in comparison with pk and get approxi
mately the former result (24). But it would be quite different if we 
had used the operator (14a). In that case we obtain the damping factor 
e- 2«!jxk for transitions between two states with equal signs of energy 
but an increased interaction (by c+2aT k) for transitions between two 
states of different signs. Such a theory would lead to increased 
probabilities of annihilation of positrons and of creation of pairs. 
This may be an interesting result, not without some importance 
perhaps for the theory of showers. On the other hand, the introduction 
of a non-definite exponent increases the well known difficulties 
connected with the hole theory, while the introduction of a definite 
one removes these difficulties by diminishing the probabilities of all 
transitions.

4. Self energy of an electron in an electro-magnetic field 3

Let us calculate the self energy of an electron in the case corres
ponding to the operator (14(3). We assume a  to be small in compar

ison to —. The result obtained will confirm that we really may

As the electro-magnetic part of the problem has not been actually 
changed, we may — as in the usual theory — split the el.-magn. 
field into a longitudinal and a transverse part. The longitudinal part 
is the Coulomb energy

the other part of the energy depends only on the transverse field 4^

The proof of the formulae (25), (26) depends only upon the form 
of the interaction energy H(c> p> (T) and on the fact that the Maxwell 
equations are valid, but it is quite independent of the special defi
nition of the four-vector of charge and current density. Hence, we 
may take over literally the well known calculations of the self-energy, 
introducing only the new definitions of charge and current densities. 
F or  an electron at rest this amounts to the introduction of the

1
137 '

(25)

(26)

3 Cf. reference (2, 193b).
Acta Physica Polonica
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form-factor (24) for virtual transitions to positive as well as to nega
tive states for k > > p ,  and to the omission of the form-factor for 
k <—> ¡-I or k <  p. (as a  is very small). Thus, instead of the integral

If we put e. g. — =  137 ¡j l , this integral yields Es = 0 '1 3  me2. The

Hence the el -magn. self-energy is about 20°/0 of the total self-energy 
of the electron. This result shows that a may be assumed much 
smaller than 10~13cm.

This paper may be regarded as an attempt to introduce an 
elementary length a  into the theory of quantized fields. In order 
to obtain a linear theory which in the limit of vanishing interaction 
constant e-»- o yields the usnal Dirac and Maxwell equations in vacuo, 
we were obliged to modify suitably the charge and current- density 
four-vector. This is equivalent to the introduction of equations of 
an infinitely high order, which cannot be solved exactly. This result 
is not surprising: the equations of finite order yield connections be
tween points the distances of which may be taken arbitrarily small, 
so that the need of equations of infinite order (or some integral 
equations) is obvious if we want to introduce an elementary length 
into a linear field theory.

Besides the difficulties in formulating a field theory involving 
derivatives of any order we meet also other difficulties: there exist 
several operators (besides (14 P)) which also remove the divergencies, 
so that our results are not unique.

Let us consider briefly the case (14 y), which yields the factor

which is known to diverge, we obtain approximative!)'

1

dynamical part of the self-energy is E D =  ̂ E S for an electron at rest.

5. Some final remarks

2 + * 2 2 ( k 1A - W 2 - I n

. In the system of reference where 1 = 0  it gives

1 with the sign -4- fo r—) for transitions between
1 - 2 * V ± 2 « V / F h T2
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states with equal (or opposite) energy signs. In the first case this 
formula gives damping, but in the second one the denominator may 
even become zero unless a is sufficiently large. If we put 2 a 2p2= l ,  
i. e. a of the order of the Compton wave-length, the damping factor

becom es = = .  In this case we obtain always damping, but,

unfortunately, it becomes appreciable already for k =  a, what seems 
to be in disagreement with experiment. The damping operator (14y) 
stands in close connection with the theory B o p p  and P o d o l s k y
(3). From. (14 y) and (22) we get

O  <JV

Operating on both sides with the inverse operator 0 _1 we get

—a* □*<!>,, +  □  < Iy= = -S!i. (27)

We see that the assumption of the new definitions of densities is,
to some extent, equivalent with the introduction of more complicated
equations of el.-magn. potentials involving the elementary length a 
together with higher derivatives. The last operator is (to the second 
power of a) equivalent with the operator (14 a) which leads to diffi
culties whenever virtual transitions to or from negative energy states 
are involved. The operator (145) is equivalent (to the fourth power 
of a) with the operator (14 P) and yields damping of the interaction 
in any case. Hence instead of (27) the equation

a 4D 3 +  D ,4 y  =  - s ;, (28)

seems more promising as the generalization of the equation of the 
el.-magn. potentials. The equation (28) has the following central 
symmetrical static solutions without singularities

1 /, _ 2L r \  1 _ 2L . r— I — e * -cos — l a n d — e a s i n—r V a) r ex.

where a =  / 2 a .  No simple equations liks (27) or (28) correspond to 
the case of exponential factors, since (14 a) o r(1 4 p )  involve deriva
tives of any order. There are, however, some reasons in favour ol 
(14 a) or (14 P), namely their connections with the Gaussian error



a'2 -> -*■

function. The usual Gaussian function e~”2(k—1)1 which describes the 
probability of obtaining the value k in case the mean (or initial)

value has been 1, within the allowance —, is not invariant. But therea
exist two immediate possibilities of relativising it: we may complete 
the three-vectors k, 1 to four-vectors:

(k _ I )2 .->(k—T)2— (k0— )o)2 or (k—T)2= |(k  —T)2| -  |(k—T)2- ( k 0—]0)2|.

In both these cases the relativised function becomes the usual one for 
► ■■■ >

small values of k and 1. But also the function exp {(k —l)2 —(k0 —10)2}2

may be regarded as a relativised Gaussian error function: if 1 means
-*■

the initial state of the electron, then, in the system of rest (1 =  0, 10 =  p.), 
we get

j (k -T )2-  (k0- l 0)2)2 =  4p2( l ^ f F 2-  p)2=  g ^ ) 2(Ek -  E0)2,

where Ek is the energy of the electron with momentum k and E0 
is the energy at rest. In this case we obtain a Gaussian function for 
the energy in the system of rest of the particle.

I should like to express my thanks to Professor R u b i n o -  
w i c z  for helpful discussion and encouraging interest in this work.

9 8  J erzy  Rayslci

References

(1) \V. P a u l i ,  Handbuch der Physik, Vol. 23 (Leipzig, 1933).
(2) V. W e i s s k o p f ,  Zeits. f. Physik, Vol. 89 and 90 (1934).
(3) F. Bopp, Ann. d. Physik 38 (1940); B. P o d o l s k y ,  Pliys. Rev. 62 (1944); 

G. Rays l c i ,  Pliys. Rev. 70 (1946).



Vol. IX (1948) Acta P hysica  Polonica Fase. 2— 4

RELATIVISTIC EQUATIONS OF MOTION OF FREE DIPOLE 
AND QUADRUPOLE PARTICLES*

By Bronisław ŚREDNIAWA, Institute of Theoretical Physics, 
Jagellonian University, Kraków.

(R eceived April 22, 1947)

1. Recapitulation o f M a t h i s s o n ’s variational principle for deriving  
the equations of m otion o f multipole particles. 2. Equations o f m otion of 
a dipole particle characterized by a spin bivector s®P and a dipole m om ent n®.
3. Solutions of the equations o f motion o f a dipole particle o f the second kind 
(characterized by n® only). 4. Equations of m otion of a dipole-quadrupole 
particle. 5. Solution o f the equations of motion of a quadrupole particle.

Introduction

In a paper entittled «A New Mechanics of Material Systems» 
(1, 1937) M. M a t h i s s o n  introduced a variational principle by 
help of which he obtained the equations of motion of multipole 
particles considered as singularities in a gravitational field. Here, we 
shall be only concerned with the special case of vanishing gravita
tional field.

M a t h i s s o n ’s principle contains an infinite series deriving 
from a development of a certain tensor field in a series of multipoles. 
Leaving out of account all the terms of this series except the first 
one, one obtains the well known equations of geodetic lines. The two 
first terms lead after some simplifications to M a t h i s s o n ’s equations 
of motion of a dipole particle characterized by a spin bivector s“̂ , 
which we shall call in the sequel «dipole particle of the second kind». 
These equations were found previously by F r e n k e l  (2, 1926) and 
afterwards derived by L u b a ń  s k i  (4, 1937) with the help of gravita
tional retarded potentials and by J. W e y s s e n h o f f  and A. R a a b e  
(7, i.947) in a simplified form from iheir theory of spin fluids. We 
shall call «dipole particle of the second kind» a particle chatucte- 
rized by a 4-vector of dipole moment n“ . .iher than by the spin 
bivector s“ .̂ Such particles have been considered by H 6 11 i and P a-

* Extract of dissertation for the degree o f Ph. D.
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p a p e t r o u  (5, i939) who applied to them the method of L u b a r i s k i .  
They did not find, however, the general solutions of these equations, 
but showed only that a suitably chosen uniform circular motion 
fulfils these equations (for a free particle).

In this paper the equations of motion of a general dipole particle 
are first derived in a somewhat simplified manner from M a t h i s -  
s o n’s variational principle, they are afterwards specialized to the 
Honl and Papapetrou case and solved generally under the assumption 
n“na =  const. In the last two sections the equations of motion of 
a dipole-quadrupole particle are established anew (as M a t h i s s o n  
dropped in his derivation just the term which differentiate them 
from the corresponding equations for a dipole, particle) and solved 
generally for a quadrupole particle with s°  ̂=  0 and n® =  0 .

1. Recapitulation of Mathisson’s variational principle for deriving the 
equation of motion of multipole particles

M a t h i s s o n ’s variational principle (6, 19'i0) on the background 
of special relativity-theory has the form

J ( m^ ̂  Sa +  dx“‘3 5|i Sa +  qXst*‘J 9 X 2^ 9$ - f  ) dx == 0, (1)

where £® is an arbitrary vector field vanishing with its derivatives 
at x, and x2 and

q ¥ a* =  q(¥)*f3 q ¥ vaP — q(¥v)aP ........

dx̂  ux =  q^®13 ux =  qx̂  u|X =    = 0  (2)

mafJ =  m(“P), dXâ  =  d ^ ) , qxH "3 =  qV(¥).

The integral is taken along a time-like world line L : x “ =  x“(x). 
Let £0 be a frame of momentary rest, with the point P (x) as centre, in 
which the 4-velocity ux has the components (0,0,0,1), and let us 
denote by H(x) the hyperplane perpendicular to L in P(x) (contain
ing the three space-like axes of 20). In the coordinate system 20

m ®*3 =  /  T®pdV 
r(q

d i«i3 =  I x i T «P d V , d * ¥  =  0  (3 )
k (t )

q i j ¥  =  f  x i x j T ¥  d V  5 q^vafs =  q!x4ap =  0 i

t :(t )

In all other coordinate systems m ^, dx®'5, ...  are defined by the laws 
of transformation of tensors.
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2. Equations of motion of a dipole particle

Taking into account the two terms in (1) M a t h i s s o n  derived 
the equations of motion of a dipole particle. However, his equations 
are not the most general possible, as he put the vector n“ defined 
by (3) below equal to nought. By so doing he excluded for instance 
the case treated afterwards by H o n l  and P a p a p e t r o u  (5 ,1 9 3 9 ) .  
We begin by giving a sketch of a somewhat simplified derivation of 
the equations of motion, differing also from M a t h i s  s o n ’s work by 
the explicite introduction ( W e y s s e n h o f f  and R a a b e  (7, 19k7)) 
of the 4-vector of momentum and energy.

Following M a t h i s s o n  \ye break up the tensor d ^  with regard 
to the 4-velocity u®, and writing out only the nonvanishing terms, 
which are perpendicular in all indices to u“, we g e t1

dx«[j =  dx«[3 _j_ 1 up +  s*p u +  nxu« up _ (4)

Denoting nA u“ by NAa, substituting (3) in (1), and integrating by parts, 
we obtain

J fm“'  —  N pa) % 5« dx + J { ( d ^ - F - s ^ u ® )  3X 3fl ^  dx =  0. (5)

As the value of the second integral in (4) depends only on the deri
vatives of 3x3[-jCa in directions perpendicular to L and these deriva
tives are quite arbitrary, we conclude that

d p  =  0 , s ^ )  — 0 ,
and (5) becomes

dx =  0.

Breaking up the tensor in brackets under the integration sign, we 
obtain

m'P =  m“f +  M1 up +  M15 u“ - f  M u5 u? , (6)

1 sP« +  Ni3a = = D f + E p ua +  F a up -f  H u ? uK (7)

Proceeding in the same manner as before, we get

/ { (M -  H) u* +  M* vfi -  F a u?) 3p Ea dx =  0, (8)

ni« ] _ D j .  =  0 (8') (8 ').

1 The notations are the same as in (7, 1947) and (8, 1947).



Integrating by parts and taking account of the arbitrariness of £a we get 

dT {(M — H) ua -f- Ma — F a { =  0. (9)
Substituting

M — H =  M +  ux =  m 0 (10)

into (8), we get on account of (8") and (7)

dT{(m0 +  nx ux)ua +  sai3up +  na }==0. ( 11)

We see that the tensor under the sign of integration plays the role 
of the momentum-energy vector of the particle. We denote it bv

Ga =  (m0 +  dX ux) ua +  ̂  up +  ha (12)
and (11) becomes

G“ =  0. (13)

If we substitute now maf and D^1 in (8') from (6) and (7) we get 
with the help of (8 ) and (12)

dT (sai3 -4- na u^ — n^ ua) =  Ga u^ — G  ̂ua . (14)

The last three equations are the equations of motion of the dipole 
particle. Dropping the terms with n a we get M a t h i s s o n ’s and 
F r e n k e l ’s equations of motion in the form given by W e y s s e n -
h o f f  and R a a b e  (7, 1947) for a free particle with na =  0, saP=i=0
(which we shall call further on dipole particle of the first kind).

3. Solutions of the equations of motion of a free dipole particle of
the second kind

In (1,1937 p. 180) M a t h i s s o n  expounds the reasons which indu
ced him to put nx =  0 and which are intimately connected with the 
assumption of positive mass density. H o n l  and P a p a p e t r o u  
(5, 1939) put saP =  0, nx=t=0 explaining the appearance of nx by the 
possibility of the existence of negative mass density.

Putting saP =  0, (12), and (13) becomes

Ga =  0, (15)

Ga ==(m0 +  hxux)ua +  ha. (16)
Substituting further (12) in (14), we get

na uP — n^iia =  0 (17)
and therefore

na =  kua. (18)
where k is a scalar.

102 B ron is law  S redn iaw a



As nx has to be a quantity characterizing the given kind of 
particles it must be either constant or at least its magnitude must 
be constant. The first alternative would bring us back to ordinary 
relativistic dynamics without spin, we choose therefore the second 
one and put

nx nx =  const. (19)

It seems that (19) is neither a consequence of the equations of motion 
nor of the variational principle of M a t h i s s o n .  H o n l  and P a p a -  
p e t r o u  do not make this assumption explicitly, but it is fulfilled 
in the particular case considered by them. Because of (19) the general 
solution of the equations of motion of a dipole particle of the sec
ond kind (without external forces) may be found.

Differentiating (19) we have thanks to (18)
n “ iia =  0. (20 )

Multiplying (16) by n„ and taking into account (18) and (19), we get

u“ Ga =  0 .  (2 1 )

According to (20), (21) and (16) we obtain

m0 =  — Ga ua == const. (22)

Now, we shall prove that k =  const. Differentiating twice the relation

nxux =  0, 
we get in virtue of (20) and (19)

2k ux iix +  k ux ux =  0, (23)

Differentiating (18) and substituting in (20), we have

k ux iix +  k ux ux =  0.

By comparison of (23) and (2J) we see that

k =  0 ,  k =  const
and (19) yields

hx ux =  const,

so that the coefficient of u* in the formula for Ga is constant:

m0 +  nX ux =  p. =  const.

Now let us assume, as usual, that the vector Ga is a time-like vector. 
Since it is constant we may choose a coordinate system - c in which
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Hence we conclude from (22) (cf 7, 7947, p. 17) that in 2C the magni
tude of the ordinary (3-dimensional) velocity v is constant:

Vv* Vj =  v =  const. (27)
Assuming mo> 0  it can be proved (5, 1939 p. 527) that

0 < p <  m0.
From (18), (27), (28) it follows that

k >  0.
Using (18) the three first equations (16) take in 2C the form

p u* -f- k ii‘ =  0
with two positive constants p and k. Transforming from t and u‘ to 
t and v* and remembering that v is constant we get for the solution 
of (29) a uniform circular motion with the angular velocity

vp(0 =  —L. 
n

The radius of the circle is
  n

(Cf. 7, 7947 p. 15). |J’

4. Equations of motion of a dipole-quadrupole particle

We consider now M a t h i s s o n ’s variational principle leaving in 
the integral (3) the three first terms. Using the same method as in the 
case of the dipole particle we break up qX[iâ  with respect to ua. Writing 
out the nonvanishing terms only, we have

q W  =  q*rP +  qV« UP - f  qx̂  ua +  qV ua UP (30)

The terms on the right-hand side are perpendicular to u“. Substitut
ing in (3) from (30) and integrating by parts (7, 1937 eqs (5, 2) — 
(5, 5)) we obtain

/m < 5 =a dx + / (dx*.3-  qX̂  -  qxP ua -  qxP ua) 3X 3p Ea dx =  0 (31)

q(V*J =  0 f qxtt«P =  0. (32)

Now, we break up in the same manner the tensors dx<̂ , qX̂a and 
qx̂  and get

dX“? =  d ' f  +  dx“ u!'3 +  d ^  ua +  nx ua uf:, (33)

q ^ a =  q)f + Q )'Tiii+ Q ‘laux+ R X?ua+ L xuaui3+ L ?uXua+ L aui3ux+ L u auPux, (34) 

qAf5 =  q f  +  Qx ^  +  Q? «x+  Qux ui3, (35)
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where all tensors on the right-hand side are perpendicular to ua in 
all indices. In this decomposition the following terms vanish

L \  L \  L , Q \  Q.

We shall prove it for Q only, as the proofs for all remaining terms 
are similar. We infer from (35) that Q =  q xP u* up, hence in the 
system of momentary rest 20

Q =  q44- (36)
But from (30) it follows that

qV =  q ¥ a? ua up and in 20 q ^  =  q ^ 44.

Taking into account (3) we see that in 10 : —  q4444 =  q“  =  0 and (35) 
yields Q =  0.

Following M a t h i s s o n  we put nx =  0 as in the case of the di
pole particle of the first kind. Substituting (33)—(35) in (31) and inte
grating by parts, we get

/ ( m« P -fd ^  +  2 Q ^ )5 p ^ d x  =  0,

dM) _  r W) — =  0, (37)

d (*P)« — q (f  )* — q(xe) u« =  0.

Breaking up the subject of integration of (33) with respect to u“, we get

m 4  _j_ ¿i3“ - f  2 QP* =  S f  +  Sa uP +  T*3 ua - f  mua u!3. (38)

Substituting (38) in (37) and integrating by parts we have

/ dT (m ua +  Ta) dx =  0 , (39)

S*3 =  0, s f  =  0. (40)

From (39) we infer that
dt (m u s +  r )  =  0. (41)

Therefore if we put
Ga =  m u“ +  Ta, (42)

Ga will play the role of the 4-vector of momentum and energy of 
the particle and the equation (41) becomes

Ga =  0. (43)
From  (42) we have

g V — gV ^ t V — T V ,  (44)

and on account of (38), (40), and the symmetry of m “P we can write

G“ UP — G? u* =  dT (d“P -  d!3* +  2 — 2 qPa)
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and consequently, thanks to (33), (34) and the perpendicularity of 
QaP to ua,

G“ uP — ua =  d, ( (dPaX — d*Px) ux +  2 (qxP* -  qx*P) ux).

We introduce now the two following tensors

S«P =  S[«P] =  (d^x — d*Px) U)., (45)

kX«p =  kX[«p] =  2 (([X(k _  qX,p^ (46)

playing respectively the role of the dipole and quadrupole moments 
of the particle. From (30) and (33), as nx =  0, we see that both s“P
and kx*P are perpendicular to ua in all indices. Thus

G* u? — G? u* =  dT (s*P +  kx“P ux)- (47)

(43) and (47) are the equation of motion of the dipole-quadrupole 
particle. Putting

G* ua =  — m0, (48)

we obtain from (47) the following expression for G*

G“ =  m0 u* -f- s“P up +  kx“P ux up , (49)

m0 is a constant as Ga u* =  0 from (49).
Eliminating G* between (43), (47) and (49), we get two non linear 

equations of the second and third order respectively

m 0uP +  sPxux +  k ^ |Xu[llix =  0 , (go)

s“*3 +  dT (kx“P ux) == s“x ux uP — sPx ux u* -f- kX[J“ ux uP — kX|*P iix u^ u*,

as generalization of the equations found by M a t  h i s s  on.
M a t h i s s o n  (1,1947) deduced from his variational principle the 

equations of motion of a particle possessing a dipole and a quadru
pole moment, but he omitted in the decomposition of the tensor qx̂ aP 
the term qxi** which alone appears in the equations of motion. There
fore his equations of motion for a dipole-quadrupole particle (in 
the case of special relativity) are the same as for a dipole particle.

Two tensors in the decomposition (35) may be regarded as the 
4-dimensional generalization of the 3-dimensional quadrupole moments. 
The first of them is qXl* =  qx“*P ua 11-5 and gives in nonrelativistic ap
proximation

qik =  qik44= / p 0x iXk dV q®4 = 0 .  (51)
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The second is q'T® = — q^^iip ; in nonrelativistic approximation

— qikj =  qikj 4 =  f  u0 x* xk v* dV ,
1 1 (52)

— qlk 4 =  q ik 4t = / p o  x‘ xk d V ,
all the other components vanishing.

The qik-> appear in the equations of motion only in the following 
combinations

2 q‘tkJ] =  J p 0 x' (xj vk — xk vj) dV.

The motion of the particle is thus independent of the static quadru
pole moments (51) as well as of the expressions of the form

I  p0 x1 (xj vk +  xk vj) dY.

5. Solution of the equations of motion of a free quadrupole particle

Let us now assume a particle possesing a mass m0, a quad
rupole moment and no dipole moment. From (43), (47) and (49) 
with saP =  0 we have .

G? =  0, (53)

dT(kXaPiix) =  Ga uP — GfV, (54)

G  ̂=  m0 +  kXa!3 ux ua, (55)

kXaPux =  kXa?ua =  kx̂ up =  0. (56)

As usual, we assume the vector Ĝ  to be a time-like vector. Since it 
is constant we may choose a system of reference 2C in which G’= 0 ,  
G4 =  const 4= 0, and hence

u4 =  const (57)
as

m0 =  — Ga ua, (58)

in virtue of (55), [see (7, 7947) p. 14]. All the following work will be
done in this special system of coordinates. From  (57) we conclude that

v1 Vi =  const.

Three of the equations (55) take now the form

m0 u1 -f* kjli fij hi =  0.

Transforming from x and u' to t and v* and putting

M =  m0 (Vi — v2)3
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Putting
]ik =  kmiki|^H (60)

we get from (46), (54), (56) and (58)

lik = — lki =  const.

Inserting (60) in (59) we obtain

Mvi +  1«k^  =  0 ,

equations of the same form as for a  dipole particle of the first kind, 
their general solution was shown to be a uniform circular motion 
with angular velocity

Me2 
W 1

and radius of the circle
1 v 

r  Me c ’

where 1 is the (3-dimensional) length of the axial vector (I23,13t, l12) 
and v is the velocity of the particle on the circle.

I should like to express my thanks to Prof. Jan Weyssenhoff 
for suggesting this problem ar.d many valuable discussions.
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THEORETICAL REMARKS ON CRANE AND HALPERN’S 
EXPERIMENTAL EVIDENCE FOR THE EXISTENCE 

OF THE NEUTRINO *

By Roman S. INGARDEN, Institute of Theoretical Physics 
of the University and Polytechnic, Wroclaw

(Received. May 9, 1947)

p The relation between the recoil energy of the nucleus in the process 
Cl38-» A38 and the number of droplets produced by this in a cloud chamber has 
been calculated on 'the assumption of C r a n e  and H a l p e r n  that the number 
of droplets is approximately equal to the number of nitrogen and oxygen atoms 
dissociated in collision chains initiated by the recoil atom. The relation appears 
to be linear with two constants which have been evaluated.

The occurrence of several ions in clusters of droplets has been explained  
as caosed by' X-rays or Auger processes releasing the fraction of the total binding 
energy of the orbital electrons of the atom connected with the change of 
the nuclear charge during the beta decay.

F in ally , statistical errors in C r a n e  and H a l  p e r n ’s experiments have 
been discussed. The analysis leads to the conclusion that these experiments give 
a definitely positive answer in the question of the non-conservation of momentum  
in the «two-body» bcta-dccay.

Introduction

In .1944 A. P. G r i n  b e r g  published in Russian an excellent 
survey (i, 19kk) of the experimental evidence for the existence of 
a neutrino, written chiefly in connection with the important experi
ments of J. S. A l l e n  (2, 19^2) which he considered as a definitive 
discovery of this particle. In this report the former work on this 
topics by H. R. C r a n e  and J. H a l p e r n  (abbreviated henceforth 
to: C&H)  was also discussed and subjected to severe criticism 
(3, h, 1938; 5,1939). G r i n b e r g  writes on their work in conclusion: 
«the distribution of their experimental points quite certainly cannot 
be regarded as probable». He is not Isolated in his critical opinion 
of C.&H.’s method, although others views are not so extreme. K a n  
C h a n g  W a n g  (6, 19k2) writes: «...owing to the smallness of the

* Summary o f the dissertation for the degree of M. A. (m agister filozofii) 
presented before the Jagiellonian University, Krakow, January 20, 1946.
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ionization effect of the recoil atom, it seems worth while to consider 
a different method of detecting it». A l l e n  (2, 1942) states: «Since little 
is known about the energy range relation of very slow atoms in 
gases, the momenta of the recoil nuclei could not be measured with 
any accuracy. Although this method was somewhat refined in another 
experiment, no very definite evidence regarding the neutrino was 
discovered»1. Even C. &H. recognize (5, 1939) that: «The principal 
unknown in the method is, and always has been, the relation 
between the number of droplets and the energy of the recoil atom». 
Provoked by G r i n b e r g ’s article I undertook an attempt to investi
gate this «principal unknown» in the method of C. &H. from 
a theoretical point of view. After A l l e n ’s work the analysis seems 
to be important not only as looking for a confirmation, but also 
since the G. &H.’s method can give theoretically more information 
than that of A l l e n ,  namely the distribution of angles between the 
directions of emission of the neutrino and the electron, which is of 
great importance for the F e r m i  theory of beta decay.

In the course of the investigation it became apparent to me that 
the mechanism of ion creation in C. &H.’s experiments is not quite 
clear even after their reply to the criticism of L. W e r t e n s t e i n  
(9, 1938) on this subject. This problem will be discussed in the 
section «The origin of ions». It also seems essential to investigate in 
detail the statistical errors in the method of C. &H.

The recoil energy as a function of the number of droplets

To obtain theoretically this relation we assume like C. &H. 
(5, 1939) that in their experiments the formation of droplets was 
'initiated in general by a dissociation of nitrogen or oxygen molecules 
in collisions caused by the recoil of the nucleus. We suppose for the 
sake of simplicity that e v e r y  such dissociated atom originates 
a droplet and that the presence in the chamber of other gases besides 
air can be neglected in the theoretical treatment of collision pro
cesses. Both these assumptions seem to be plausible in the face of 
the experimental conditions and some results of C. &H.

1 E. J. K o n o p i n s k i  in his report on beta decay in the Rev. o f Mod. 
Phys. (7, 1943) w rites only: «More satisfyingly direct observation o f the neutrino  
w as undertaken by C r a n e and H a l  p e r n  and A l l e n .  These investigators 
attempted to observe the recoils o f nuclei from neutrino em ission. A l l e n ’s 
w ork seem s the m ost nearly conclusive». D a s  G u p t a  and G h o s h  (S, 1946) 
qualify the C. & H. experim ents as «of lim ited accuracy», although they estim ate 
their conclusions as «highly probable».
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The recoil energy of a nucleus not exceeding c. 450 eV, we are 
mainly interested in the order of energy 100 eV for impinging mo
lecules in collisions. Struck gas molecules can be considered as at 
rest by reason of the relative smallness of their thermal energies 
(10_2eV). The time of such a collision is c. 10-14 sec whereas the 
periods of quantum processes in nitrogen or oxygen molecules which 
can be excited by collision to higher energy levels have orders: 10-16 
sec for the (classical) rotation of the orbital electrons, 10~14 sec for 
the oscillation of the atoms in the molecule, and 10-12 sec for the 
rotation of the molecule as a whole. We see, after C.&H. (5, 1939), 
that a resonance is only possible with the oscillatory energy level, 
which leads to the dissociation of the molecule, and that other 
excitations can be neglected. We can therefore dispense from an 
exact quantum discussion of collision problems, which would involve 
almost insuperable calculation difficulties.

The argon atom as well the homopolar molecules of nitrogen 
and oxygen can be considered in the first approximation as spheres. 
The familiar classical theory of inelastic collision of two spheres with 
absorption of the energy of dissociation shows that this absorption 
is only then possible when the angled between the direction of the 
impinging molecule and the line of centers of the molecules in the 
moment of impact does not exceed a certain maximum value i. e. when

where M  and m  denote respectively the masses of the impinging and 
the struck molecules, E  kinetic energy of the impinging molecule before 
the collision and D dissociation energy. We see that the maximum 
value of & (or the minimum one of cos it) depends upon E  and this 
fact creates the «classical» dependence of the pissociation cross-sec
tion upon E , which must be taken into consideration even in our 
narrow range of energy (where the above mentioned «quantum» 
dependence of this cross-section upon E  mav be neglected).

It should be stressed that the part of a dissociating agent is 
played not only by the recoil atom itself but also by all gas molecules, 
dissociated or not, which receive in collisions sufficient kinetic energy 
to dissociate in turn other modecules of air. Every recoil atom pro
duces chains of collisions branching forth like a genealogical tree (or, 
e. g. a cosmic ray shower). These collision chains can be regarded as 
terminated when the kinetic energy of the colliding molecules drops 
to thermal level, but we are not interested beyond the point where 
further dissociation processes are not more possible. There are

Acta Physica Polonica 8
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10 types of collisions which may lead to dissociation: A — N2, A — 0 2, 
N — N2, N — 0 2, 0  — N„ 0  — 0 „  N2- N 2, N2 — 0 2, 0 2- N 2, 0 2 -  0 2. 
As calculation shows, the last four types of collisions may be
neglected since — in the energy range considered — they produce
no dissociation at all.

The following items were computed succesively:
(1) the dissociation cross-section for the above mentioned 10 types 

of collisions as a function of E,
(2) the average energies of all products of these collisions, also

as functions of E, and
(3) on the basis of (1) and (2) the average shape of the «collision 

genealogical tree» for recoil atoms with energies2: 25, 100, 200, 300 
and 400 eV. Finally, the numbers of dissociated atoms of nitrogen 
and oxygen were summed up for ever)' «tree».

As dissociation energies were assumed: 9.5 eV for nitrogen, and 
6.2 eV for oxygen.

Table I gives the results of these somewhat tedious and lengthy 
(over 100 pages) but straightforward calculations.

T  a b 1 e. I

Energy 
o f A28 
(eV) 
(£ )

Average 
Num ber of 
Collisions 

in a «Tree»

Average Num ber o f D issociated Atoms Average 
Energy 

Spent (E/A7) 
(eV/diss. 

atom)
o f Nitrogen of Oxygen Total (A7)

1 2 3 4' 5 6

25 1 0.3 0.2 0.5 50
100 10 4.0 1.6 5.6 18
200 23 9.3 3.6 12.9 15.5
300 41 14.4 5.8 20.2 14.8
400 47 20.8 7.8 28.6 14.0

The numbers of columns 3, 4 and 5 are presented graphically in 
Fig. 1, those of column 6 in Fig. 2. We see that the points in Fig. 1 
lay on straight lines not through the origin of coordinates (there-

2 The calculation for 25 eV was made ch iefly  for the purpose of checking.
The results are in this case not so certain as for other value o f E  since then
the time o f collision is 10-13 sec and an excitation of the rotatory spectrum  of
the struck gas m olecule it is possible in som e degree. It is clear therefore
that in reality the dissociation effect w ill be on an average still sm aller than
indicated in the table, and the energy spent per diss. atom larger. But since, in
any case, the mean num ber of dissociated atom s is under 1, the loss in accuracy
is o f little im portance for our problem.
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fore, the points in Fig. 2, which indicate the ratio EIN, lay on
'a hyperbola). Thus we have obtained the solution of our problem
in the form

E =  a N + b ,

where a and ft are constants. Evaluating them from the graph we get
E  =  13.3 1V+ 22, (1)

Fig. 1 Fig. 2

where E  is measured in eV. Hence, the energy spent per droplet is

292§  =  1 3 .3 + |_ 1 3 .3 E — 22 '

This ratio is a function of E  (or of N ), but for large values of E  it 
approaches the constant 13.3 eV/droplel. In the interval 300—500 eV 
the ratio is nearly 14 eV/droplet.

C. &H. assumed as a working hypothesis the linear proportion
ality of the relation. This includes the supposition that the free term 
5 =  0. We see that for E  of order 102 eV (or N  of order 101) this 
approximation is not so bad in spite of G r i n b e r g ’s criticism.

It is clear to-day — due to L. W e r t e n s t e i n  — that the first 
estimation of a by C. &H., namely 15 eV/droplet (3, 1938), was based 
on a false assumption. Nevertheless, we see that this value is very 
near ours, much nearer than that which was admitted hy C. &H. in 
their second paper (5, 1938), c. 8 eV/droplet, although in the last 
case the principle of determination seems quite correct. The question 
of this discrepancy will be discussed below in the section «Statistical 
errors».
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The line L in Fig. 1 represents the number of dissociated atoms 
of N and 0  under the assumption that all the energy of the recoil 
is spent in dissociation and no fraction of it remains for elastic col
lisions and other losses. The mean value of D for air is c. 8.8 eV 
and thus the function to compute is equal directly to El8.8 (E  in eV). 
The differences of the ordinates of the lines L and T  corresponding 
to the same abscissas represent the values of energy transformed ulti
mately into heat. For F  =  400 eV the energy loss so computed equals 
c. 70 per cent of E, for E — 50 eV to c. 80 per cent. It seems as cer
tain that in reality these losses will be still greater, but probably not 
very much so.

The relation (1) enables us to make an «absolute calibration» 
of the ordinate scale in the C. &H. graphs. This will be done in the 
last section of this paper.

The origin of ions

C. &H. have observed — by the method of switching on and off 
the clearing field in the ch am b er— that «in some cases as many as 
40 droplets are due to neutral molecules, whereas the total number 
of droplets (due to ions and molecules) extends up to only about 60» 
(5, 1939). This shows the possibility 3 of creation of several (at least 8) 
ion pairs by one recoil atom, in spite of the recognised argument 
of W e  r t e n  s t e i n  that this atom can produce only one ion p a i r4.

To remove this difficulty l put here forward the idea that ions 
are produced as a result of the o r b  i t a l radiation connected with 
the nuclear decay. By nuclear disintegration the charge of the 
nucleus is changed and, hence, the total binding energy of the electrons 
with the nucleus of the atom must be changed too. The electrons 
must pass in some way from the normal state of the original atom 
to the normal state of the final one. This phenomenon, so far as I 
know, has not yet been investigated, probably because of its weakness 
in comparison with the nuclear radiation.

3 From  the shape of the curves on Fig. 3 and Fig. 4 (sec below ) w e can 
infer that the difference is not caused by casual fluctuations in either set of 
observations.

* G r i n b e r g  (1, 19bi)  supposes that ions can result from Auger p rocesses  
of gas atom s excited  in collisions. But in the Auger p rocesses electrons o f the 
inner atom shells must be excited and in the case in question the energy 
required for so doing is not at our disposal (the binding energy o f inner electrons 
of O or N is o f the order 103—10* eV w hereas the maximum energy o f the 
recoil atom is c. 400 eV).
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The approximate formula of E. A. M i l n e  and A. B. B a k e r  
(see 10, 1933, where further references are given) for the total binding 
energy W  (in eV) of electrons in an atom with atomic number Z, 
namely

W =  — 20.8 Z7/*,

leads in the case of the process C138-E.A38 to a value of the change AW 
equal to c. 2200 eV. This energy must be given away by the atom. 
It can either be carried off by the emitted beta particle in the form 
of its increased kinetic energy, or it can excite the final atom (A38) 
and then be emitted as a radiation quantum (in the last case an 
Auger process is also possible). The average distribution of the re
leased energy over these two processes has been calculated (in con
nection with the present work) by Prof. J. B 1 a t o n 6 in the first 
approximation and for a one-electron atom on the basis of B o l t z -  
m a n n ’s Virial Theorem. If A W  is the energy change mentioned 
above and Z  the atomic number of the initial atom in the beta 
process, then the mean excitation of the final atoms is

A W '  =  2ZTXAW' ( 2 >

whereas the emitted beta particle gets on the average the energy

2 7
AW" =  -A W  2Z +  1

For an atom with 17 electrons, such as that of chlorine, B l a -  
t o n’s result can give only a very rough evaluation (when we choose 
in a suitable way a «screen number» to diminish the value of Z  in 
the formula (2)). Probably, for large atoms some methods of approx
imation (of T h o m a s - F e r m i  or of Ha  r t r e e )  with the aid of 
machine integration might give a second approximation for the 
problem. But, since relatively large statistical fluctuations (see next 
section) lay in the very nature of the experiment discussed, it is not 
worth while making a precise evaluation of A W', and for our 
purpose a half-quantitative estimation on the basis of B 1 a to  n’s for
mula suffices. We diminish Z by the average of the screen numbers 
of all electrons of the chlorine atom, namely by c. 5, and from (2) 
we obtain for AW' c. 1 X  102 eV. It is the mean for a  large number 
of disintegration processes.

5 These calculations w ere kindly given to me in manuscript.
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T a b l e  II 
Limits of Spectral Series of Argon

Series
Energy

•Wave length 
(A)

For normal air

(Ry) (eV)
num ber of  
ion pairs 
produced

mean range 
(m m )

1 2 3 4 5 C

K 237 3200 3.84 106 5 X 10'
L 18 244 50.6 8 2 X 10-’
M 0.6 8 1545 — —

Table II gives the data of possible excitations of the X-ray spec
trum of an argon atom and of the effects of respective radiations in 
normal air (the figures of column 2 are interpolated from {II, 1926), 
the others are calculated on their basis). The ionization of air by an 
X-ray photon is composed in general of one photo-elfect (with 
absorption of the ionization energy amounting to c. 16.7 eV in the 
average, i. e. 16.7 eV/ion pair) and many ionizations by secondary 
electrons with average energy spent of 30 eV/ion pair. Therefore we 
may adopt rather the latter value for the calculation of the figures 
in column 5.

We see that in our phenomenon an excitation of the K-series 
is impossible (since the total A W  is only 2200 eV), but the following 
series can be excited. The excitation of the L-series can produce 
8 ion pairs in air. It seems that agreement of this number with the 
experimental result of C. &H. mentioned at the beginning of this 
section is not accidental and that it supports our hypothesis. The 
range in air of the respective X-ray photon ( 2 x l 0 ~ 2 mm) lies 
quite within the limits of the dimensions of the clusters of droplets 
observed by C. &H. (radii of 1—2 mm after diffusion of the ions).

As mentioned above, on the average over a great number of 
beta decays the excitation energy of the final atom is c.. 100 eV 
and after releasing it gives probably in air about 3 ion pairs or 
6 droplets. This figure we take as the first approximation of the 
average number of ions produced by the phenomenon discussed, 
which we may call e. g., the nucleo-electronic effect. It is obvious 
that this effect has no connection with the recoil of the nucleus 
after disintegration and that the observed number of droplets in a clus
ter should be reduced by the obtained figure, i. e. 6, to get the 
value of N  which is connected with the recoil energy.



Theoretical Remarks on Crane and Halpern’s Experimental... 117
t

i  * 
i *

f e  3-O

J -

3c
' o ’ 4 

- o  ,
e  3
3

** S ~ 5  30 sir Ao is  So 45 <50

Namber of Droplets in Ouster
Fig. 3

It we compare the statistics of the droplet numbers in the clusters 
observed by C. &H. containing ions with that for clusters without

ions (Fig. 3 and Fig. 4), 
we see that the displace
ment of the maxima of 
the respective curves 
corresponds to about 5 
droplets. This fact seems 
also to support our afore
said result. It must, how
ever, be stressed that 
Fig. 4 is probably distor
ted by the existence of 
the lower energy compo
nent in the chlorine beta- 
ray spectrum and this cir-

~"w cumstance considerably 
diminishes the strength 
of the last evidence.
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Namber of Droplets in Cluster 

Fig. 4

Statistical errors

The preceding considerations show the existence of two sources 
of possible deviations in the result of the experiment:

(1) fluctuations in the number of dissociated nitrogen and oxy
gen atoms, and

(2) fluctuations in the number of ion pairs produced by the 
nucleo-electronic elfect.

The first deviations are of a purely «classical» type known 
from kinetic theories (they are caused by fluctuations in number 
and types of collisions) and can therefore well be estimated with
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the aid of P o i s s o n’s /n-law. Since the number of dissociated atoms 
does not exceed 30, the standard deviation will not be greater than 6, 
and with a probability 0.9 the deviation will not exceed 1 . 7 x 6  £¿10 
droplets.

The theoretical treatment of the fluctuations (2) would be very 
difficult because of the quantum character of the whole phenomenon, 
but we can avoid this discussion altogether by remarking that the 
relevant deviation could not be greater than 16 — 6 =  10 droplets 
(see the preceding section).

A third source of statistical errors was pointed out by C. &H. 
(3, 1938): fluctuation in the number of ions produced by beta-ray 
electrons per 1 cm of their path within a sphere over which the 
droplets due to the nucleus extend. This error is equal to about 
Ypi?, where p denotes the linear density of droplets along the electron 
track and R  the radius of the sphere. From C. &H.’s graph (3, 1938) 
we see that this standard error does not surpass 5 droplets. With 
a probability 0.9 the deviation will not exceed 1 . 7 x 5 ~ 9  droplets.

Finally, C. &H. write (3, 1938): «It is more difficult to esti
mate the uncertainty in the actual counting of the droplets, because 
this depends largely upon the quality of a given track. We estimate 
that this error ranges from 2 to 5 droplets». Let us take 5.

As a resulting maximum standard error we can write 
Yl02 +  102 +  92 - f  52 ixj 18 droplets, since we may suppose that all the 
sources of errors mentioned are independent of each other. This fi
gure seems very essential to the whole problem under discussion. 
Indeed, if the observational points in C. &H.’s plot (see Fig. 5) would 
deviate from curve 2 by not more than 18 droplets, the noncon
servation of momentum could not be considered as proved. Actually 
in many cases this deviation reaches 40 droplets0.

It seems that our analysis of errors gives a sufficient explana
tion for the discrepancy between the value of a obtained theoreti
cally by us and that determined experimentally by C. & H. The latter

6 To exclude the possibility of an accidental addition of errors o f the 
types named, w e can multiply the deviation o f 18 droplets once again by 1.7, 
and obtain so the number o f c. 30 droplets. The actual deviation w ill not 
exceed  this value with a probability o f 0.9 at least. 30 is still sm aller than 40. 
It must be pointed out, how ever, that so large a deviation occurs in very- 
exceptional cases only, and that the mean fluctuation (not the maximum possible  
mean fluctuation) can be estim ated as

Y6a -f- S2 -|— 42 -f- 32 =  c . 11 for N  — 30 droplets, and as 

Y'22 6s +  42 -f- 22 =  c .8  for N  =  5 droplets.
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was namely deduced on the basis of o n e  event of beta particle 
carrying the entire energy of disintegration. It is possible that in 
this case an L-series excitation of an argon atom occurred, and 
thus N  was increased by 16. When we subtract this number from 
the experimental value 56 we obtain a =  E I N = 430/40 ft: 11 and this 
figure is already much nearer to our result 14. The standard deviation 
of a can be evaluated as

A 1  * 1 7  . E  a m  3 0  , 4 3 0  1 ,  -

Aa #  +1V* 30 +  900 ~  ’

where we have taken as AJS 30 eV and as A N  (see footnote6) 11 dro
plets. C. &H’s value 8 lies within the limits of this deviation from 
our result 14.

F i g .  5 

Conclusions

In Fig. 5 are presented the experimental results of C. & H. as 
interpreted by our analysis. The numbers of droplets given by C. & H. 
(3, 1938), (5, 1939) have been diminished by 6 (the mean result of 
the nucleo-electronic effect) and from the values so obtained the 
relative recoil energies E  have been calculated by the aid of formula (1).

We see that only 7 points lie above the upper curve and that 
of these all are contained within the limits of a deviation of 18 dro
plets (260 eV) from this curve.
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We thus come to the conclusion that, if our preceding consi
derations are correct, C. &H’s deductions from their experiments of 
the non-conservation of momentum in the «two-body» beta disinte
gration seem to be well founded in spite of criticisms mentioned at 
the beginning of this paper.

However, the above quantitatively determined possibility of large 
statistical fluctuations in the experiments shows that the drawing of 
conclusions about the statistics of angles between the directions of 
emission of the neutrino and the electron from so small a number 
of experimental points (35) is very uncertain. In this respect C. &H. 
are wholly correct when they write (5, 1939): «It is not safe to attach 
much significance to the results obtained on this aspect of the pro
blem, because of the possibility of rather large experimental errors». 
We have seen aTove (footnote6) that these errors are on an average 
equal to about 30 per cent for large N, and to over 100 per cent (150°/o 
or so) for small N  ( = 5 ,  it is on the limit of the possibility distinguish 
a cluster from the beta ray track). By increasing n times the number 
of measurements, this error would be theoretically diminished fn  times. 
In practice it would not probably be rational to go further than 
n =  16. In any case, it seems very interesting to investigate further 
the beta tracks with entire energy of disintegration, since it is the 
only method which can be imagined at present to measure the ratio 
a and to verify thus our calculation.

The author expresses his thanks and indebtedness to Prof. 
J. W e y s s e n h o f  f, Prof. J. B 1 a to  n and Prof. A. S o 1 1a n  for their 
interest in the present work and their valuable advice and opinions 
expressed during the discussion on it held in Cracow, June 6, 1945.
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RADIATIVE COLLISIONS BETWEEN TWO ELECTRONS

By Jan RZEWUSKI, Institute of Theoretical Physics, Warsaw. 
(R eceived  Mai 15, 1947)

The difl'erential cross section  is calculated for a radiative collision between  
tw o particles. The assum ptions are: Both particle obey the Dirac equation and 
their mutual interaction is static.

In the lim iting case when the mass o f one o f the particles tends to 
infinity w e get the w ell known formula o f B e  t h e  and H e i t l e r  (I, 193k). 
H ow ever, in the case of great energies it is not allow ed to neglect the change 
of momentum of the heavy particle and our formula becom es different from  
that o f B e  t h e  and H e i t l e r .

For equal m asses our formula gives the cross section  for a radiative 
collision betw een tw o electrons. It vanishes for small velocities o f the particles. 
For large velocities it reaches the sam e order of magnitude as that of 
B e t h e -  H e i 11 e r’s cross section for „Brem sstrahlung“.

The sam e form ulae are valid, o f course, for the reverse process o f  pair 
production in the field of an electron.

Introduction

W e consider Ihe general case of collision between two particles 
of masses m 1 and m2, momenta p® and p!J, and energies EJ and ESJ. 
Let the momenta and energies of the particles after the collision be 

pi, Ei and ps, E 2. Besides, a photon appears in the final state with
m om entum  k and energy k. M omentum and energy of a particle are 
related by the equation

E 2=  p* +  p 2. (1)

For p we choose energy units, p is the rest energy of the particle. 
Both particles obey the Dirac equation.

Cross section

Considering the interaction H between particle and radiation 
and V between two particles as small we can calculate the cross 
section by the usual perturbation method (2, 1 QhA). Since the matrix 
elements of the direct transition between the initial and the final 
state vanish, the process must occur through some intermediate states. 

There are four possibilities:



1) Firstly m, emits k and gets the momentum and then it 
interacts with m2 and gets the final momentum pt, while m2 is going 
over to the final state with the momentum p2. The matrix elements 
corresponding to these transitions vanish unless momentum is con
served. Thus

P? =  P'i +  k ,  P'i +  P2= P i  +  P2- (2)
—>

2) m, firstly interacts with m2 and then emits k. The corres
ponding conservation laws are

P i +  P2 =  P'i’ +  P2- Pi’ — Pi +  k. (3)

3) and 4) The roles of the particles m, and m2 are interchanged. 
The conservation laws are

Pa =  P2" +  k » Pa" +  PÎ =  P2 +  Pi : <4 >

Pa +  PÎ =  PaV +  Pi ’ PaV =  P2 +  k • (5)

Elimination of the momentum of the particle in the intermediate 
state from the above pairs of equations (2, 3, 4, 5) shows that
momentum is conserved in the transitions between the initial and
the final states

P Î +  P a =  P i +  P a +  k .  (6)
If we neglect spin interaction between the particles the matrix

elements corresponding to the transitions (2, 3, 4, 5) are (2, 19k9)

H af =  — eke V2rc/k (uî’ a, u'O

1 2 2  Jan R ze w u sk i

ViF =  ÿ k W ( uVUi) (uo»^)
Ip'i — Pi I2

and similar matrix elements 
for the other two possibilities 
with the roles of the particles 
1 and 2 interchanged,Huf — — eke)27i/k (ut * cq u2)

YAI1= ^ ^ ( u r u ; ' ) ( u r u 2) 
lp?—Pil2

where the u’s are spin functions of free particles obeying the Dirac
equation, a, [3 are the Dirac matrices and a  is the component of a 
in the direction of polarization. The u’s are normalised as follows
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Hence, the matrix element H af of the transition from the initial to 
the final state is

Haf = —4K(l,ce)3)/2^/klXU2y  Y
l|p2- p 2°l2^

(uroquiXuFui) . (u^ui)(uï*aiui)'
E a — Ei E a —  E n

(Ul Ul)

Ip . - p î F

( u 2 * a 2 u 2 ) ( u 2  * U 2)  . ( U 2 * U 2V ) ( U 2 ' * a 2 U 2 ) l  ] ^

E a — Em E a —  E iv

The summation concerns both signs of the energy and both po
sitions of the spin possible in the intermediate states. A simple 
calculation yields

Haf =  4t: (1. ce)3 /2n/k ■ ~  | i " 2*^
IP2 P2I2

■ (u°*ut)

ÎPi-P^I2

(ui*MiuO (ui Ni ui)
E?—pîcos©î Ej — pjCosOi

(u2*M2u2) (u2*N2 u2)
E2—p2cos02 E2 —p2cos02

(10)

vtdiere
M, =  2 (p® n) — k (ocj 11) +  (cq k) (a, n ) ,

Nj =  2 (pj n) +  k (a! n) +  (a, k) (cq n ) ,

M2 =  2 (p° n) — k (a, n) +  (a, k) (a, n ) ,

N2 =  2 (p2 n) +  k (a2 n) +  (“2 k) (a2 n ) ,

0. =  < ( p i k ) ,  0® =  < 5 « k ) ,

02 ==< ( p 2k),  0® = < ( 7i®k),

a i )

(1 2 )

and n is the unit vector in the direction of polarization.
Let us consider the case where one of the particles, say m2, is 

—►
initially at rest (p£ =  0). In such a system the cross section is

2 tc EÎ (13)

11
where ^  represents the velocity of the incident pai’ticle and pp is

the density of states in the final state. As we have three particles in 
the final state, Pf will be of the form

3k \  pi Et k2dEi E2
P f  —  PE.dEi pk

with
(2n he)6 E2 — p2 cos 02 

E f =  E! -f- E 2 -f- k .

düx dQk, (14)



124 Jan R ze w u sk i

The square of the modulus of Haf has still to be summed over 
the spin directions of the final state, averaged over the spin directions
of the initial state, and summed over the polarisations of k. After a sim
ple but rather tedious calculation, putting everywhere P2= 0, we get

d‘I> =
E2/P2

4EÏ (Ei +  k) +  (E2 -  p2)2 -  p22 „2 _:„ 2 Q 
(Et — Pi cos 0,)

4EÎ E1+ (E °—Ei)2+ k 2—p22

4E1(E°—k)+(E2—p2)2—p2s 
(EJ1 — p® cos 0J)2

pi sin2 0 j

p“2sin20®

~ 2  ( e ; - p ; c o s  ei> < e, -  p , c o s  e . )  P i p ‘ s in  61  s in  e ' c o s  Ti 

p? sin2 0? +  p?sin2 0 ,
+  2 k2(EJ — p® cos 0j) (E, — pi cos 0 () (15)

E1E 1 +  (P?P.) +  1  ̂
“ + k |4

p2sin2 02
IP2

4 p2 (Eg +  k) +  (E? — E l) 2 — (p? — p, )2 o ; a n  
p2 E2 (E2 — p2 cos 02)2 2 2

+  2ks

+

p2 E2 (E2 — p2 cos 02) +
2 E2 4- 2 p2 +  k 

p t  ! p i  +  k I! \ E . ( E ! - P i C » s e , )

/ 2 E ; E , + 2 i p Æ ) + 2 p ? + E ; k + i ; ; a  k )  in6 sin0,cos ?

\ El -  Pi cos 0) r  1p2 E2

/2E°E1+2(p°p,)+2j*i-E1 
\ EJ — py cos 0«

■?-Eik-(Pik)
k)
k pip2sin 0i sin 02coscpf(o

lEjdEidQ^Qii 
|E , - p j  c.os02’

where cpi, <p? and <p?,o are the angles between the planes p?Xk and 

PiXk, pjXk and p2Xk, p?Xk and p2Xk respectively. dQj and dQk 

are the elements of the solid angles about the directions p, and k:

(pi==^(J® Xk, ï ,X k ) ,  cp?= <(p iX k, p2Xk), cpT,o=^C(p?Xk, p2Xk),
» 0 (I®)

dQj =  sin 0 ] d0„ dcp, , dQk =  sin 0 i d 0 i dcp,.

Discussion

1) For p2-*oo we should obtain the formula of B e t  h e  and 
H e i t l e r  (1, 193b). Indeed p2 -*• 00 leads to E 2 -*■ 00 and thus (15) 
becomes
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d<1> =  l ^ \  i l l )  PL. d E i . dQ1d.Qk | _ 4 E l Z 2_2 o2 in*Qo
M M  p° k pi }(E“-pJcosO «)2Pl 1

, 4E?2- P 2  _2 ._.,a o , 4E?E1+ 2 k 2- p i  _0 . no ■ n
+  (E1- p 1cos01)2PlSin 1 (EJ—pJcosGJ)(Ei—pxcos©,)PlPlsm ®1 sin ' i cos?<

(17)
g p? sin26 i +  pi sin2 0 i |

" (EJ -  p“ cos 0°) (E, -  Pi cos 0j) j ’
which is exactly the formula of B e t h e and H e i 11 e r.

2) (15) becomes different from (17) if the mass of the second 
particle is large but finite (jj.2 =  Mc2, M =  mass of the proton). This
difference becomes important when the momentum .p2 taken over by 
the proton is of the same order of magnitude as the rest energy of 
the proton: p2 >• Me2£¿1000 MeV. Suppose all three particles have 
energies of the order of magnitude of Me2. Then, only the terms in 
the first bracket in (15) are of importance for the cross section, the 
terms in the second bracket being smaller by the factor

2/ E i - -  Pi COS 01

Ie 2--  p2 cos 0 2 | V  ’

and the terms in the third bracket by the factor Thus we get
P2 r-i

4E1(E?-k)+(E2-;x2)2—pi 0 2 , Qo
/ r r u  o„«r.iso \2  "1 5111 '-’l■ e 4 l

(e2)i Pi dEj E2dQidQk /
8tz2'll*cj' pj k E2—p2cos02\ (EJ — pJcosOJ)

, 4E ?(E i+k)+ (E 2 —p2)2—pi 2 . 2 c\-\------------  ,T~ 2-------- pi sin2 0 , (18)(Et — px cos0 !)2 r

(EJ-pJcos0 J) (Ej -p j cos©i) 1 1 (E®-p°cos0®) (Et -pj cos0,)_

as the cross section for the «Bremsstrahlung» applying to the case 
of extremely great energies instead of Be t h e - H e  i t i e r ’s cross section.

3) For Pi — p2 =  f- we must consider two further possibilities:
a) Small velocities: In this case

p i < < p ,  Ei fetp,  (19)

k ^ E ? - E i + p  — E2^ P ‘ 2~ .pi - g « p 1. (19')
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The subscript i means that (19) is correct for any of the energies
0 -*oEi, E l  E2 or momenta pi, p^  p2. With (19), (15) becomes

[2(P2 k) -f- k2]2^d i ,= i t ( £ ! ) £ i f . dQldQk . _
M W p ! k pS(p, +  k)‘

-(- p? sin2 0t — 2 p? p! sin 0? sin 0t cos cpi).

(pi sin2 0 i
(20)

Our cross section for radiative collision between two slow electrons 
is smaller then H e i  t i e r ’s cross section (2, f 944, p. 166) for «Brems-

strahlung» of slow electrons by the factor |2 ^ -c o s 0 2j . This factor
is < <  1 because of (19').

b) Great velocities: We can neglect p against E and p. E and p 
are then nearly equal. Formula (15) becomes

d<I>= |Pi dE, E2dQdQk |
1 p f  k E2—p2cos02|

4Ej(E?—k)p?"sin20? 4E?(E1+k)p?sin201
(EJ—pjcos0j)2 (Ej—pj cos0)2

E i iE i+ k l+ E i  (Eo—k)
(B :-p ;co se ;) (E ,-p ,co s t> ,)piPl » ¡»a .sm e.cos <p,

pi>2sin20 j'+ p is in20 i
+  2k2(EJ-pJcosOj) (Ei -  pj cos0i) 

k 2

r2i^(E2+ k ) -E S E 1+p?p)

|p2 +  k |4 p2 E2(E2 —p2cos02)

p2E2(E2 —p2cos02) 

k

p2sin202
p i|p2-hk|2 (E2(E2 —p2 C°S02)

/2EiE1+ 2 (p ip 1)+E? k+p?k) , . n . A .„2
X E, ■— pt cos 0t + k j  Pl P2sin01sin02cosyi

2 E2+ k

F2E:

(21)

/2EiEt +  2(p°pi) —E, k~( p i  k) 
\ E“—p“cos0®

— k pip2sin0 is in02coscpl,

It is impossible to integrate formula (21) elementary. The approximate 
methods seem to change very much the character of the formula. 
We will try therefore to draw some conclusions about the total cross 
section from the differential cross section without integration.

Because of p ^ E  the cross section (21) is large only for small 
angles 0? and 0i. All the momenta of the final state will therefore be
contained in a small solid angle about the direction of p?.

Further we can say, that the magnitude of (21) is of the same 
order as that of B e t h e - H e i t l e r ’s cross section for «Bremsstrahlung».
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Indeed, the largest terms in the cross section for «Bremsstrahlung» 
are of the order 1/p2 multiplied by a certain factor. After integration 
of (21) we would obtain terms proportional to l/f(Ei) with the same 
proportionality factor. Here f(Ei) means a homogeneous function of 
the second order of the E’s which is not equal to p.2. This follows 
from a difference in the conservation energy equations. In the case 
of «Bremsstrahlung» we have E ° = E ,  +  k and in our case we have 
Ei -f- p =  E: +  E2 +  k. One factor has not yet been considered. The

E2ratio of the density functions for both cases is E2/(E2—p2cos02) ^ 2 —j.
P2i2As f(Ei) is of the same order of magnitude as E2 the ratio of the 

two cross sections will be of the order of magnitude of unity. This 
is true for nuclei with the charge e. For heavy nuclei with the charge 
Ze the ratio of both cross section will, of course, be 1/Z2. The same 
result is obtained by H e i t l e r  (% 1944) by means of the Williams- 
Weizsacker method. However, the application of this method for 
two particles with equal masses is not fully justified.

We have not considered the exchange forces between the two 
electrons. This, however, would not affect the order of magnitude of 
the process either in case a) nor in b).

All our considerations are, for sufficiently large energies (k> 4m c2) 
(3, 1933), valid also in the case of the reverse process of pair pro
duction in the field of an electron (4, 1945). This follows from the 
fact that in this process we have to deal with matrix elements 
conjugate complex to those of the primary process. W e shall not 
write down the corresponding formulae, as the adaption of the for
mula for the process of pair production runs in exactly the same 
way as the adaptation of the «Bremsstrahlung» formula to the pair 
production in the field of a nucleus (2, 1944).

To adapt formula (15) for experimental test the spin interaction 
and the exchange forces should be taken into account. This compli
cates the calculations very much but do not make them impossible, 
at least in case of the differential cross section. The total cross 
section can allways be evaluated numerically.

Such a formula could be tested experimentally if the intensity 
of the emitted radiation in the process of scattering of high energy 
electrons by free electrons would prove measurable.

I should like to thank Prof. Cz. B i a l o b r z e s k i  and Profr 
W. R u b i n o w i c z  for many helpfull discussions on this work.

A c t a  P h y s i c a  P o l o n i c a 9
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ON SIMULTANEOUS INTERACTION OF SEVERAL FIELDS 
AND THE SELF-ENERGY PROBLEM

By Jerzy RAYSKI, Physical Institute, N. Copernicus University, Toruh*

(R eceived Novem ber 3, 1948)

The problem  of sim ultaneous interaction of several fields is studied  
w ithin the fram ework o f the Heisenberg-Pauli formalism. For a suitable mixture 
o f fields of the w ell known types the divergent parts of the self-energy term s 
may be eliminated. The main interest is devoted to the problem o f vacuum  
charge fluctuations. It is found that the photon self-energy vanishes if a suitable 
m ixture o f charged spinor and scalar fields is assumed. The calculations are 
perform ed to the second order of approximation in e8 only.

I. General Introduction

The well known inconsistencies encountered in the theory of 
quantized fields, e. g. the divergent expressions for the eigenvalues of 
certain observables (e. g. self-energy) and the non-existence of a so
lution of the time-dependent Schrödinger equation, may arise from 
the following facts : (1) the formalism of field quantization is erro
neous, (2) the very idea of „field" is wrong, (3) the field models, 
hitherto discussed, are not suitable or, at least, incomplete.

All the attempts to modify either the formalism itself or the 
conception of field haye been fruitless as yet, and it seems not very 
much probable that any progress may be achieved in this direction 
without introducing a fundamentally new idea. As this idea is still 
lacking, it seems natural to investigate the third and simplest possi
bility. Thus, the question is whether it is possible to obtain a con
sistent theory without a fundamental change in the conception of 
the field (as a set of quantities ^¡(xyzt) obeying some linear partial 
differential equations) and without any premature departure from 
the Heisenberg-Pauli formalism of field quantization, but simply by 
a suitable improvement of the model of the field.

*) For the tim e being at the Eidg. Techn. H ochschule, Zürich.
9*
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Recently B o h r1 expressed the opinion that «it may be an 
extravagant wish to hope to have electron theory stand alone. It 
might be possible to obtain the cut-off from phenomena involving 
mesons,, neutrons etc...». In agreement with this point of view, we 
suppose that the field models usually considered were incomplete 
in so far as the interactions between the various fields were taken 
separately into consideration instead of being investigated simulta
neously. Of course, we do not know, as yet, all the types of fields 
oecuring in nature, neither do we know the types of interactions 
between them. But still, using the already well known types of fields 
(spinor, scalar, vector, pseudoscalar etc...). and assuming various in
teractions between them, we may investigate whether the cut -of f  
is actually possible.

As far as I know, the first (to some extent successful) attempt 
to proceed on these lines was done by P a i s  ( i ,  19b7), who in tro
duced a coupling of a spinor field with a neutral meson field. The 
(logarithmically divergent) self-energy of the electron due to the in
teraction with a scalar field is negative and may compensate the 
self-energy produced by the interaction with the electromagnetic field. 
By a suitable choice of the interaction constant f2 — 2e2 the loga
rithmically divergent parts of both self-energies cancel. The devi
ations of the results of this theory from the predictions of the usual 
theory will be the smaller the larger is the mass constant of the 
meson field.

A straightforward extension of the procedure of P a i s is 
needed in case of a charged meson field interacting with the electro
magnetic Held. In this case the self-energy of the charged particles 
is divergent quadratically. Thus, the introduction of an interaction 
with a scalar neutral field with a suitable interaction constant f is 
not sufficient. This would remove only the divergence of the highest 
order, while there would remain still a term divergent logarithm
ically. But, in this case we may introduce two further fields, one of 
a vector type, and one of a scalar type. Thus, we have three cou
pling constants at our disposal, which permit us to get rid of the 
logarithmic part of the self-energy too. This procedure removes the 
infinite self-energies of charged particles of any type, at least in the 
lowest order of the perturbation calculus in e2 where self-energies 
occur.

The physical meaning of this procedure is obvious: in order 
to obtain a consistent theory the (charged) particles must be subject

1 Pocono Conference of Physics, 30 March — 1 April 1948. Cited after
unofficial notes by J. A. W h e e l e  r.
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to other forces of a non-electromagnetic nature. This was already 
anticipated in the classical theory, where the charged particles are 
not stable unless we introduce some cohesive forces of a non-electro- 
magnetic nature. Indeed, no model of a charged particle may be 
consistently achieved in a frame of purely electromagnetic linear 
theory.

As well known, there is another difficulty which has no coun
terpart in the classical theory: In the theory of quantized fields neu
tral particles coupled with a charged field possess a (divergent) self
energy produced by the charge fluctuations of the vacuum. These 
vacuum polarization effects are equivalent to ascribing a proper mass 
to the neutral particles. This situation is particularly unpleasant in 
case of photons whose rest mass must be exactly zero. By obtaining 
in the course of the calculation a result different from zero (finite 
or infinite) for the rest mass of the photon, we encounter a paradox, 
since the formalism is known to be gauge invariant, and there is no 
way of putting in a non-zero value for the photon mass. The reason 
for this conspicuous inconsistency is obviously as follows: The 
proof of the gauge invariance of the formalism is based on the 
assumption that a solution of the equations exists. This is not true. 
The Schrödinger equation in case of the electron field interacting 
with the electromagnetic field has no solution and, consequently, 
the Maxwell equations in their quantized form are not valid, either.

Responsible for the non-solubility of the field equations is the 
operator of charge and current j^, (as the Maxwell equations possess 
a solution in the interaction-free case). Hence, we may hope that 
a suitable modification of this vector operator may improve the sit
uation. The only straightforward possibility is to convert the elec
tromagnetic charge and current operator into an operator for sey- 
eral fields:

r = j ? + j $ + - >

where j£ ,n  =  l, 2 . . .  are the usual operators for spinor, scalar, vec
tor, . . .  fields with arbitrary mass constants nin and coupling con
stants en.

If we succeed in combining several charged fields in such a way 
that the self-energy of the photon interacting with the common 
charge jn- becomes exactly zero, then we shall possess also some ne
cessary conditions for the existence of the solution of the Schrödin
ger equations. In the next sections we shall show that this is actu
ally possible for a mixture of spinor and (charged) scalar fields.
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II. Charge Fluctuations of a Spinor Field

The Schrödinger equation for the electromagnetic field interac
ting with a spinor field is

where H0 is the Hamilton operator for the interaction-free case, H' is 
the energy density of interaction, H — j d 3xH,

where is the four-vector potential of the electromagnetic field, 
and s^ is the four-vector of charge and current density

is symmetric in positons and negatons.
Following T o m o n a g a  (2, 194-7) and S c h w i n g e r  (3,194-8), 

we transform the Schrödinger equation to the «interaction repre
sentation» by putting

This is a mixed Heisenberg-Schrödinger representation in which 
both the Schrödinger functional and the field quantities Au are 
time-dependent. The Schrödinger equation becomes

while the field quantities obey the same commutation relations and 
field equations as in the interaction-free case:

( 1)

(2)

□  A[1 =  0, [A^x), Av(x')| =  D(x — x'), (5a)

( tV ^T  + x)+= 0 > rWx),^(x')]+ =  iS^(x-x') =  i ( y ÿ -  Baßy.)A(x-x'). (5b)

Here

(6 )
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are the invariant Jordan-Pauli delta-functions. It is often convenient 
to split these functions into positive and negative frequency parts, e. g.

where
D+ =  D, - i D ,  

I

D-  =  D1 +  iI),

Dl (2 n ) 3f d3k
i k x » ,e cos k t

(7)

(8)

The field quantities may be also split into positive and negative 
energy parts, e. g.

4, =  <1,+ -|_ <{,-. (9)

The commutation relations for these parts are:

[*+(x), ^ + (x')]+ =  - ^ S a+p( x - x ' ) ,

[t* (x), ■ (x')]+ =  \  S aß  (x — x'),

[*+(x). ^ (x ') ]+  =  0.

( 10)

The S*ß, Sap functions are, of course, positive and negative frequency 
parts of Saß defined by (5b). The field equations and the commuta
tion relations are obviously Lorentz invariant in this representation. 
A generalization of (4) consisting in replacing the planes t =  const 
by arbitrary space-like surfaces converts also the Schrödinger equa
tion into a Lorentz-invariant form discovered by T o m o n a g a .  But 
we shall not make use of this generalization in the course of our 
calculations.

In order to calculate the self-energies, we introduce a unitary 
transformation es , <[>-»• es 4>, and obtain

S < I >

9 F  :

i e - s ^ e S  +  e - s H 'e 8 <I>.

This yields, to the second order of approximation,

. P4>
! 3t

- i S - ^ [ S , S ]  +  H '+ [H ',S ) |4> .

The condition for vanishing of the first order term is

iS =  H ' = - / s v Av d3x,

and the eq. (12) becomes
■3 -  1 ru

(H)

( 12)

(1 3 )



From (13) we obtain
S =  i | tdx0| s v(x)Av(x)d3x (15a)

with an arbitrary lower limit of integration. A very convenient form of 
the S matrix, introduced by S c h w i n g e r ,  is half the sum of two 
such integrals with the lower limits of integration -f- and — infinity:

S==^ (/  i t + / j t ) / s , ( x ) A v(x)d3x. (15b)
Now we may write

[H', SJ =  — i I dx'o f  d3x' [sv(x)Av(x), s^ x ')  A ^ x ') ] , (16)
J  ¿ 0 3  J

where / dx'0 is used as short for half the sum of the time integrals
±0O

(15b). The commutator in this integral yields

[s„Av, s',,, A'jJ =  A v A ^ + s '^ S v jS p D ix —x'). (17)

The second term in (17) is independent of the electromagnetic po
tentials Ap  so that the self-energy of photons, in which we are in
terested, is contained in the first term only. From (14), (16) and (17) 
this self-energy term is

+00 t
<H>fluct =  — j f  dSK j  dx'o’QSp (x), Sv(x')]>vac A^(x) Av(x'). (18)

—00
In this formula are contained the effects of fluctuations of the vacuum 
charge. In order to obtain the self-energy of the actually existing 
photons, we should subtract from A^A'v the expectation value of 
the same operator in the state without photons

Ap, A'v —► A^ A v — Âp, A v̂ vac

However, we do not need to do this, but may study the effects of 
the charge fluctuations more generally. From the commutation rela
tions (5 b)
[S|x(x), sv(x)J =  — ie2(+(x) Yj.Six—x')yv(!'(x')—^(x')TvS(x'—x)Y^(x)) (19)

the expectation value for the vacuum is

1 19 A ( x — \ ) 9 A 1( x - x )  <?A(x—x') PA^x—x')
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<[s„,s'vl >Vac =  4 ie 2 Px„ ' 2xv Px, Px„
(20)



In order to derive this expression, we make use of the following 
properties of the field quantities

41 p^vac =  '}' j ^ v a c  "1“  <'4'a ^  p  ̂vac >

since the mixed terms <f+ 4'-  have no diagonal elements. The term 
<ii+ <]/+>vac vanishes, since <K+4>vac =  0. (It should be remembered thata p
the operator 4,+ annihilates negatons). Hence

<+a fp> vac =  fp->v«c =  < '!“  f j -  +  f j f  ^ v a c  ’,

here the term <|>~ has been added which gives i ’vac =  0
(<{<- annihilates positons). Thus

<V 'p>vac== ^ ] >  va c = | s “ (x '-x )  = =  |  (y^} -  *Sf;a)A -(x'-x ) .  (21)

The formula A+(x— x') =  A_(x'—x)

together with the expressions for the traces of the products of the 
Dirac matrices enables the derivation of the expression (20) from (19) 
and (21) by a comparatively long but elementary calculation. From 
(18) and (20) we obtain

2e>AfW/d “q °d i0j -  V . ( |  f + x ’A A ,))A ,(x -a
+00 ±00 "r v "P 'A 'K

where ^ ^ x ^ , — x'^. By introducing under the integral the quantity

Ho] we g

<H>„„.1-e>A,(x)/d‘5 | | | | + ^ | - 8 p ( ^ | + x-As i ,)|A<(X- f t  (22)

where As =  |^-j A(^). Now Av(x—<;) may be Fourier analysed 

Av(x — ?) =  2 a(k} e‘V V ~ V  +  compl. conj.
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k

<H> « _  e- A,(x) I  a<? A > / d - l  |

Id As PA, . • \ 1 
— ^  Ip^T PAx +  s 1 / j e_ik^  +  compl. conj.

Following an argument of S c h w i n g e r  we may say: — The integral 
represents formally a tensor T p  dependent on k. The only tensor 
with this property is

T p  =  A ■ k^ kv +  B §p ,



where A and B are scalars. The first term gives zero from the Lo- 
ren tz  condition2 2aW- kv<I> =  0, so that only the second one gives
a contribution 3 to <H>nUct. Thus in order to calculate the self-energy 
term , we have to take

<H>nuci =  e2 A^ 2 aWeikx • B&p -f- compl. conj., (23)

or <H>nuct==e2A^(x) Alx(x)-B  (24)

(B is real). From the last expression we see that the self-energy term 
is formally representable as a change of the mass constant Am

<H>nuct= e2B Aji(x) =  +  (Am)2 Ajj(x). (25)

Now, we have to calculate the invariant quantity B

1 3 6  J erzy  R a ysk i

eB =  5 T ' ' V - l / d ' 5 | 2 | | 5 ^ - 4 ( | | | |  +  r.>As A1
(26)

In order to compute this integral, we make use of the following 
representations of the delta functions

(a?)

In the integral representing As the principal value is to be taken

B =  ~ ( ^ y f d" d4(I d' P (“  **) • e l(̂ + V - •

The integration over £ yields four delta-functions, which enables the 
integration over qr  so that we get

where q„ =  k(t — p^. Due to the occurrence of S(p; +  x 2) under the 
integral, we may also easily integrate over dp0. First split the in-

pA„
s The Lorentz condition in the interaction representation is not — -  <1>=0,PXjj.

but the deviation from the usual form is proportional to higher pow ers o f e and 
gives rise to higher order effects only.

3 The existence of the term BSp w as pointed out by W e n t z e l .
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tegral / dp0 into I dp0 +  / dp0, then transform p|A into — pa in the

—oo J -00  ̂0
first of these integrals. This yields

On S im u ltan eou s In terac tion  of Severa l Fields an d  the Self-energy  P rob lem  137

/ M V  Ph Pi ..A

2 2 ’ I1 2 2 * <
1 p2- 2piJ k(i+x2/B =  (2^79 / d3W  d P o l * . n f  T  » T , , ; J 8 ( Pv +  * 2)-

Now introduce a new variable Po =  z, and obtain finally

B ~  [ "/ d3p (28> 2 (2i t )V y P* +  x*

or <H>nUCt - ^ T 3 [ , d3p ■ • A2„ ( x ) .  (29)2(27t)3J ] y  +  x2

This integral is formally Lorentz-invariant but diverges quadratically.

III. Vacuum Charge Fluctuations of a Scalar Field

R. J o s t 4 has calculated the «photon self-energy» in case of the 
interaction with a charged scalar meson-field. In this case the inter
action energy density consists of two terms proportional to e and 
e2, respectively

H' =  H'i +  H', =  -  ieAv (g lcp  -  <p‘) +  e2 cp‘ cp Ai A,, (30)

v =  l ,2 .3.4, i =  1,2,3, cp means the scalar meson field quantity. De
note the charge and current density in the interaction-free case by

Performing a unitary transformation es the Schrödinger equation 
becomes to the second order of approximation

4>, (32)

where S =  i J dx0 j 3V Av dx3, (33)
¿co
t

[H i, SJ =  — i f dx'o I d 3x' [av Av, cfa A '^ l, (34)
‘ ¿so

♦
where [ovAv, cj'^A'jJ =  [ov, o’u] Av A '^ + o  {J a,,D(x x ). (3o)

Unpublished.
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The photon self-energy is contained in the first term and, of 
course, in H2. After some calculation, (34) with the first term of (35) 
yield

[Hu S] == — A0 A0 <p* cp +  \  K j d*x Aji(x )

, Sep* ,SA £>cpł 3cp' i ,
+  9   A +  c o m P L co n J-

(36)

The term — Aocp*<p has been obtained by a partial integration. This
term, together with H'2, yields an invariant, so that we obtain finally 

H " =  A^ A^ cp* cp + 1 Av/ d V  A, (x ) 9cp*d̂ - . 9A  
* Sx^  Sxv

9ep* , S A Scp* Sep' . ,
+  £ - 9 ---- ---- 57T ^ A + c o m p ! .  con.].8xv r  Sx'p S xv Sx'ji

(37)

for this part of the interaction energy density which is responsible 
for the self-energy of photons. Take the expectation value for a state 
without mesons

< ?>vac  =  ̂ A +(0), (38)

where 4+ ( x _ x ' ) = ^ ¿ V V V .

m =  mass constant for the meson field. Introducing the notation 
!; =  x — x' and replacing the time integral

l ôl
we get

<H">v. c = ^ A vAvA+(0)+^Avy d ^ i | i A |l(x-5)

(39)
nSA1 2A 2Aj 3A 32A,

' 2 s l ' se, s ^ ' s l + s^  ;

By a calculation quite analogous to that in the foregoing section 
we obtain finally the result

1 e2 r d3p<H>V e* r 
4 (2n y j  ym 2+ p 2Am(x). (40)

IV. A Compensation of Charge Fluctuations

We notice the following results of the two preceding sec
tions: (1) In either case the mass factor Am is divergent quadra-
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tically6. (2) The signs of the self-energy terms are opposite. These 
two facts enable the compensation of the charge fluctuation effects 
and, consequently, a complete elimination of the self-energy of the 
photons. In order to achieve this result, we assume a suitable mix
ture of spinor and scalar chai’ged fields. W e take, e. g„ besides the 
electron field with charge e0 =  e and mass m0 =  x, another spinor 
field with charge and mass irq, and two scalar fields whose charges 
and masses be denoted by e2, e3, m2, m3.6 Introducing the following 
notation

2 2 t 2 i 2eo  . __ e i   _
^2 1 xo> g2 xi ’ 2 e2 Xz’ 2 e2 Xs’

the self-energy density of the electromagnetic field interacting with 
all these fields is

2 (2Tc)3/ d P ( 2 yp2—|-rn|) (41)
i= 0  r  2

The above integral vanishes if the following three conditions 
are satisfied

3 3  3

=  J ^ x i  m? =  0 , ^ x ,  m? In ml =  0. (42)
i=0 i=0 i=0

The first condition destroys the quadratically divergent terms, 
the second one cancels the logarithmically divergent parts, while the 
third one makes the remaining (convergent) part zero. (42) form 
a set of three linear inhomogeneous equations for the unknown 
X!,x2, x3, which surely possesses a solution, since the masses m i ( i = l , 2, 3) 
may be always chosen so as to make the determinant different from
zero. It is also possible to choose the masses nii(i =  l,2 ,3) so large
that some deviations from the usual electron theory would manifest

5 In case of the interaction w ith a spinor field H e i s e n b e r g  (Zeits. f. 
Phys. 90, 209, 1934) obtained a logarithm ically divergent photon self-energy. 
The discrepancy betw een H e i s e n b e r g ’s and our results is due to the fact 
that H e i s e n b e r g  arbitrarely substracts a part o f the effect. W e n t z  e l  calcu
lated the photon se lf energy using S e l l  w i n g e r ’s representation o f the A 
functions and obtained a finite (but different from zero) value for the rest 
m ass o f the photon. This indicates that S c h w i n g e r ’s representation is not 
equivalent w ith the usual representation o f the A-functioh. This is how erer  
another theory.

6 It is also possible to put all the charges ei equal to the elem entary  
charge e, but in this case w e have to introduce a larger number of auxiliary  
fields. (Note added in proof).



140 J erzy  R aysk i

themselves in the extremely relativistic effects only. We may even 
let im-^oo, so that the additional fields would play, finally, only 
an auxiliary role in the calculations without appearing explicitely 
in the experiment. The equations (42) form a set of necessary con
ditions for the Schrödinger equation of a mixed field to possess 
a solution. Their physical meaning is the following: — they ensure the 
compensation of the charge fluctuations of the vacuum. Of course, 
the equations (42) are not yet sufficient conditions for the existence 
of a solution of the Schrödinger equation. First of all, we must 
add further fields and conditions in order to obtain finite self-energies 
of charged particles (sec. 1). Generally, we must look for such a mix
ture of charged and neutral fields for which all the self-energies 
would become convergent (or disappear) by mutual compensation. This 
seems certainly possible to the second order of approximation. Ho
wever, it is not certain whether the conditions obtained from the 
second order effects will automatically ensure also the convergence 
for higher order terms.

A c k n o w l e d g e m e n t .  1 wish to express my deep gratitude 
to Dr. R. J o s t  for his kind advice and for several valuable dis
cussions.
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ON THE EXISTENCE OF AN ELECTRIC FIELD IN SUPER
CONDUCTORS

By Bolesław MAKIEJ, Institute of Experimental Physics II, Jagellonian
University, Kraków

(R eceived Mai 21, 1948)

By a generalization o f O h m’s law  and its application to the electric cur
rent in superconductors the fundamental law s o f electrodynam ics of supercon
ductivity are deduced by purely formal analogy with the equations o f m otion  
of a free charge in an electrom agnetic field. For stationary currents the con 

dition E + — =  0 asserts that there exist in superconductors an electric

field acting upon the superconduction electrons but producing no J o u l e ’s 
heat, as its activity i • E =  0. By a train of thought starting from H a m i 11 o n’s 
principle the electric field is found to derive from an electric polarization in
side the superconductors. The appearence of an electric polarization may be 
traced to a spin coupling o f the electrons due to the existence o f exchange 
forces. A calculation o f the num ber o f electrons w orked out for a sim plified  
m odel o f a superconductor leads to a fairly good agreem ent w ith  experim ent.

Up to this time a certain misconception is often to be found 
in the presentation of the electrodynamics of superconductivity. Let 
us call Ć, H the intensity of the electromagnetic field, i the density 
of the current, m and e respectively the mass and charge of an 
electron, and n e  the density of the electric charge. Usually one as

sumes a generalized O h m ’s law in the form E =  pi-i-Xi, where ^  — 

and p is the specific resistance. Here, a term expressing the influence

of the magnetic field H, viz. —  i x H ,  has been omitted. This is °  nec
justfied, of course, in the case of strong electric fields, but not for
fields of the order of magnitude of the electric fields, which may be
expected in supperconductors. Hence, the generalized O h m s  law
has to be assumed as follows

É-t— — i x  H =  pi +  Xi. nec r ( 1)



In case of non-stationary currents in superconductors we may 
put, according to experiment, p =  0 and ( 1) takes the form

E +  —  i x H  =  Ai, (2)nec

which shows a striking analogy with the equation of motion of a 
free charge in an electromagnetic field. All the results of H a m i l 
t o n ’s dynamics of such a particle may be applied in a purely for
mal manner to an element of current in a superconductor. The

^  0

velocity of the electric charge satisfies the equation rotv =  — —  H.

an analogous relation must hold for an element of current, viz.
i i e £rrot — =  H orne me

cXrot i  = — H,  (3)

which is nothing else as the well-known first fundamental equation 
of L o n d o n ’s theory (1, 1935; 2, 1936).

Taking into account that
di Si / i \ „ Si 1 , ,2 , 1 . __
—  =  —  4 -  —  • V i = ^ 7  —  k — grad r - j  i X  rot i ,dt St \ne v / St 2 n e & 1 ne

equation (2) may be given the form

E +  s —- grad i2 — X == — i X  (H -f~ c X rot i)1 2n e fcl St nec

and hence, due to (3), we have
X
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f i  +  2 7 i 8 r a d  ‘ ’ - X S “ 0 '  ( 4 )

the second fundamental equation of the theory of superconductivity with 
an additional term introduced some time ago by F. B o p p  (3, 1937).

In a superconductor carrying a steady current p =  0, i — 0 
and (2) goes over in

+  —  i x H  =  0. (5)nec

At first sight this relation might appear trivial, but it shows 
that in a superconductor carrying a steady current there exists a
non-vanishing electric field which, being perpendicular to i and H,
can neither do mechanical work nor generate J o u l e ’s heat.

Returning to the above mentioned analogy between the behav
iour of an element of current and the motion of a free charge in
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an electromagnetic field, we may write H a m i 11 o n’s principle for 
a unit volume-element of current as follows

&/t‘*Ldt =  0,

where L =  T — U =  A i2 — (neV — -  A • i)^ c
and i =  nev, £ = —gradV,  H =  rot A n =  n(x,y, z).

In the sequel, as we shall limit ourselves to the consideration 
of steady electric current, we shall assume the kinetic energy

T = ^ X i 2 to be a constant. Then, S jt'!Tdt =  0, and from H a m i l t o n ’s

principle we get
8 y^’U dt =  0 , (6)

a condition which is equivalent to the Euler-Lagrange equations

ne E - f  — I x H  — (eV — — A • i) grad n =  0 c \ nc I °
Consequently, taking into account (5), we get n =  const, and come 
thus to the conclusion that the superconduction electrons are evenly 
distributed throughout the superconductor, in disaccord with the 
assertion of B o p p  (3, 1937) drawn from his hydrodynamical theory 
of superconductivity. The distribution in space of the positive ions 
being also homogeneous, there is in a superconductor no «free electric 
charge» which might act as a source of electromagnetic induction 
vector. Hence, divD =  div (fi +  4tc P) =  0 and d i v E  =  —47i:divP. 
On the other side, in the case of steady currents, (4) yields

div E =  — - ^ - A i 24=0, and thus the electric intensity inside a super- 
2ne

conductor is seen to be connected with the electric polarization.

Besides, due to M a x w e l l ’s equation ro tH  =  —  i, the magnetic field

is the proper field of the superconducted current. The question as 
to the moment of the appearence of superconducitivity can be brought 
back to the following question: At what moment while the tem
perature is being steadily reduced, an internal electric field may 
spontaneously appear? J. J. T h o m s o n  (k, 1915) was the first to 
try to explain the phenomenon of superconducitivity by spontaneous 
electric polarization. Though his dipole theory ot conductivity does 
not comply with modern views, it seems that the underlying idea 
of seeking a solution of the problem by analogy with ferromagnet
ism contains a germ of truth. Indeed, the similarity of behaviour

A c t a  P h y s i c a  P o l o n i c a  1 0
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of ferromagnetics and superconductors in the vicinity of their transi
tion temperatures (abrupt changes of electric and magnetic properties, 
similar anomalies of specific heats) leads to suggest an essential 
parenthood of the mechanisms of both phenomena. It is very prob
able that in superconductors as well as in ferromagnetics there 
exists an «internal field» — due to exchange forces — put to light 
by the coupling of the spins of the electrons. P. A. M. D i r a c  
(5, 1929) showed that the effective coupling of the spins of any two 
electrons in a crystal give rise to a potential energy Uij — — 2Jjj§i-sj, 
where Jy is the exchange integral depending on the states occupied 
by the given electrons, and the spin vector §i is expressed in units 
of h. A necessary condition for the appearance of ferromagnetism is 
Jij > 0, but more often Jy < 0, in which case the spins tend to become 
antiparallel. The magnetic suceptibilities of some substances as MnO, 
MnS, Cr20 3 CrSb etc., called «antiferromagnetics» (see J. H. v an  Vl eck,  
6, 19b5) pass through a steep maximum with rising temperature. 
The properties of these antiferromagnetics may be explained by 
assuming that their crystals consist of two «sub-lattices» A and B, 
the A-atoms having as neighbours only B-atoms and vice versa. 
In case the exchange integral is negative, the mutual energy of two 
atoms is minimum when their spins are antiparallel. For the energy 
of the whole crystal to be a minimum the spins of all the A-atoms 
must be parallel among themselves but antiparallel to the spins of 
all the B-atoms. With rising temperature, the spontaneous internal 
field maintaining this orderly state grows weaker and weaker, until 
it vanishes altogether at the Curie point. Beasoning by analogy, we 
may imagine the electron spins in the «microdomains» of the super- 
conductor tending to take antiparallel positions and forming thus an 
orderly state resembling two interwoven sublattices with anti- 
pai-allel spins. We may think of the conduction electrons as forming 
one of these sublattices, the second one being constituted of the pos
itive ions. The orderly arrangement of the electrons in their sub
lattice will bring about orderliness in the orientation of the ion 
dipoles — and an electric polarization of the medium will follow. 
For such a state to be in equilibrium the electric field due to po
larization must be compensated according to the following condition 
of minimum potential energy

£  +  —  i x  H =  0. nec
The existence of a spontaneous electric current perpendicular to the 
electric field may be regarded as a consequence of the above con
dition. Thus, the electric field acting upon the superconduction elec
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trons is always compensated by an «induced electric field» ^ ^ i x H ,

and there is, therefore, in a superconductor no macroscopic electro
static field, in contradistinction from a polarized dielectric, as was 
experimentally verified by H. L o n d o n  (11, 1936).

The model of a superconductor sketched above renders it pos
sible to calculate the number of superconduction electrons as 
a function of temperature, in analogy to the method of E. S t o n e r  
(7, 193b) used by him for ferromagnetism. Let us assume for sim
plicity that each atom of the superconductor has only two outward 
electrons (in addition to closed inward shells); one of these electrons 
is «quasi-free» and belongs rather to the «electron-fluid», the other 
one is bound to the rest of the atom. In a time average let the given 
ion be surrounded by neighbouring electrons of the electron-fluid. 
The mutual energy of a pair: ion-neighbouring electron depends, as 
in every two-electron problem, on the mutual orientation of electron 
spins; when the exchange integral J < 0, the energy is greater or 
smaller by |J| according to the spins being respectively parallel or 
antiparallel. Let z be the number of electrons surrounding the 
given ion, x the fraction of these electrons in antiparallel position 
to the ion spin and similarly y for parallel positions. Then, the 
increase of the energy (put equal to naught for x =  y) is

Au =  - | J | ( x - y ) .

We assume the number n of superconduction electrons in 1 cm3 
to be proportional to the excess of the number of antiparallel ion- 
electron pairs over the number of parallel pairs, n =  c(x — y), as 
this excess characterize the degree of orderliness as well as the in
ternal electric polarization. In fact, in our model of a superconductor 
the electric polarization is due to the orderliness of the spin orien
tation of the ions and the measure of this orderliness is given by 
the excess of the antiparallel spin pairs (ion electron — neighbouring 
electron of the electron-fluid) over the parallel ones, as in a normal 
crystal there are as many parallel as antiparallel ion dipoles. Thus, 
only this excess gives rise to internal polarization and to supercon
ductivity. In an ideal case, when all the spin pairs in the neighbour
hood of a given ion are antiparallel their number is z; in this case

 y   y
n,nax =  cz, and hence ------==.-------- =  Let the direction of the

nmax z x +  y
given ion be the singular direction of the ion sub-lattice. To each 
ion oriented in this direction or the opposite one (we assume these two

10*



possibilities only) belongs the energy ^A u =  — ^ |J |(x—y) or — ^ Au

respectively, as Au refers to z ion pairs and each pair  contains one 
ion electron and one neighbouring electron of the electron-fluid.

As the number of parallel ion dipoles is equal to the number 
of antiparallel spin-pairs we have, thanks to B o l t z m a n n ’s law,

n  x — y  e~Au/2kT — eAu/2kT  . /z | J | , n \
llmax _  X +  V e~Au/2kT -f- eAu/2kT 1 \2kT n m ax/

or in parameter form
n / i w  =  t h a ,  T/0 =  ^ ,  (7)a

where 0 =  z |J | /2 k  denotes a transition temperature analogous to the 
Curie point of ferromagnetics.

The number of superconduction electrons may be found from 
measurements of the so called penetration depth of a magnetic field

into the superconductor where X =

In Fig. 1 we see, besides the graph of n/nmax =  f(T/0) according to 
equation (7), the experimental curve plotted by F. L o n d o n  (8, 19h5)

1 4 6  B oles law  Maldej

Fig. 1. Relative num ber of superconduction electrons as a function of reduced  
tem perature. Solid curve after F. L o n d o n  (S, 19b5)

from measurements of the susceptibility of colloidal mercury in 
a superconducting state '. These measurements were carried through 
by D. S h o e n b e r g  (9, 19i0) and there results coincide with m eas
urements on thin mercury-layers (10, 1939).

1 The experim ental curve has been taken from the publication o f F. 
L o n d o n  and the theoretical curve drawn to the sam e scale.
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The striking similarity of both curves seems to indicate that 
■we have come across a very promising way of elucidation the na
ture of superconductivity.

To sum up, we may emphasize the fact that the laws of elec
trodynamics point to the existence of an electric field in the inte
rior of superconductors in stationary states, this field acting upon 
the superconduction electrons inside the superconductor. From the 
macroscopic point of view, this field does not manifest itself as it 
is just compesated by the „induced“ electric field produced by spon
taneous microcurrents. The origin of the internal electric field may 
be connected with the directional coupling of the ions and electrons 
under the influence of exchange forces, which explains the existence 
of a certain analogy between superconductivity and ferromagnetism.

In conclusion the writer takes the opportunity of thanking 
Prof. S. S z c z e n i o w s k i ,  Prof. J. W e y s s e n h o f f  and Dr. B. 
Ś r e d n i a w a  for their helpful advice and Prof. N i e w o d n i c z a ń 
s k i  for stimulating discussions and his continued interest in the 
subject of this paper.
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A GEOMETRICAL INTERPRETATION OF THE PHASE-DIF
FERENCE ANGLE AND ITS APPLICATION TO A. C. PHASE 
MEASUREMENTS BY MEANS OF THE OSCILLOGRAPH

By Roman S. INGARDEN, Institute of Theoretical Physics, 
University and Polytechnic, Wroclaw.

(R eceived  N ovem ber 11, 1948)

It is well known that the trajectory of a point performing 
simultaneously two harmonic motions of the same frequency perpen
dicular to each other is an ellipse (first figure of L i s s a j o u s). It may 
be easily shown (see e.g.  M. B o r n ,  Optik, 1933, p. 22) that between 
the amplitudes alt a2, the phase difference 8 of the two motions 
and the lengths a and b of the semi-axes of the ellipse the following 
relations exist

a i +  a l =  a 2+  b \  (1)

Oj a2 sin h — a b .  (2)

According to the first and second theorems of A p o l l o n i u s ,  well 
known in analitical geometry, these relations are valid for any two 
conjugated diameters of an ellipse and the angle 8 between them. 
It may be proved almost directly that the conditions (1) and (2) 
are also sufficient for the real numbers au a2 and 8 to represent in 
the ellipse with semi-axes a and b the lengths of two conjugated 
diameters and the angle between them.

On the basis of the above statement the angle 8 can be con
structed geometrically as follows (see Fig. 1). Two circles with radii

F ig . 1.
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di and a2 are drawn from the centre 0 of the ellipse. Joining 0 with 
the points of intersection of the circles with the ellipse, we obtain two 
pairs of conjugated diameters. The angle o is indicated in the figure.

Oscillographs give directly exact diagrams of resultant oscillation 
curves and our construction might he therefore applied to their 
interpretation. For instance, the measurement of the phase difference 
between tension and current by means of a cathode-ray oscillograph 
(e. g. with two electrostatic deflectors P,, P2) can be performed in 
principle as shown in Fig. 2. By suitable regulation of the amplitudes

/ / l

7 ^
7

A

Fig. 2.

of the deflections caused by Pt and P2 both amplitudes a2 and cii 
may be equalized. The common diameters of the ellipse and the 
circle given by their points of intersection determine the angle 8. 
By providing a suitable circular scale on tbe screen (see Fig. 3) 
the angle 8 might be directly read from the scale.
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